

ASX: BCA 22 October 2025

KR2 Mineral Resource Estimate JORC Classification Upgrade

- The KR2 Mineral Resource Estimate (MRE) JORC classification has been updated with 90% of the MRE now classified as Indicated
- The combined KR1 and KR2 MRE totals 104 Mt @ 10.3% Mn containing 10.7 Mt of manganese from within the Balfour Manganese Field (BMF), comprised of:
 - KR2 25 Mt @ 11.5% Mn with 23Mt @ 11.5%Mn Indicated and 2Mt @11.1% Mn Inferred
 - KR1 79 Mt @ 10.0% Mn (all Indicated)
- The KR2 MRE classification upgrade could enhance future scoping study updates or more detailed feasibility-level modelling and economic evaluation for the KR1/KR2 deposits, noting the strong financial metrics already delivered by the 2024 KR1/KR2 Scoping Study.
- The Company continues to focus on the High-Grade manganese and iron discovery at Wandanya with further assays from the third RC drill program expected in the coming weeks and diamond drilling for metallurgical samples commencing soon.

Australian manganese explorer and developer, Black Canyon Limited (Black Canyon or the Company) is pleased to announce an MRE JORC classification upgrade for the KR2 deposit. Previously the entire KR2 MRE was classified as Inferred, however the inclusion of infill RC drill information² completed in 2024 has enabled approximately 90% of the Resource to be upgraded from Inferred to Indicated. The updated MRE across the Company's 100% owned KR1 and KR2 deposits is summarised in Table 1.

Table 1. Summary of Mineral Resources for the KR1 and KR2 deposits across the Balfour Manganese Field, 22 October 2025

	Summary of Mineral Resources ⁽¹⁻³⁾						
Deposit	Mineral Resource Category	Material (Mt) ⁽²⁾	In Situ Mn (Mt)	Mn (%)	Fe (%)	Si (%)	Al (%)
KR1	Indicated	79	7.8	10.0	7.9	18.0	5.4
KR2	Indicated	23	2.6	11.5	10.7	19.2	5.1
Total	Indicated	102	10.4	10.3	8.5	18.3	5.7
KR2	Inferred	2	0.3	11.1	11.0	19.4	6.0
Total	Inferred	2	0.3	10.3	11	19.4	6.0
Grand Total		104	10.7	10.3	8.6	18.3	5.7

Notes to Table 1:

- Mineral resources reported at a cut-off grade of 7% Mn.
- Appropriate rounding has been applied.

 Refer to Appendix 1 JORC Table 1, Sections 1 to 3 and Appendix 2 for further details.

Contact

35 Richardson Street West Perth, WA, 6005

info@blackcanyon.com.au

W www.blackcanyon.com.au

Capital Structure (ASX: BCA)

Shares on Issue 14c Options (exp 14/10/2026) 6.3M Top 20 Shareholders Board & Management Funds & Institutions

Board of Directors

Graham Ascough

Non-Executive Chairman

Brendan Cummins

Managing Director

Simon Taylor

Non-Executive Director

Adrian Hill

Non-Executive Director

Wandanya Project

High-grade Mn & Fe discovery

Balfour Manganese Field

Global MRE 314Mt @10.5% Mn* Largest Resource in Western Australia

*BCA Announcement 12/12/23

The updated MRE announced today replaces the MRE announcement¹ made on 27 November 2023 for KR1 and KR2 that totalled 103 Mt @ 10.4% Mn for 10.7 Mt of contained manganese.

Black Canyon's Managing Director Brendan Cummins said:

"The infill drilling completed at the KR2 Deposit has successfully achieved its objective of updating the geological and grade model and improving confidence in the Resource classification.

"The revised model can be used to re-optimises the mining schedule used in the 2024 Scoping Study, allowing higher-grade, shallow material that was previously classified as Inferred and scheduled beyond Year 5 to be brought forward into the first five years of production which may have a positive impact on the financial metrics of the project.

"The upgraded Indicated Resource at KR2 will also support more detailed feasibility-level modelling and mine scheduling when required."

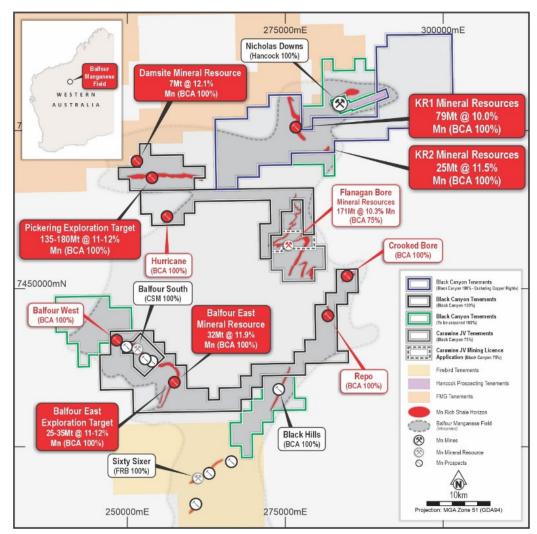


Figure 1. Location of the KR1, KR2, Balfour East, Damsite MRE targets and Exploration Target at Pickering from across the Balfour Manganese Field. Mn shale target horizon (red solid outlines).

 $^{^{}m 1}$ ASX release 27 November 2023, KR1 and KR2 Mineral Resource Estimate Exceeds 100 Mt

The BMF Global MRE has been updated in Table 2 to reflect the update to the KR2 classification, tonnage and grade. The previous Global MRE was announced on 12 December 2023 and totalled 314 Mt @ 10.5% Mn containing 33.1 Mt of manganese (7% Mn cut-off) classified as Measured (32%), Indicated (48%), and Inferred (20%). The KR2 MRE update has had a minimal impact to the Global MRE tonnage and grade but increased the Indicated classification to 55% from 48% and decreased the Inferred classification to 13% from 20%.

Table 2. Summary of Global Mineral Resources across the Balfour Manganese Field, 22 October 2025

	Summary of Mineral Resources (1-3)						
Deposit	Mineral Resource	Material	In Situ Mn	Mn	Fe	Si	Al
	Category	(Mt)	(Mt)	(%)	(%)	(%)	(%)
FB3 ⁴	Measured	52	5.5	10.5	10.4	16.9	4.3
LR1 ⁴	Measured	47	4.9	10.3	8.4	16.7	4.6
Total	Measured	100	10.4	10.4	9.4	16.8	4.4
KR1⁵	Indicated	79	7.8	10.0	7.9	18.0	5.4
KR2⁵	Indicated	23	2.6	11.5	10.7	19.2	5.1
FB3 ⁴	Indicated	63	6.3	10.0	9.6	16.8	4.4
LR1 ⁴	Indicated	8	0.9	11.3	9.4	6.9	1.8
Total	Indicated	173	17.7	10.2	9.0	17.2	4.8
KR2⁵	Inferred	2	0.3	11.1	11.0	19.4	6.0
Balfour East⁵	Inferred	32	3.9	11.9	8.5	18.6	4.9
Damsite ⁵	Inferred	7	0.9	12.1	9.6	17.2	4.2
Total	Inferred	42	5.0	11.9	8.9	18.4	4.9
Grand Total		315	33.1	10.5	9.1	17.2	4.7

Notes to Table 2:

- Mineral resources reported at a cut-off grade of 7% Mn.
- Mineral resources reported at a cut-off grade of 7% Min.
 Appropriate rounding has been applied.
 Refer to Appendix 1 JORC Table 1, Sections 1 to 3 and Appendix 2 for further details.
 Flanagan Bore deposits, which Black Canyon owns 75%
 Deposit that Black Canyon owns 100%

Exploration Target Estimates (ETE)

The total ETE estimated as a range across the Balfour Manganese Field is:

160 – 215 Mt @ 11 – 12% Mn, containing between 18 – 23 Mt of manganese².

The potential tonnage, grade and quantity of the Exploration Target is conceptual in nature. There has been insufficient exploration to estimate a Mineral Resource for the target area reported. It is uncertain if further exploration will result in the estimation of a Mineral Resource.

 $^{^{\}rm 2}$ ASX release 16 January 2024, Substantial Manganese Potential Identified at Balfour

KR2 MRE Update

The maiden Reverse Circulation (RC) drill program across the KR2 prospect was completed in July 2023. A follow-up infill RC drill program was completed in September 2024 by the Company and has been independently reviewed and validated for the MRE update. The review work was completed under the supervision of Greg Jones, a specialist consultant in Mineral Resource estimates, metallurgy and processing technology, who was at the time employed by IHC Mining (refer to Competent Person statement). A Summary of the Mineral Resource estimate and Reporting Criteria is attached to this announcement.

Table 1 displays the updated MRE for the KR2 deposit in addition to the KR1 MRE that was not updated. The grade tonnage curves are presented in Figures 2 to 3 and oblique and cross-section views of the KR2 deposit are presented in Figures 4 to 5. Supporting JORC tables are presented in Appendix 1 and 2.

The Mineral Resource for KR2 is hosted in outcropping to sub-cropping manganese enriched shales that form a subtle topographically elevated feature. The Mineral Resource for KR2 has been estimated from the maiden RC drilling program comprising 14 holes for 378m and an infill program comprising 31 holes for 885m. The total drilling completed into KR2 is 45 holes for 1,263m.

With the infill drill holes, the MRE at KR2 is based on collars located on traverses 100m apart with 100m spaced centres. The drill data shows the manganese enriched shale geology and grades are continuous downhole and across strike, which supports the Inferred and Indicated Mineral Resource classification at this drill spacing.

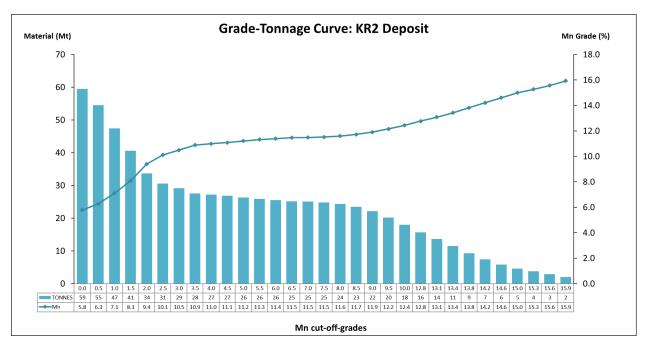


Figure 2. KR1 Mineral Resource grade-tonnage curve

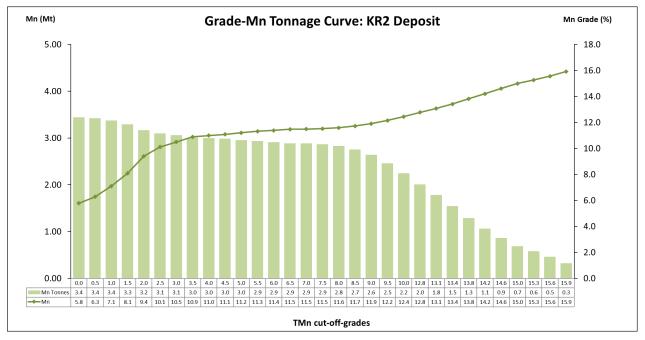


Figure 3. KR2 Mineral Resource grade-contained metal tonnage curve

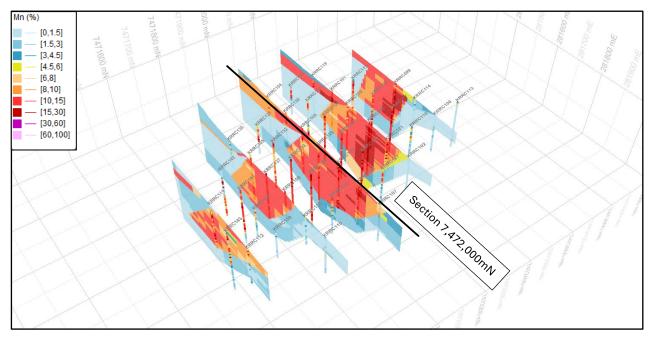


Figure 4. Oblique view of the KR2 Mineral Resource model coloured by Mn grade (%).

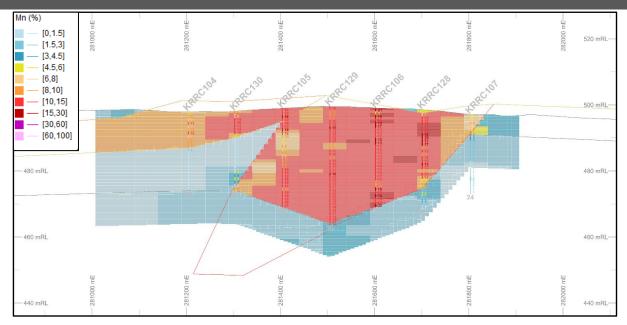


Figure 5. Type section 7,472,000 mN (looking north) showing KR2 Mineral Resource model cells and drill holes coloured by Mn grade (%).

SUMMARY OF MINERAL RESOURCE ESTIMATE AND REPORTING CRITERIA

As per ASX Listing Rule 5.8 and the JORC (Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (2012 Edition)) reporting guidelines, a summary of the material information used to estimate the Mineral Resource is detailed below (for further detail refer to JORC Table 1, Sections 1 to 3 included within Appendix 1).

Geology and geological interpretation

The Capricorn Orogen of Western Australia is host to significant manganese deposits of varying sizes and styles which are typically constrained to the Mesoproterozoic Edmund-Collier Basin. The most prominent of these is the Butcherbird manganese deposit hosted in the Ilgarari Formation of the Collier Group. The Balfour Manganese Project is located within the Proterozoic Manganese Group which is part of the northern extent of the Collier Basin where it transitions to the Oakover Basin. Besides the Balfour Manganese Project there are also a number of recognised sedimentary Mn deposits within the Collier Basin including the Wandanya project (BCA 100%) and Flanagan Bore Project (BCA 75%), along with the well-known Woodie Woodie, Oakover, Nicholas Downs, Sixty Sixer, Balfour South and Ripon deposits. These deposits have a number of associated mineralisation styles such as supergene-enrichment, lateritic and fault hosted deposits.

The Collier Group and Manganese Group Mn deposits share similar qualities and are considered stratigraphic equivalents. In detail the Collier Basin comprises a Mesoproterozoic basin consisting of sedimentary rocks of the Collier and Manganese Groups. The important manganese bearing units of the Collier Group are the Ilgarari Formation (shale) and the Backdoor Formation (siltstone). The manganese bearing units of the Manganese Group are the Balfour Formation (shale) and the Woblegun Formation (siltstone) and underlying Enacheddong Dolomite. It unconformably overlies a portion of the Pilbara Craton, the Edmund Basin and Earaheedy Basin.

The local geology of the Balfour Manganese Project is dominated by shallow cover overlying shales of the Balfour Formation that overlie carbonate sequences ranging from calcareous shales and dolomite of the Enacheddong Dolomite. The sequence is also intruded by cross-cutting dolerite dykes and sills.

The KR2 deposit comprises surface enriched higher grade manganese shales which are also typically ferruginised and occur from surface to 15m depth.

A thick and widely distributed manganiferous shale unit that contains the supergene (manganese) enriched shale is located between surface and 30m depth.

At depth the fresh manganiferous olive to green shales of the Balfour Shale persist but have a lower manganese grade.

Some faulting has been interpreted from the drilling but typically the mineralisation at KR2 dips to the west and remains open to the north. The oxidation zone is observed to 30m depths which is essentially the depth of the drilling completed into the deposit.

The KR2 Resource has been zoned into five domains including basement. Zone 1 comprises near surface low grade overburden or cover material associated with the western extents of the deposit. Zone 2 is the higher-grade target mineralisation grading above 7% Mn and comprising manganese enriched brown-grey Balfour Shale. Zone 3 forms a high-grade near surface manganese domain typically associated with the western extents of the deposit. Likely a weathering and erosional catchment from the target Zone 2 domain. Zone 4 is low-grade interburden background material. The basement (Zone 200) has been used to control the interpolation of higher-grade Mn values into the unsampled and low-grade area of the deposit.

An oxidation and transition/fresh rock boundary has also been applied to the block model.

Drilling techniques and hole spacing

The MRE is based on drill programs designed and managed by Black Canyon staff and contractors during July 2023 and again in September 2024. The Company drill data was tabulated into standard collar, lithology and assay Excel files that were provided to IHC Mining who checked for out-of-range errors, inconsistencies and modified the header information prior to import into Datamine using standard routines. A list manganese intersects >7% Mn from the infill drill program used to update this Resource are presented in Appendix 2. A list of drillhole collars are presented in Appendix 3.

Drilling has been conducted using conventional regular drill grids. At KR2 the nominal drill hole spacing after the infill drill program is 100m along east-west traverses with each traverse spaced approximately 100m apart north-south.

The KR2 deposit was not drilled prior to Black Canyon's initial 2023 program.

Impact Drilling using a truck mounted 660 Schramm drill rig with an on board Sullair 1350/500 compressor completed the July 2023 and September 2024 drill programs. The drill contractor used a conventional 5.25-inch RC hammer drill bit to drill the holes.

Sampling and sub-sampling techniques

The RC drilling completed by Black Canyon was logged and sampled on 1m intervals (Figure 6). The samples were collected into calico bags from a side mounted adjustable cone splitter that was set to collect a 2kg to 3kg sample representing a 1m interval which was submitted for analysis. The samples in the calico bags were not weighed on site but were weighed prior to oven drying at the laboratory in Perth. The bulk reject was collected in a large green plastic sample bag and stored on site. Prior to the commencement of drilling each hole the cone splitter was levelled to minimise sample bias. The cone splitter was regularly checked for obstructions, contamination and cleaned out when required. The drilling was predominantly dry.

Figure 6. July 2023 RC drill program designed and managed by Black Canyon staff and consultants

Sample analysis method - XRF

The elemental oxides were determined for both the July 2023 and September 2024 drill samples completed by Black Canyon using whole rock fusion (XRF – fused disc) analysis completed by Bureau Veritas Minerals method XF103. The oxides analysed are outlined in Table 3 in addition to the conversion factor used to convert oxides assay results to elemental results.

Table 3. Mineral species classification and definition and oxide conversion factor for the elements estimated

MINERAL SPECIES C	MINERAL SPECIES CLASSIFICATION		nent	Oxide	Factor
		Al	,	Al2O3	1.889
Mineralogy	Definition	Ca	(CaO	1.399
Aluminium oxide	Al2O3	Fe		Fe2O3	1.430
Barium oxide	BaO	K	ŀ	K20	1.205
Calcium oxide	CaO	Mg	ı	MgO	1.658
Cromium (III) oxide	Cr2O3	Mn	ı	MnO	1.291
Iron	Fe	Na	ı	Na2O	1.348
Iron (III) oxide	Fe2O3	Р	I	P2O5	2.291
Potassium oxide	K20	Si	,	SiO2	2.139
Magnesium oxide	MgO				
Manganese	Mn				
Manganese oxide	MnO				
Sodium oxide	Na2O				
Phosphate pentoxide	P2O5				
Silicon dioxide	SiO2				
Strontium oxide	SrO				
Titanium dioxide	TiO2				

Estimation methodology

Drill hole sampling has remained consistent at 1m intervals for all drill holes completed at KR2 completed by Black Canyon. This is considered good practice and provides both a consistent basis and adequate resolution for both geological interpretation and grade interpolation during the domaining and model build.

Inverse distance cubed (ID3) was used to interpolate grades and values into the block model. Part of the rationale for using ID3 is centred on the continuity of mineralisation for the manganese enriched Balfour shale both along strike, across strike and down hole.

Effectively, there is an averaging over the length of the sample interval down hole (in this case being 1m) therefore there is already a dilution effect on any potential high-grade mineralisation leading to inverse distance being a less complex and more straight forward methodology.

An average density value of 2.52 was applied to the Zone 2 Indicated and Inferred areas of the KR2 model based on previous downhole density gathered by ABIM Solutions Pty Ltd from the LR1 and FB3 resource area. Density measurements were collected using a down hole probe that provided bulk density readings at regular intervals along the length of a borehole. The density values applied to the MRE at LR1 and FB3 were as follows 2.38 for Zone 1, 2.52 for Zone 2 and 2.69 for basement.

It is recommended that future studies include down hole density surveys for KR2 that are currently informed by average density values by domain to provide additional support for potential future upgrades of material to high confidence classifications.

Cut-off grades

The Mineral Resources stated for KR1 and KR2 deposits was estimated using a cut-off grade of 7% Mn. The selection of the Mn cut-off grade used for reporting the Mineral Resources was based on the experience of the Competent Person, by considering similar style deposits in comparable geological settings and by considering the continuity of mineralisation at the cut-off grade.

Classification Criteria

The JORC Code (2012) classification for the KR2 deposit has taken into consideration the drill hole spacing, down hole sampling support with respect to the mineralised domain (Zone 2) and assessment of grade continuity by use of variography.

The KR2 deposit has been assigned a JORC classification of Indicated and Inferred respectively, which is supported by the following criteria:

- Regular drill hole average spacing that defines the Mn % distribution trends.
- Geological and grade continuity seen within the defined domains supported by geostatistics; and
- Domain controlled variography for Mn grade that supports the drill spacing for the assigned JORC classification.
- Density values derived from previous down hole density surveys completed on similar manganese enriched shale mineralisation modelled from LR1 and FB3.
- All drill hole sampling has been carried out at regular 1 m intervals down hole. The use of
 industry standard laboratory and the drilling, sampling and assaying procedures overall
 have fully supported the development of an Indicated and Inferred Mineral Resource
 estimate.

The QAQC data collected by Black Canyon to support the assaying process demonstrates satisfactory results which are adequate for this stage of the project. The sample support and distribution of assays is to an appropriate level of density for the domain interpretation and the resultant JORC classification.

Mining and metallurgical methods and parameters

No mining parameters have been applied to the KR2 deposit. Sighter level testwork completed on the adjacent KR1 deposit includes beneficiation, comprising scrubbing and washing on surface mineralisation to confirm the upgrading performance of the material. The KR1 sample upgraded from an insitu grade of 25% Mn to 36.6% Mn. This was followed by initial leaching testwork for KR1 that yielded 97% of the Mn prior to producing battery grade HPMSM.³. Diamond core drilling is planned across the deposits and larger volume samples will be used to complete larger scale scrubbing/washing and dense media separation based on geological domains across the orebodies to produce manganese concentrates.

³ASX release 23 October 2023, Battery Grade Manganese Sulphate >99% Purity Achieved

The Company has completed pre-feasibility level metallurgical testwork to successfully beneficiate ores from the LR1 and FB3 Mineral Resource areas using PQ drill core material.⁴

On the basis that the KR1/KR2 and LR1/FB3 deposits are both manganese enriched shale hosted mineralisation styles it is very likely that the deposits will process in a similar manner and produce a lump and fines product between 30% and 33% Mn concentrate.

Economic Assessment

A KR1 and KR2 Scoping Study was completed 2 July 2024⁵ with the following key conclusions:

- The KR1/KR2 Projects can generate strong financial returns over a 16-year mine life at an average production rate of 3.0Mtpa
- Project pre-tax NPV of A\$340m (8% discount rate) and pre-tax IRR of 70%
- Low development CAPEX of A\$84m with a payback period of less than 2 years
- LOM estimated Production Target of 48.2Mt @ 10.9% Mn
- Conventional free dig mining with a LOM average strip ratio of 0.56:1 waste to ore

On the basis of the KR1/KR2 Scoping Study the Company believes the KR1/KR2 deposits have the potential to be economically exploited. The purpose of the infill drill program was to increase the confidence of the MRE classification from Inferred to Indicated. The July 2024 Scoping Study did not use the higher grade Inferred classified Mineral Resource from KR2 until year 5. With the upgraded Indicated classification for the KR2 MRE the mine schedule can be updated to access higher grade ores in the early years of the mine life that may further enhance the financial metrics of the project.

Statement of Mineral Resources

The Mineral Resource reported at a cut-off grade of 7% Mn for the KR1 and KR2 deposits is presented in Table 4. This table conforms to guidelines set out in the JORC (2012). The JORC Classification outlines and manganese grade distribution projected to surface are presented in Figures 7 and 8.

Table 4. Summary of Mineral Resources for the KR1 and KR2 deposits across the Balfour Manganese Field, 22 October 2025

	Summary of Mineral Resources ⁽¹⁻³⁾						
Deposit	Mineral Resource Category	Material (Mt) ⁽²⁾	In Situ Mn (Mt)	Mn (%)	Fe (%)	Si (%)	Al (%)
KR1	Indicated	79	7.8	10.0	7.9	18.0	5.4
KR2	Indicated	23	2.6	11.5	10.7	19.2	5.1
Total	Indicated	102	10.4	10.3	8.5	18.3	5.7
KR2	Inferred	2	0.3	11.1	11.0	19.4	6.0
Total	Inferred	2	0.3	10.3	11	19.4	6.0
Grand Total		104	10.7	10.3	8.6	18.3	5.7

Notes to Table 5:

- (4) Mineral resources reported at a cut-off grade of 7% Mn.
- (5) Appropriate rounding has been applied.
- (6) Refer to Appendix 1 JORC Table 1, Sections 1 to 3 and Appendix 2 for further details.

⁴ASX release 17 April 2023, Metallurgical Testwork Successfully Delivers Consistent Concentrate Grades Above 30% Mn

⁵ASX release 2 April 2024, Positive Results confirmed from the KR1 & KR2 Scoping Study

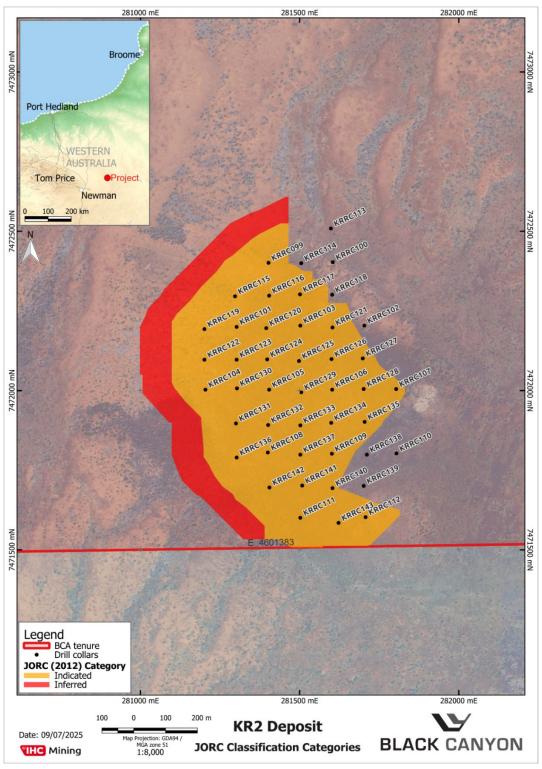


Figure 7. KR2 deposit JORC Mineral Resource Classification (>7% Mn)

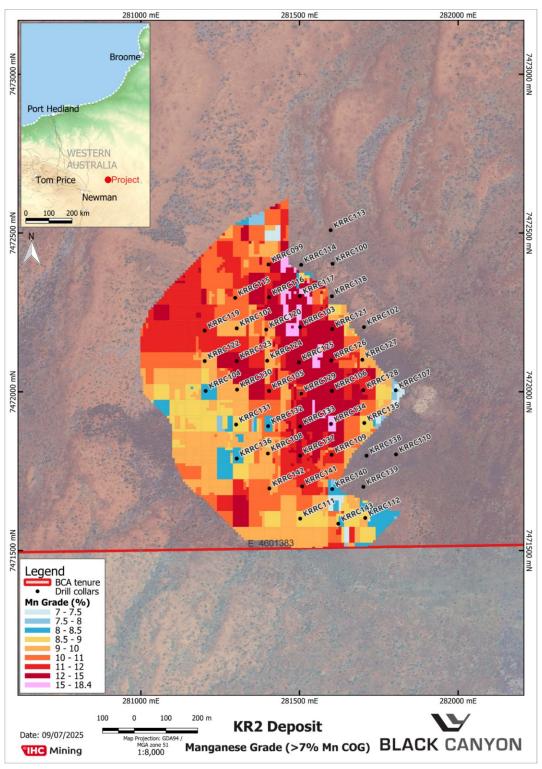


Figure 8. KR2 deposit manganese grade distribution projected to surface.

-END-

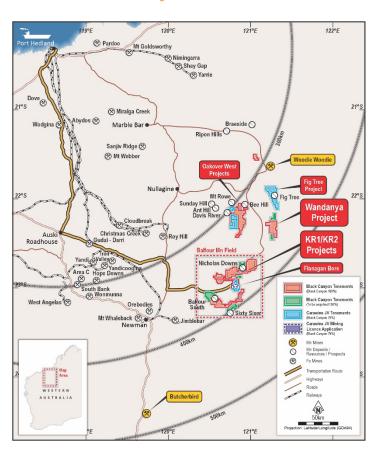
This announcement has been approved by the Board of Black Canyon Limited.

For further details:

Brendan Cummins Managing Director

Telephone: +61 400 799 756

Email: brendan.cummins@blackcanyon.com.au


For media and broker enquiries:

Jason Mack
White Noise Communications

Telephone: +61 400 643 799

Email: jason@whitenoisecomms.com

About Black Canyon

Black Canyon has consolidated a significant land holding totalling 2,000km² in the underexplored Balfour Manganese Field (BMF) and across the Oakover Basin, in Western Australia.

The Company holds several exploration licenses 100% or under joint venture within the BMF. A Global Mineral Resource (Measured. Indicated & Inferred) of 315 Mt @ 10.4% Mn has been defined across the BMF projects. This MRE comprises 100Mt @ 10.4% Mn (Measured), 173Mt @ 10.2% Mn (Indicated) and 42 Mt @ 11.9% Mn (Inferred) - refer to ASX release 22 Oct 2025.

Wandanya Discovery represents a new exploration model on the eastern margin of the Oakover Basin comprising hydrothermal, stratabound high-grade manganese and high-grade iron with significant scale and grade potential.

Manganese continues to have attractive long-term fundamentals where it is essential and non-substitutable in the manufacturing of alloys for the steel industry and a critical mineral in the cathodes of Li-ion batteries.

Compliance Statements

Reporting of Exploration Results and Previously Reported Information

The information in this report that relates to Exploration Results is based on, and fairly represents, information and supporting documentation reviewed by Mr Brendan Cummins, Managing Director of Black Canyon Limited. Mr Cummins is a member of the Australian Institute of Geoscientists, and he has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which has been undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Cummins consents to the inclusion in this release of the matters based on the information in the form and context in which they appear. Mr Cummins is a shareholder of Black Canyon Limited.

The information in this report that relates to the Mineral Resource estimate for Black Canyon is based on, and fairly represents, information and supporting documentation prepared by Mr Greg Jones, a Competent Person who is a Fellow of the Australasian Institute of Mining and Metallurgy (AusIMM). The Mineral Resource estimate was originally completed by Mr. Jones acting as a consultant to Black Canyon while employed by IHC Mining. Mr. Jones is now employed by Mineral Technologies and has reviewed the estimate and confirms that it is consistent with the data and interpretation previously reported. No new data or material information has become available since the original estimate that would, in his opinion, materially affect the Mineral Resource as reported. Mr. Jones has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration, and to the activity undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code). Mr. Jones consents to the inclusion in this report of the matters based on the information in the form and context in which it appears.

For further information, please refer to ASX announcements dated 14 February 2023, 27 March 2023, June 1 2023, June 14 2023, June 17 2023, July 14 2023, 23 August 2023, 5 September 2023, 26 September 2023, 12 October 2023, 27 November 2023, 12 December 2023, 26 March 2024, and 1 May 2024, 2 July 2024, 21 August 2024, 25 September 2024, 27 September 2024, 8 October 2024, 18 October 2024, 14 November 2024, 27 November 2024, 4 December 2024, 23 December 2024 and 11 February 2025, 1 April 2025, 16 April 2025, 1 May 2025, 30 June 2025 7 July 2025, 7 August 2025, 27 August 2025 and 1 September 2025 which are available from the ASX Announcement web page on the Company's website.

The Company confirms that it is not aware of any new information or data that materially affects the information included in this release that relate to Exploration Results and, in the case of mineral resource estimates, that all material assumptions and technical parameters underpinning the estimates in the relevant release continue to apply and have not materially changed.

APPENDIX 1: JORC 2012: TABLE 1

Section 1 Sampling Techniques and Data

Criteria	Explanation	Comment
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Reverse circulation ('RC) was used as the primary drilling technique for the projects. RC cuttings were continuously sampled at 1 m intervals. All drill holes were sampled from surface to end of hole or depth of mineralisation. Drilling completed by Black Canyon have been used for the projects. All drill samples were logged for weathering, colour, lithology and mineralogy (+ %). RC samples were collected and placed in marked plastic bags in order at each collar position. Black Canyon drill samples were collected on 1m intervals, pulverised and submitted for 'LOI (TGA), Whole Rock by Fusion (XRF)' using assay code XF103 completed by Bureau Veritas Minerals. The 1m interval samples are considered industry standard and representative of the material being tested.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	Black Canyon drilling was completed using RC technique at 90-degree angle to collect 1 m samples as RC chips. Drill diameter is considered to be 5.25 inches as per standard RC sizing. A face sampling hammer was used to drill and sample the holes. The July 2023 and September 2024 drill campaign across of the KR2 project contracted Impact Drilling.

Criteria	Explanation	Comment
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	The latest (September 2024) KR2 drill campaign recorded satisfactory drill sample recovery. The sample weights were not recorded on site, but the samples were weighted once received at the laboratory. The samples weights show good overall recoveries with smaller samples weights recorded in the top 1-2m. During the latest (September 2024) KR2 drill program the 1m samples were collected from a levelled cone splitter affixed to the side of the drill rig. It is unlikely the lower weights encountered in the top 1-2m of the holes has biased the samples particularly with the style of mineralisation.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	Geological logs exist for the KR2 drill programs. Logging of individual 1 metre intervals was completed using logging code dictionary which recorded weathering, colour, lithology and observed commentary to assist with determining manganese mineralisation. Logging and sampling has been carried out to industry standards to a level sufficient to support Indicated and Inferred Mineral Resource Estimate. Drill holes were geologically logged in their entirety and a reference set of drill chips were collected in 20m interval chip trays for the KR2 drill programs.

Criteria	Explanation	Comment
Sub-sampling techniques	If core, whether cut or sawn and	Not applicable, no diamond drilling assays results have been
and sample preparation	whether quarter, half or all core	used in this mineral resource estimate.
	taken.	The drill holes were completed using RC drilling technique and
	If non-core, whether riffled, tube	the 1m samples were dry split using an on-board cone splitter
	sampled, rotary split, etc and whether sampled wet or dry.	set to deliver a 2-3kg samples. This technique is considered best practice and appropriate for sample generation.
	For all sample types, the nature, quality and appropriateness of	Field duplicates were undertaken at a rate of 2 per 100 samples. The field duplicates were split from the cone splitter
	the sample preparation	simultaneously.
	technique.	The samples sizes collected from the cone splitter are
	Quality control procedures	considered appropriate for the commodity being investigated.
	adopted for all sub-sampling	
	stages to maximise representivity of samples.	
	Measures taken to ensure that	
	the sampling is representative of	
	the in-situ material collected,	
	including for instance results for field duplicate/second-half	
	sampling.	
	Whether sample sizes are	
	appropriate to the grain size of	
	the material being sampled.	
Ovality of accoundate and	The nature quality and	The MD2 drill compales from the July 2022 and September 2024
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying	The KR2 drill samples from the July 2023 and September 2024 drill programs were analysed at Bureau Veritas Minerals Perth,
,	and laboratory procedures used	Western Australia utilising ore-grade XRF analysis which is
	and whether the technique is considered partial or total.	considered industry standard for manganese ores.
		Elemental oxides assayed using XRF analysis include:
	For geophysical tools, spectrometers, handheld XRF	Al2O3, BaO, CaO, Cr ₂ O ₃ , Fe, Fe2O3, K2O, MgO, Mn, MnO,
	instruments, etc, the parameters	Na2O, P2O5, SiO2, SrO, TiO2
	used in determining the analysis including instrument make and	Oxides were converted to primary elements using standard conversion factors outlined by ALS.
	model, reading times, calibrations factors applied and their	QA/QC was conducted by Black Canyon on all of the drill data
	derivation, etc.	by the following methods.
	Nature of quality control	 inserting 2 certified reference samples every 100
	procedures adopted (eg	• inserting 2 blanks every 100
	standards, blanks, duplicates, external laboratory checks) and	 conducting field duplicates at a rate of 2 in every 100 submitting a 200g pulped lab duplicate to a
	whether acceptable levels of	secondary laboratory for check XRF analysis at a rate
	accuracy (ie lack of bias) and	of approximately 2 in every 100 samples for the 2023
	precision have been established.	drill program.
		The Company has reviewed the QAQC data and is satisfied that
		acceptable levels of precision and accuracy have been achieved through the sampling and assaying program and there is no
		evidence of bias. The data set is of a high standard and
		appropriate for use in Mineral Resource estimation

Criteria	Explanation	Comment
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	Validation of the drilling files (collar, assay and lithology) was undertaken by IHC Mining. All historic data was stored digitally using separate .txt files for collar, assay and lithology. Adjustment of elemental oxides to primary element was completed using well known conversion factors outlined by ALS.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	All drill holes in the project area were surveyed by handheld GPS with an accuracy of +/-5 m. The accuracy of the location of the drill collars is sufficient at this stage of exploration and resource development. Grid system used is WGS 84 / UTM zone 51S. IHC Mining deems all drill collar positions within the project areas to be satisfactory at this stage of exploration and to support the Mineral Resource estimate as reported. A 1m contour based topographic DTM surface was supplied by Black Canyon to IHC Mining and is considered satisfactory at this stage of exploration and to support the Mineral Resource estimate as reported. It is recommended future drill programs use DGPS as drill collar survey pickup and LIDAR for development of a high-resolution topographic surface.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	The July 2023 drilling completed at KR2 was conducted via a conventional drill grid. The nominal drill spacing was 200 m along east-west traverses and each traverse was spaced approximately 200 m apart north-south. The drill spacing was sufficient to establish grade and geological continuity. The September 2024 drilling completed at KR2 was conducted via a conventional drill grid. The nominal drill spacing was 100 m along east-west traverses and each traverse was spaced approximately 100 m apart north-south. The drill spacing was sufficient to establish grade and geological continuity. Variography has demonstrated current drill spacing supports an Indicated and Inferred Mineral Resource classification. No sample compositing has been applied.

Criteria	Explanation	Comment
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	At KR2 the drill lines were oriented east-west across the strike of the primary mineralisation trend. The drill holes were completed at 90 degrees (vertical). At KR2 the drill lines are oriented perpendicular to the interpreted strike of the outcropping mineralisation. Post completion of the drill program the strike of the mineralisation is mostly likely north-north-west. The drill grid is assumed to be located both perpendicular to the planar orientation of the key mineralised horizon with no or limited bias introduced with respect to the strike or dip of the mineralised horizon.
Sample security	The measures taken to ensure sample security.	All samples were dispatched directly from site to at Bureau Veritas Minerals Perth, Western Australia. There has been no documentation stating any problems during sample transportation from site to at Bureau Veritas Minerals. Given the location of the project it is not considered high risk in the context of which samples were reported.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Senior Black Canyon geological personnel have reviewed the data prior to use in the Mineral Resource estimate. No independent audits have been undertaken as they are not considered to be necessary at this stage.

Section 2 Reporting of Exploration Results

Criteria	Explanation	Comment
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The KR2 and KR2 deposits are located within tenement E46/1383. All mineral rights apart from copper are 100% owned by Black Canyon Ltd. Tenement E 46/1383 was granted on 11/04/2022 and expires on 10/04/2027. The tenement is subject to a native title agreement with the Karlka Nyiyaparli Aboriginal Corporation. Archaeologic and Ethnographic heritage surveys have been completed on the KR2 deposit which has enabled the drilling to be completed. There are no other known impediments to obtaining a licence to operate in the area.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	No other historic exploration has been completed on the tenement for manganese.

Criteria	Explanation	Comment
		Black Canyon completed a ground reconnaissance exercise in early 2023 to map the manganese enriched shales and determine down dip upside. The exercise proved significant manganese enriched shale throughout the project both as outcropping, sub-cropping and as substantial float material. The early reconnaissance groundwork by Black Canyon was used as a basis for the initial July 2023 RC drilling programme.
Geology	Deposit type, geological setting and style of mineralisation.	The lithological sequence of the project principally consists of the Balfour Formation shales from the Proterozoic Manganese Group of the southern Oakover Basin which is overlain by Quaternary cover.
		Mineralisation is a sediment hosted supergene and weathered manganese enrichment derived from original high manganese content shales.
		Black Canyons most recent drill program for the KR2 deposit was successful in defining the deposits morphology, whereby mineralisation is continuous, homogeneous and dipping towards the west at a 240º angle. Mineralisation remains open at depth following the dip direction and there is potential for further exploration both along strike and to the west due to the latest drilling defining a secondary near surface weathered mineralised unit which looks to be associated with the primary mineralised body of the KR2 deposit. Further information is provided in the text of the release.
Drill hole Information	A summary of all information	See drill hole location plan in Figures 11 and 14 in main body of
	material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: • easting and northing of the drill hole collar • elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar • dip and azimuth of the hole • down hole length and interception depth • hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	the release. A complete listing of drill holes and their corresponding coordinates, elevation and depth and composited drill results using a cut-off grade of 7% Mn is listed in Appendix 2.

Criteria	Explanation	Comment
Data aggregation	In reporting Exploration Results,	No grade cutting to assays has been undertaken.
methods	weighting averaging techniques, maximum and/or minimum grade	No aggregation of samples has been undertaken.
	truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	Assays have been reported as oxides. Appropriate conversion from oxides to elements has been completed using standard conversion factors.
	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results.	The KR1 deposit is mostly flat lying exhibiting a gentle dip of mineralisation to the west and 90-degree (vertical) drill holes considered appropriate.
	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	The mineralisation of the KR2 deposit is primarily strata bound striking approximately 160 degrees and forming a potentially open synformal fold structure. At this initial stage drilling 90-degree (vertical) drill holes is considered appropriate.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to body of release for maps and sections of drilling data.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Exploration results are not being reported at this time.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and	Diamond Core drilling is planned to generate bulk sample for further metallurgical testwork.

Criteria	Explanation	Comment		
	method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.			
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	IHC has been advised that Black Canyon will be undertaking feasibility related studies on developing the Balfour Mn Projects which includes a further metallurgical testwork to be followed by process equipment selection, design and engineering studies. It is recommended that the Company undertake infill drilling to improve the confidence of the Mineral Resource estimates and undertake a suitable topographic survey (preferably LiDAR) to improve accuracy of the topographic DTM surface used for modelling purposes.		

Section 3 Estimation and Reporting of Mineral Resources

Criteria	Explanation	Comment
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used.	Exploration data was provided by the Company to IHC Mining in the form of Excel datasheets relating to collar, lithology and assay data, Geological interpretations also provided by the Company to IHC Mining in the form of PowerPoint presentations for both KR1 and KR2 deposits. Data in the form of individual Excel files ('.csv') was independently checked and reviewed by IHC Mining. Data review included: Assay review for out-of-range values Sample gaps Overlapping sample intervals Checks of data by visually inspecting on screen (to identify translation of samples). Visual and statistical comparison was undertaken to check for validity of results.
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case.	Black Canyon Limited has completed a number of site trips between 2021 - 2025 to manganese targets across the Balfour Manganese Field prospects to map and visually inspect the drill targets. The Company managed and supervised the July 2023 and September 2024 RC drill program. This was completed by the Executive Director Mr Cummins who is a current member of the AIG. Mr Cummins is the Competent Person for the Exploration Results used as a basis for the Mineral Resource estimate. Mr Cummins conducted a site visit for the July 2023 and September 2024 drill programs.

Criteria	Explanation	Comment
		The Competent Person Greg Jones has not yet conducted a site trip, however given his experience with the style of mineralisation in question, site visits to other manganese stratabound deposits, in addition to the extensive photography, videos and site visit reports, he considers this not to be of sufficient risk to prevent the estimation and classification of the Mineral Resource
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology.	The geological interpretation was undertaken by IHC Mining and then validated using logging data, sampling information, geological surface mapping and observations. Three main domains were identified based on the manganese grades and lithological logging and these domains are noted as Zones. Zones were identified as Zone 1, 2, 3, 4 and 200 in the resource estimation process. Zone 1 consists of brownish background low grade manganese Balfour shale overburden. Zone 2 is the brownish grey target high grade manganese enriched Balfour shale which exhibits elevated grades typically above 7% Mn. Zone 3 is a near surface secondary mineralised domain exhibiting similar lithological and grade characteristics as primary domain Zone 2 however exhibits lower average grades comparative to Zone 2. Zone 4 exhibits similar characteristics to the unmineralised Zone 1 domain and is considered interburden. Zone 200 is considered basement and is informed by a sharp reduction in Mn grade at depth or by end of hole 'EOH' where drilling terminated in mineralisation. It should be noted that Zone 2 contains minor instances of lower grade interbedded shales, and these have not been excluded given their thin and discontinuous nature. The occasional low grade Mn intercepts in Zone 2 are typically associated with Balfour shale lithology consisting of unmineralised interbedded shale or ferruginous material. The RC drilling also logged the weathering profile 'WEATH' for each 1 m down hole interval as oxidised 'OX' or fresh 'FR'. Blank intervals are considered to be a transition zone between oxidised and fresh material. This oxidised material was domained (refer 'WZONE' field in model whereby WZONE=1 is oxidised material and WZONE=2 is fresh material) to exclude all transitionary and fresh material. This approach of domaining by Mn grade 'ZONE' and oxidised material 'WZONE' provides a suitable approach for the company to report the resource model using a combination of the two fields. The majority of the outcropping KR2 deposit has been w

Criteria	Explanation	Comment
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	The KR2 deposit mineralised shale is approximately 300 m wide and approximately 1000 m long. Mineralisation remains predominantly open to the west and north northwest at this stage of exploration. A high portion of the drillholes end in mineralisation with the deepest hole encountering mineralisation to 42m depth. Mineralisation of primary mineralised domain Zone 2 remains open at depth.
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	Inverse distance cubed (ID3) was used to interpolate grades and values into the black model. Part of the rationale for using ID3 is centred on the continuity of mineralisation for the manganese enriched Balfour shale both along strike, across strike and down hole. No mine production records recorded as this is not applicable at this stage of exploration. No assumptions have been made regarding recovery of byproducts. The parent cell size used in the grade interpolation is typically half the average drill hole spacing on the X and Y axes. The parent cell size for KR2 is 50 x 50 x 1 (XYZ). No assumptions have been made regarding modelling of selected mining units. No assumptions have been made about correlation behind variables. Validation was undertaken by use of swathe plots, population distribution analysis and visual inspection. The geological zones 'ZONE' were used to control the grade interpolation. 'WZONE' was also used as a secondary constraint to report oxide material only (excluding fresh and transitionary material) as an internal company check. Oxidised material WZONE=1 and fresh material WZONE=2.

Criteria	Explanation	Comment
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Tonnages were estimated on assumed dry basis. No account has been made nor current test work completed to determine moisture.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	A cut-off grade of 7% Mn was used for reporting the Mineral Resource estimate. No top or bottom cuts were used for grade interpolation.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	No specific mining method is assumed other than potentially open pit mining methods. No minimum thickness was assumed for reporting of the mineral resource.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	The material targeted for extraction is predominantly manganese hosted in manganese enriched shale. No specific detail and assumptions have been applied in the estimation for the current Mineral Resource and only allow for preliminary commentary with no detailed chemistry or sizing of mineral species. Based on another manganese hosted shale deposit currently being mined in the Pilbara it is reasonable to assume that the Balfour Manganese deposits also have reasonable prospect for economic extraction
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts,	No assumptions have been made regarding waste products at this stage of exploration, however it is reasonable to assume the creation and storage of waste products on site will not be of great concern for future mining activities. No environmental concerns or issues were identified during this phase of exploration.

Criteria	Explanation	Comment
	particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	At this stage of exploration average density values were applied to KR1 and KR2 deposits by geological domain based on the downhole geophysics work completed by Black Canyon during their previous exploration campaign for the FB3 and LR1 deposits. Details of the downhole geophysics program are described below: 'A downhole geophysics program was completed by ABIM Solutions Pty Ltd who captured short (SSD) and long spaced density (LSD), caliper, magnetitic susceptibility and natural gamma during Black Canyons previous drilling programme for deposits FB3 and LR1. Density measurements were collected using a down hole logging probe that provides a continuous record of a formation's bulk density along the length of a borehole. A total of 85 holes representing approximately 28, 000 density measurements (0.1 m recordings) were surveyed across the LR1 and FB3 deposits access the RC holes drilled primarily in Dec 2021 which were spaced 200 x 100m apart' Average densities by domain were calculated from this work and have been applied to KR1 and KR2 deposits. These density values by domain are as follows: Zone 1 (unmineralised material) = 2.38 Zone 2 (mineralised material) = 2.52 Zone 4 (unmineralised material) = 2.52 Zone 4 (unmineralised material) = 2.38 Zone 200 (basement) = 2.69 It is recommended that future studies include further down hole density work for each deposit.

Criteria	Explanation	Comment
Classification	The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit.	The Indicated and Inferred classification for the KR1 and KR2 deposits respectively was based on the following criteria: drill hole spacing, down hole density spacing, appropriate grade constraints and domain controlled variography. The classification of the Indicated and Inferred Resource was supported by all of the supporting criteria as noted above. As Competent Person Greg Jones considers that the result appropriately reflects a reasonable view of the deposit JORC categorisation.
Audits or reviews.	The results of any audits or reviews of Mineral Resource estimates.	No recent audits or reviews of the Mineral Resource estimate has been undertaken.
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	Variography was used to support the drill hole spacing for the selected JORC Classification. Validation of the model vs drill hole grades was carried out by direct observation and comparison of the results on screen. The Mineral Resource statement is a global estimate for the entire known extent of the KR2 deposit within the tenement area. There has been no production to date.

APPENDIX 2: KR2 DEPOSIT SUMMARY DRILL HOLE COMPOSITES (>7% MN) FROM THE INITIAL JULY 2023 AND SEPTEMBER 2024 INFILL DRILL PROGRAMS

BHID	FROM	то	ZONE	Х	Υ	Z	Mn (%)
KRRC099	0	3	3	281402.00	7472401.00	496.5	10.5
KRRC099	3	22	2	281402.00	7472401.00	485.5	15.5
KRRC099	23	25	2	281402.00	7472401.00	474.0	9.9
KRRC099	26	27	2	281402.00	7472401.00	471.5	9.5
KRRC101	0	7	3	281302.00	7472200.00	494.5	14.8
KRRC101	7	16	2	281302.00	7472200.00	486.5	9.3
KRRC101	18	24	2	281302.00	7472200.00	477.0	9.4
KRRC103	0	1	3	281502.00	7472204.00	497.4	12.1
KRRC103	1	27	2	281502.00	7472204.00	483.9	16.7
KRRC103	28	36	2	281502.00	7472204.00	465.9	13.2
KRRC104	1	4	3	281204.00	7472003.00	495.4	9.3
KRRC104	5	11	3	281204.00	7472003.00	489.9	9.5
KRRC105	0	4	3	281404.00	7472003.00	497.0	13.7
KRRC105	4	9	2	281404.00	7472003.00	492.5	12.5
KRRC105	10	12	2	281404.00	7472003.00	488.0	8.1
KRRC105	13	30	2	281404.00	7472003.00	477.5	10.3
KRRC106	0	1	2	281602.00	7472003.00	498.5	21.1
KRRC106	2	30	2	281602.00	7472003.00	483.0	13.7
KRRC107	2	3	2	281803.00	7472005.00	494.6	8.2
KRRC107	4	6	2	281803.00	7472005.00	492.1	9.3
KRRC108	0	8	2	281400.00	7471806.00	494.0	10.1
KRRC108	10	16	2	281400.00	7471806.00	485.0	9.1
KRRC108	17	30	2	281400.00	7471806.00	474.5	10.1
KRRC109	0	13	2	281601.00	7471802.00	492.6	11.6
KRRC111	3	4	2	281502.00	7471601.00	493.1	8.5
KRRC111	6	25	2	281502.00	7471601.00	481.1	11.8
KRRC111	26	29	2	281502.00	7471601.00	469.1	8.7
KRRC112	1	23	2	281707.00	7471603.00	494.8	15.9
KRRC112	3	5	2	281707.00	7471603.00	492.3	13.4
KRRC112	7	10	2	281707.00	7471603.00	487.8	7.7
KRRC113	2	3	3	281598.00	7471003.00	495.3	7.7
KRRC115	1	5	3	281297.00	7472296.00	495.0	11.7
KRRC115	5	15	2	281297.00	7472296.00	488.0	10.3
KRRC115	18	19	2	281297.00	7472296.00	479.5	13.9
KRRC115	20	30	2	281297.00	7472296.00	473.0	10.4
KRRC116	0	8	2	281404.00	7472298.00	494.0	11.4
KRRC116	9	36	2	281404.00	7472298.00	475.5	13.6
KRRC117	0	4	3	281501.00	7472302.00	496.3	14.6
KRRC117	4	36	2	281501.00	7472302.00	478.3	15.6
KRRC117	37	38	200	281501.00	7472302.00	460.8	9.4
KRRC117	6	7	200	281602.00	7472302.00	491.2	10.2
KRRC119	2	8	3	281201.00	7472193.00	493.0	11.9
			3		7472196.00	497.9	
KRRC120 KRRC120	1	1 2	2	281395.00 281395.00	7472196.00	496.9	8.0 12.0
KRRC120	3	30	2	281395.00	7472196.00	481.9	10.9
KRRC121	0	3	3	281603.00	7472198.00	495.9	13.7
KRRC121	3	8	2	281603.00	7472198.00	491.9	14.4
KRRC121	9	12	2	281603.00	7472198.00	486.9	12.9
KRRC121	13	14		281603.00	7472198.00 7472198.00	483.9	9.9
KRRC121	15	16	2	281603.00		481.9	8.9
KRRC121	17	18	2	281603.00	7472198.00	479.9	7.4
KRRC122	2	7	3	281201.00	7472097.00	493.5	10.7
KRRC123	10	5	3	281302.00	7472097.00	495.4	11.2
KRRC123	18	19	4	281302.00	7472097.00	479.9	8.3
KRRC123	20	24	2	281302.00	7472097.00	476.4	16.5
KRRC123	26	30	2	281302.00	7472097.00	470.4	8.0

BHID	FROM	то	ZONE	Х	Υ	Z	Mn (%)
KRRC124	0	21	2	281398.00	7472098.00	488.3	11.2
KRRC124	22	30	2	281398.00	7472098.00	472.8	10.2
KRRC125	0	30	2	281498.00	7472093.00	483.6	12.8
KRRC126	0	31	2	281600.00	7472099.00	482.6	13.6
KRRC126	32	34	2	281600.00	7472099.00	465.1	7.7
KRRC127	1	4	2	281698.00	7472101.00	495.1	10.5
KRRC127	5	9	2	281698.00	7472101.00	490.6	9.7
KRRC128	2	21	2	281701.00	7472005.00	487.0	13.3
KRRC128	22	24	2	281701.00	7472005.00	475.5	8.5
KRRC129	0	36	2	281505.00	7471995.00	481.6	11.9
KRRC130	0	7	3	281303.00	7472007.00	494.6	11.1
KRRC130	23	24	2	281303.00	7472007.00	474.6	9.2
KRRC131	1	11	3	281300.00	7471897.00	491.7	10.4
KRRC132	0	3	3	281401.00	7471892.00	497.0	14.0
KRRC132	3	9	2	281401.00	7471892.00	492.5	8.6
KRRC132	11	20	2	281401.00	7471892.00	483.0	9.2
KRRC132	21	30	2	281401.00	7471892.00	473.0	10.2
KRRC133	0	30	2	281502.00	7471891.00	484.5	13.1
KRRC134	0	23	2	281599.00	7471899.00	489.3	14.2
KRRC134	24	33	2	281599.00	7471899.00	472.3	13.0
KRRC135	0	8	2	281704.00	7471902.00	495.0	10.1
KRRC137	0	30	2	281502.00	7471799.00	483.5	12.2
KRRC140	0	2	2	281603.00	7471694.00	496.7	9.6
KRRC140	5	6	200	281603.00	7471694.00	492.2	9.7
KRRC141	0	7	2	281508.00	7471702.00	494.0	10.7
KRRC141	8	29	2	281508.00	7471702.00	479.0	12.7
KRRC142	6	8	3	281405.00	7471696.00	490.6	16.4
KRRC142	16	23	2	281405.00	7471696.00	478.1	10.3
KRRC142	25	30	2	281405.00	7471696.00	470.1	10.3
KRRC143	1	5	3	281622.00	7471585.00	493.8	14.0
KRRC143	5	6	2	281622.00	7471585.00	491.3	7.8
KRRC143	9	13	2	281622.00	7471585.00	485.8	10.5
KRRC143	16	18	2	281622.00	7471585.00	479.8	11.4
KRRC143	19	22	2	281622.00	7471585.00	476.3	9.1

APPENDIX 3: DRILL HOLE COLLAR INFORMATION FOR THE INITIAL JULY 2023 AND SEPTEMBER 2024 INFILL DRILL PROGRAMS

BHID	Х	Υ	Z	DEPTH	YEAR
KRRC099	281402.00	7472401.00	498.00	30	2023
KRRC100	281604.00	7472403.00	497.65	24	2023
KRRC101	281302.00	7472200.00	498.00	24	2023
KRRC102	281703.00	7472204.00	497.12	24	2023
KRRC103	281502.00	7472204.00	497.94	36	2023
KRRC104	281204.00	7472003.00	497.94	24	2023
KRRC105	281404.00	7472003.00	498.97	30	2023
KRRC106	281602.00	7472003.00	499.00	30	2023
KRRC107	281803.00	7472005.00	497.05	24	2023
KRRC108	281400.00	7471806.00	498.01	30	2023
KRRC109	281601.00	7471802.00	499.09	24	2023
KRRC110	281804.00	7471803.00	496.76	24	2023
KRRC111	281502.00	7471601.00	496.58	30	2023
KRRC112	281707.00	7471603.00	496.27	24	2023
KRRC113	281598.00	7472509.00	497.77	30	2024
KRRC114	281505.00	7472400.00	498.00	36	2024
KRRC115	281297.00	7472296.00	498.00	30	2024
KRRC116	281404.00	7472298.00	498.01	36	2024
KRRC117	281501.00	7472302.00	498.27	42	2024
KRRC118	281602.00	7472301.00	497.67	24	2024
KRRC119	281201.00	7472193.00	498.00	24	2024
KRRC120	281395.00	7472196.00	498.44	30	2024
KRRC121	281603.00	7472198.00	497.41	24	2024
KRRC122	281201.00	7472097.00	498.00	18	2024
KRRC123	281302.00	7472097.00	498.40	30	2024
KRRC124	281398.00	7472098.00	498.85	30	2024
KRRC125	281498.00	7472093.00	498.62	30	2024
KRRC126	281600.00	7472099.00	498.06	36	2024
KRRC127	281698.00	7472101.00	497.57	30	2024
KRRC128	281701.00	7472005.00	498.54	30	2024
KRRC129	281505.00	7471995.00	499.55	36	2024
KRRC130	281303.00	7472007.00	498.11	24	2024
KRRC131	281300.00	7471897.00	497.67	18	2024
KRRC132	281401.00	7471892.00	498.46	30	2024
KRRC133	281502.00	7471891.00	499.51	30	2024
KRRC134	281599.00	7471899.00	500.83	36	2024
KRRC135	281704.00	7471902.00	498.95	24	2024
KRRC136	281302.00	7471790.00	497.16	18	2024
KRRC137	281502.00	7471799.00	498.48	30	2024
KRRC138	281711.00	7471799.00	497.05	18	2024
KRRC139	281701.00	7471701.00	496.80	18	2024
KRRC140	281603.00	7471694.00	497.69	18	2024
KRRC141	281508.00	7471702.00	497.47	36	2024
KRRC142	281405.00	7471696.00	497.59	30	2024
KRRC143	281622.00	7471585.00	496.78	40	2024