

Wyacca Copper Project Exploration Update

Highlights

- Completion of new soil sampling and mapping program extends the central copper zone beyond the Worrumba 21 prospect by 600m, total mineralised NE strike at Wyacca now stands at 3km.
- Mineralised quartz, dolomite vein system extended by 300m to the NE of Worrumba 21, into an area untested by drilling.
- Additional soil geochemistry from portable XRF (pXRF) analysis confirms the spatial zonation of Cu anomalism compared to In distribution, highlighting the potential of a larger mineralisation event at Wyacca.
- Highly experienced exploration geologist and award-winning geoscience educator Richard Lilly has visited the Wyacca project, inspected drill core and established a likely paragenesis (timing) of alteration and mineralisation events consistent with field observations, assisting a greater understanding of the Wyacca geological model.
- Paragenesis indicates a multi-phase hydrothermal vein system with chalcopyrite dominant copper sulphide veins with supergene enrichment intruding into sedimentary sequences of the Tapley Hill formation including the lower Tindelpina Shale member.

Summary

Taruga Minerals Limited (ASX: **TAR, Taruga** or the **Company**) is pleased to provide an update on exploration activities at the Wyacca Copper Project, South Australia. Following the previously announced expert structural and geochemical reviews of Wyacca by Jun Cowan, Taruga implemented an expanded field mapping and soil sampling program. The focus was to understand the relative Cu and Pb-Zn enrichment in relation to stratigraphy, which meant stepping away from known mineral occurrences into areas previously unmapped or sampled. In conjunction with the Jun Cowan structural analysis which highlighted the importance of the North-East fold axial trace, field observations included a North-East trend of mineralisation which remains open.

Figure 1. Quartz/Dolomite Vein with chalcopyrite, chalcocite and malachite. Worrumba 21 Mine Workings.

During May, a total of 1,056 new soil samples were taken and analysed by pXRF, bringing the total number of soils collected across the Wyacca project to 3,000. Sample lines radiate across the Tapley Hill formation perpendicular to stratigraphy to give a broader view of mineral distribution associated with stratigraphy and cross cutting structures. The wider soil sampling program again demonstrated the negative association between Cu and Zn enrichment (Figure 3), highlighting the possibility of a larger mineralisation event at Wyacca than initially modelled. Geochemical analysis by pXRF should be considered as a trend indicator only and the accuracy subject to confirmation by laboratory assay. Although every effort is applied to produce accurate pXRF results the results from pXRF analysis can vary significantly from laboratory assay.

The new samples also show the NE trend to the mineralisation, with the Cu soil anomaly around the Worrumba 21 prospect being extended by 600m (Figure 2). This area was not an initial focus for Taruga, with maiden drilling occurring at the Powder Hill and Worrumba 19 prospects which lie on the Western Tindelpina stratigraphic horizon and feature numerous historic workings and outcrop.

Later field work and investigations mapped and sampled an area near Worrumba 21 workings which were subjected to limited shallow RAB and Aircore drilling to test geochemical trends and lithology. The mineralised vein system also follows a NE trend, and has been mapped to extend a further 300m than previously recorded and has not been tested by drilling. The potential variations in vein geometry and extent of the mineralized vein system along this strike from and below the central copper anomaly is currently unknown. The vein system is present beyond the central copper anomaly and is still open along this NE strike with further field work to investigate if Cu minerals are present in the identified veins and if veining extends further.

As the geological model evolves at Wyacca, the presence of supergene enriched veins and historical workings at surface is encouraging when contemplating a potential source of the fluid event. In light of the chalcopyrite dominant vein mineralisation both at surface and intersected previously in drilling, Taruga is currently interrogating its geophysical data set (Magnetics, Gravity and VTEM) to assist with future targeting.

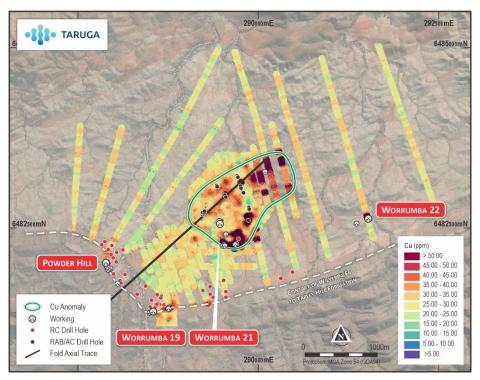


Figure 2. Cu pXRF trend in soils – the kidney bean shape of the central Worrumba 21 Prospect area measures 1.5km by 750m.

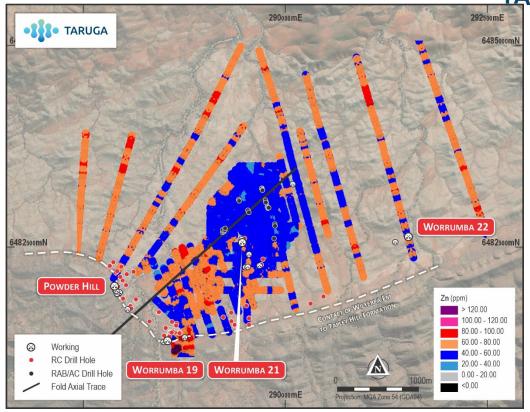


Figure 3. In pXRF trend in soils – showing a negative In association with the central area of Cu anomalism.

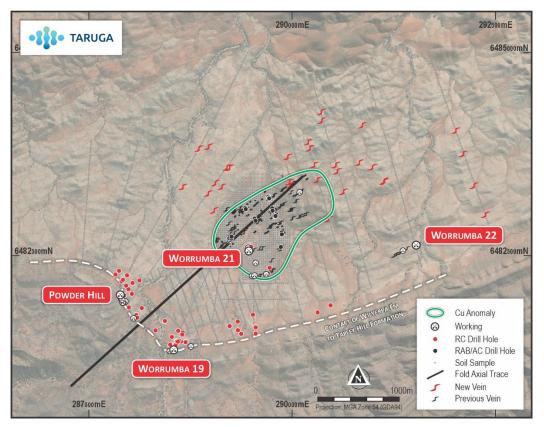


Figure 4. Mapped quartz, dolomite, carbonate veins (black - previously identified, red - recently mapped).

Paragenesis discussion

Highly experienced exploration geologist and award winning geoscience educator Richard Lilly has visited the Wyacca project. Richard inspected drill core and established a likely paragenesis (timing) of alteration and mineralisation events consistent with field observations and petrology findings. In conjunction with Taruga's working hypothesis of the possible copper system, Richards newly established paragenesis overview assists in a greater understanding of the greater Wyacca geological model.

One key observation was that the economic copper assemblage was the final significant paragenetic stage after quartz and then dolomite veining. The breakdown of fluid flow into 3 separate phases provides a higher-level understanding of the copper mineralisation distribution and mineralisation history.

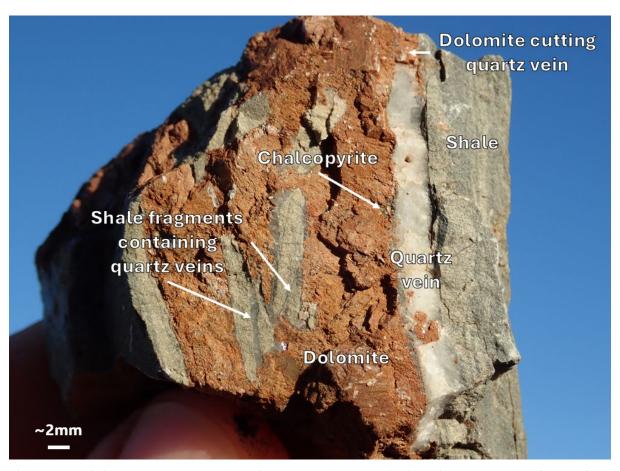
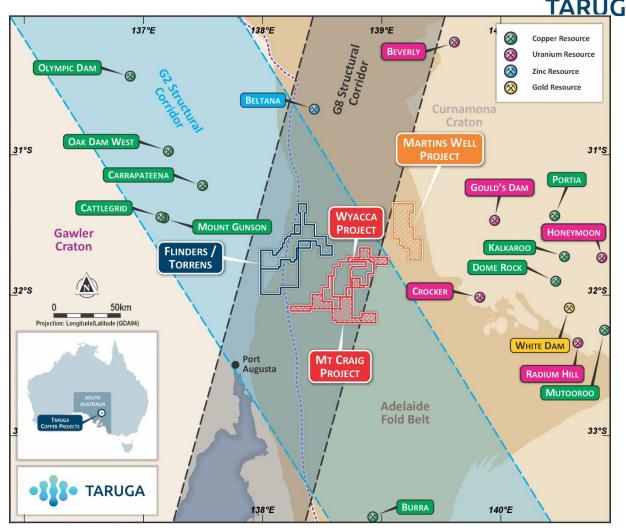



Figure 5. Brecciation of the host shale by dolomite, quartz and chalcopyrite rich fluids. Worrumba 21 Mine Workings.

The Broader Mt Craig Project

The Mt Craig Project that includes the Wyacca Project is situated within the Adelaide Geosyncline (AGS), which lies within the G2 structural corridor. The G2 structural corridor is host to all South Australia's past and present major copper projects including Prominent Hill, Olympic Dam and Carrapateena as shown in Figure 6. The AGS has hosted over 800 historical copper mines or workings, and multiple polymetallic mines since the 1840's. Copper-gold associations are common within the AGS, with many of the old copper mining ventures not recognising the presence of gold. Modern exploration has continued to uncover significant large-scale, polymetallic, base and precious metal potential around historical mining regions within the AGS, which have undergone limited exploration and development since initial mining ceased in the late 1800's.

Figure 6: Tenement Map showing Taruga's South Australian projects and the regional and structural setting including the Gawler Craton outline as published by the Geological Survey of South Australia in purple.

This announcement was approved by the Board of Taruga Minerals Limited.

For more information contact:

David Chapman

Technical Director

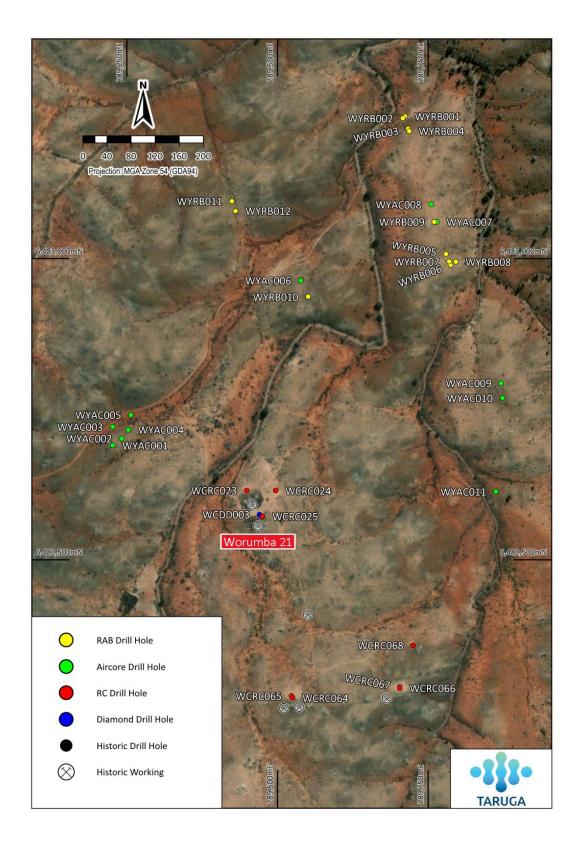
+61 8 9486 4036

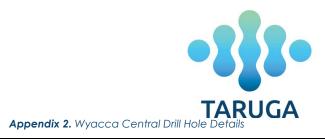
Competent person's statement

The information in this report that relates to exploration results is based on, and fairly represents information and supporting documentation prepared by Mr Brent Laws, a Competent Person who is a Member of The Australasian Institute of Mining and Metallurgy. Mr Laws is the Exploration Manager of Taruga Minerals Limited. Mr Laws has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resource and Ore Reserves". Mr Laws consents to the inclusion in this report of the matters based on their information in the form and context in which it appears.

The exploration results contained in this announcement were first reported by the Company in an announcement dated 3 May 2021. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original announcement.

Forward Looking Statements and Important Notice


This report contains forecasts, projections and forward-looking information. Although the Company believes that its expectations, estimates and forecast outcomes are based on reasonable assumptions it can give no assurance that these will be achieved. Expectations and estimates and projections and information provided by the Company are not a guarantee of future performance and involve unknown risks and uncertainties, many of which are out of Taruga's control.


Actual results and developments will almost certainly differ materially from those expressed or implied. Taruga has not audited or investigated the accuracy or completeness of the information, statements and opinions contained in this announcement. To the maximum extent permitted by applicable laws, Taruga makes no representation and can give no assurance, guarantee or warranty, express or implied, as to, and takes no responsibility and assumes no liability for the authenticity, validity, accuracy, suitability or completeness of, or any errors in or omission from, any information, statement or opinion contained in this report and without prejudice, to the generality of the foregoing, the achievement or accuracy of any forecasts, projections or other forward looking information contained or referred to in this report.

Investors should make and rely upon their own enquiries before deciding to acquire or deal in the Company's securities.

Appendix 1. Wyacca Central Drill Hole Location Reference Image

Hole ID	Hole Type	Max Depth	Projection	Easting GDA94z54	Northing GDA94z54	Elevation AHD (m)	Azimuth (Mag)	Dip
WCDD003	Diamond	25	GDA94/Zone54	289470	6482575	507	185	-60
WCRC023	RC	96	GDA94/Zone54	289449	6482615	505	360	-90
WCRC024	RC	108	GDA94/Zone54	289497	6482615	507	205	-55
WCRC025	RC	24	GDA94/Zone54	289475	6482572	508	175	-55
WCRC064	RC	42	GDA94/Zone54	289525	6482271	514	175	-55
WCRC065	RC	42	GDA94/Zone54	289523	6482274	514	360	-90
WCRC066	RC	30	GDA94/Zone54	289703	6482287	514	170	-55
WCRC067	RC	48	GDA94/Zone54	289703	6482289	514	360	-90
WCRC068	RC	30	GDA94/Zone54	289725	6482358	511	160	-55
WYAC001	Aircore	45	GDA94/Zone54	289226	6482690	504	185	-60
WYAC002	Aircore	51	GDA94/Zone54	289241	6482701	504	154	-60
WYAC003	Aircore	68	GDA94/Zone54	289226	6482721	503	154	-60
WYAC004	Aircore	51	GDA94/Zone54	289253	6482716	503	148	-60
WYAC005	Aircore	51	GDA94/Zone54	289257	6482740	503	153	-60
WYAC006	Aircore	66	GDA94/Zone54	289538	6482963	496	154	-60
WYAC007	Aircore	60	GDA94/Zone54	289764	6483061	495	154	-60
WYAC008	Aircore	66	GDA94/Zone54	289755	6483090	494	155	-60
WYAC009	Aircore	54	GDA94/Zone54	289871	6482793	499	163	-60
WYAC010	Aircore	45	GDA94/Zone54	289873	6482769	500	164	-60
WYAC011	Aircore	33	GDA94/Zone54	289862	6482613	500	166	-60
WYRB001	RAB	15	GDA94/Zone54	289712	6483236	491	153	-60
WYRB002	RAB	22	GDA94/Zone54	289708	6483233	491	154	-60
WYRB003	RAB	13	GDA94/Zone54	289717	6483216	492	150	-60
WYRB004	RAB	13	GDA94/Zone54	289719	6483211	493	150	-60
WYRB005	RAB	43	GDA94/Zone54	289780	6483008	495	153	-60
WYRB006	RAB	4	GDA94/Zone54	289787	6482990	496	152	-60
WYRB007	RAB	6	GDA94/Zone54	289785	6482995	496	152	-60
WYRB008	RAB	10	GDA94/Zone54	289796	6482995	495	154	-60
WYRB009	RAB	10	GDA94/Zone54	289760	6483061	495	153	-60
WYRB010	RAB	34	GDA94/Zone54	289551	6482937	498	153	-60
WYRB011	RAB	40	GDA94/Zone54	289424	6483095	496	153	-60
WYRB012	RAB	50	GDA94/Zone54	289430	6483079	497	153	-60

Sample ID	Easting	Northing	RL (m)	Cu (PPM)	Zn (PPM)	Sample ID	Easting	Northing	RL (m)	Cu (PPM)	Zn (PPM)	Sample ID	Easting	Northing	RL (m)	Cu (PPM)	Zn (PPM)
MH10	288773	6481363	528	49	70	WCSL171	289511	6483128	497	41	48	WCSL2973	289112	6484312	484	24	86
MH11	288793	6481463	526	31	90	WCSL1713	288753	6481323	528	34	80	WCSL2974	289099	6484290	485	28	81
MH12	288793	6481443	526	33	84	WCSL1716	288822	6481285	531	27	81	WCSL2979	289055	6484201	486	30	82
MH14	288793	6481403	527	64	83	WCSL1717	288633	6481283	530	45	95	WCSL2981	289032	6484157	484	35	82
MH15	288793	6481383	527	54	98	WCSL1722	288833	6481243	531	30	89	WCSL2982	289021	6484135	483	31	82
MH16	288793	6481363	528	38	106	WCSL1723	288793	6481243	532	45	95	WCSL2983	289011	6484118	483	30	80
MH17	288813	6481463	526	48	96	WCSL1724	288753	6481243	531	41	98	WCSL2990	288929	6483955	488	31	87
MH18	288813	6481443	526	60	99	WCSL1727	288673	6481243	530	42	404	WCSL2993	290338	6483368	498	47	61
MH19	288813	6481403	527	38	112	WCSL1729	288633	6481203	531	38	255	WCSL2994	290332	6483392	499	70	68
MH20	288813	6481383	527	34	83	WCSL1730	288673	6481223	532	29	184	WCSL2995	290328	6483419	501	133	65
MH21	288813	6481363	528	37	136	WCSL1732	288753	6481203	534	50	85	WCSL2996	290323	6483440	501	94	71
MH22	288833	6481463	526	38	92	WCSL1754	289596	6482111	512	43	46	WCSL2997	290323	6483441	501	154	69
MH23	288833	6481443	526	47	81	WCSL1787	289289	6482385	506	46	34	WCSL2998	290314	6483458	500	60	65
MH24	288833	6481423	526	46	74	WCSL1802	288961	6481806	520	30	80	WCSL3002	290294	6483535	492	48	62
MH25	288833	6481403	527	48	59	WCSL1808	288869	6482071	518	28	80	WCSL3003	290287	6483556	491	80	65
MH26	288833	6481383	528	27	90	WCSL1841	289580	6481851	518	33	84	WCSL3003	290281	6483583	491	43	68
MH27	288833	6481363	528	33	88	WCSL1954	289635	6483359	489	42	43	WCSL3018	290188	6483921	496	29	80
MH5	288753	6481363	528	50	76	WCSL1973	289836	6483353	489	51	53	WCSL3018	289974	6483443	498	45	53
MH9	288773	6481383	527	195	76	WCSL201	288700	6481948	520	26	82	WCSL3030	289987	6483394	496	46	79
WCSL002	288650	6481796	528	28	80	WCSL202	288693	6481967	519	27	86	WCSL3030	289997	6483345	494	44	58
WCSL002	288839	6481553	526	45	87	WCSL2022	288287	6482818	511	33	80	WCSL3032 WCSL3034	290012	6483298	495	44	43
WCSL023	289094	6481428	525	48	47	WCSL2022 WCSL2029	288359	6482951	504	32	86	WCSL3034 WCSL3035	290012	6483275	497	50	58
WCSL051 WCSL054	288879	6481421	527	40	67	WCSL2029 WCSL2048	288616	6483407	496	26	86	WCSL3033	290016	6483251	497	58	58
WCSL054 WCSL058	289302	6481438	526	41	58	WCSL2048 WCSL2049	288632	6483427	495	29	82	WCSL3030	290030	6483231	499	105	60
WCSL058 WCSL059	289294	6481457	525	55	28	WCSL2049 WCSL205	288674	6482024	517	38	85	WCSL3037 WCSL3038	290036	6483202	501	59	63
WCSL039 WCSL074	288638	6482434	506	31	82	WCSL2051	288644	6483450	495	33	80	WCSL3038 WCSL3039	290036	6483178	503	65	60
WCSL074 WCSL081	288688	6482301	512	33	86	WCSL2051 WCSL2052	288654	6483470	495	28	87	WCSL3039 WCSL304	289078	6482079	513	37	87
WCSL081 WCSL1003	289471	6482708	501	42	54	WCSL2032 WCSL2063	288792	6483710	492	32	90	WCSL3040	290048	6483155	503	81	60
WCSL1003 WCSL1006	289521	6482683	501	48	66	WCSL2003 WCSL2074	288001	6482325	518	45	59	WCSL3040 WCSL3042	290048	6483105	507	50	63
WCSL1006 WCSL1016	289571	6482783	497	48	53	WCSL2074 WCSL2082	287913	6482171	525	40	53	WCSL3042 WCSL3046	290087	6483011	501	50	56
WCSL1010	289746	6482833	497	53	49	WCSL2082 WCSL2083	287900	6482146	525	45	43	WCSL3046 WCSL3047	290093	6482986	498	97	53
WCSL1020	289721	6482833	497	50	49	WCSL2087	287698	6482374	520	39	85	WCSL3047 WCSL3048	290100	6482965	496	46	55
WCSL1021 WCSL1024	289671	6482808	498	44	50	WCSL2092	287729	6482496	519	34	80	WCSL3048	289065	6482117	512	37	80
WCSL1024 WCSL1026	289696	6482808	498	43	42	WCSL2092	287723	6482545	519	34	81	WCSL3062	290495	6482789	503	30	85
WCSL1020	289721	6482808	498	40	45	WCSL2094 WCSL2110	287839	6482904	513	34	86	WCSL3062 WCSL3063	290493	6482813	503	29	84
WCSL1027 WCSL1034	289721	6482733	498	40	51	WCSL2110 WCSL2117	287885	6483075	511	39	83	WCSL3065	290489	6482861	505	31	80
WCSL1034 WCSL1036	289671	6482733	498	40	55	WCSL2117 WCSL2119	287899	6483120	511	35	85	WCSL3065 WCSL3067	290478	6482910	509	40	71
WCSL1036 WCSL1043	289671	6482683	500	45	50	WCSL2119 WCSL2121	287911	6483171	525	31	81	WCSL3067 WCSL307	289058	6482136	512	33	87
WCSL1043 WCSL1047	289696	6482633	500	45	57	WCSL2121 WCSL2129	287956	6483341	525	30	81	WCSL307	290438	6483006	512	60	69
WCSL1047 WCSL1072	289046	6482583	505	42	69	WCSL2123	287978	6483415	514	32	83	WCSL3071 WCSL3073	290427	6483049	512	46	62
WCSL1072 WCSL1078	289071	6482533	508	55	65	WCSL2132	287984	6483439	512	37	83	WCSL3073	290420	6483075	509	66	65
WCSL1078 WCSL1080	289121	6482533	509	48	59	WCSL2133 WCSL2134	287991	6483461	511	32	90	WCSL3074 WCSL3076	290420	6483099	507	42	70
WCSL1080 WCSL1092	289121	6482508	511	51	57	WCSL2134 WCSL2135	287995	6483482	510	31	91	WCSL3078	290412	6483146	504	45	64
WCSL1092 WCSL1093	289121	6482508	511	72	57	WCSL2135 WCSL2136	287995	6483510	510	31	91	WCSL3078 WCSL3080	290401	6483146	504	43	67
WCSL1093 WCSL1097	289171	6482508	509	51	48	WCSL2136 WCSL2139	288004	6483583	510	35	92	WCSL3080 WCSL3082	290388	6483246	502	43	68
WCSL1097 WCSL1124	289271	6482433	505	43	64	WCSL2139 WCSL2141	288023	6483630	510	28	84	WCSL3082 WCSL3084	290374	6483246	502	40	53
	289496 289496	6482333	508	63	55	WCSL2141 WCSL2145	288033	6483728	512	28	84	WCSL3084 WCSL3087	289910	6483292	492	40	55
WCSL1128 WCSL1129	289496 289496	6482333	508	121	55	WCSL2145 WCSL2146	288069	6483728	512	34	81	WCSL3087 WCSL3088	289910	6483241	492	63	55 59
WCSL1129 WCSL1130	289496 289496	6482283	510	135	41	WCSL2146 WCSL2148	288083	6483751	506	34	87	WCSL3088 WCSL3089	289917	6483218	492	63	62
											88				493		63
WCSL1131	289496	6482258	511	78	39	WCSL2149	288089	6483824	503	30		WCSL3090	289930	6483170	494 494	63	59
WCSL1137	289446	6482508	504	43	67	WCSL2152	288100	6483872	503	33	86	WCSL3091	289939	6483144		51	
WCSL1142	289446	6482383	507	47	45	WCSL2155	287531	6483891	506	30	86	WCSL3092	289946	6483122	493	47	63

$T \wedge$			Λ
	R	G	Δ

	1										UUA						- (
Sample ID	Easting	Northing	RL (m)	Cu (PPM)	Zn (PPM)	Sample ID	Easting	Northing	RL (m)	Cu (PPM)	Zn (PPM)	Sample ID	Easting	Northing	RL (m)	Cu (PPM)	Zn (PPM)
WCSL1161	289396	6482208	511	49	41	WCSL2158	287524	6483816	512	30	81	WCSL3094	289955	6483074	495	46	53
WCSL1172	289546	6482408	506	60	51	WCSL2163	287515	6483694	513	28	82	WCSL3097	289973	6483003	495	54	56
WCSL1177	289546	6482283	510	93	70	WCSL2168	287507	6483564	515	33	80	WCSL310	289039	6482193	511	31	87
WCSL1189	289596	6482408	506	65	40	WCSL2169	287501	6483542	515	36	80	WCSL3101	289996	6482930	495	43	58
WCSL1194	289596	6482258	511	153	43	WCSL2170	287503	6483514	518	36	84	WCSL311	289032	6482212	511	32	90
WCSL1207	289646	6482408	506	137	48	WCSL2174	287495	6483421	530	32	83	WCSL312	289025	6482230	511	40	91
WCSL1208	289646	6482383	506	40	61	WCSL2191	287465	6483018	520	28	80	WCSL315	289006	6482287	512	28	83
WCSL1210	289646	6482308	510	45	57	WCSL2192	287460	6482993	520	34	81	WCSL317	288993	6482325	514	34	83
WCSL1211	289646	6482283	511	70	62	WCSL2202	287421	6482437	528	47	88	WCSL320	288973	6482382	510	24	88
WCSL1215	289696	6482608	501	43	55	WCSL2218	288184	6482196	516	25	83	WCSL336	289195	6482353	507	32	83
WCSL1221	289696	6482458	506	45	44	WCSL2243	288551	6482700	509	26	83	WCSL339	289175	6482409	507	25	84
WCSL1222	289696	6482433	506	45	36	WCSL2255	288712	6482923	504	30	86	WCSL352	289271	6482783	503	63	51
WCSL1223	289696	6482408	505	129	56	WCSL2260	288788	6483024	503	27	80	WCSL356	289371	6482783	501	41	49
WCSL1224	289696	6482383	505	60	53	WCSL2262	288818	6483065	502	39	82	WCSL357	289396	6482783	500	42	36
WCSL1226	289696	6482333	508	44	39	WCSL2266	288873	6483147	502	36	86	WCSL362	289221	6482633	506	43	48
WCSL1227	289696	6482308	510	53	50	WCSL2269	288919	6483204	503	28	81	WCSL376	289296	6482708	502	42	49
WCSL1228	289696	6482258	511	40	54	WCSL2272	288964	6483268	500	23	81	WCSL377	289296	6482733	501	40	60
WCSL1229	289696	6482233	510	47	58	WCSL2278	289036	6483367	499	30	81	WCSL380	289321	6482733	501	44	48
WCSL1237	289771	6482833	496	44	69	WCSL2287	289168	6483549	495	29	82	WCSL381	289321	6482708	502	63	30
WCSL1238	289771	6482808	497	41	61	WCSL2289	289200	6483591	494	26	84	WCSL382	289321	6482683	503	50	46
WCSL1243	289771	6482683	499	40	61	WCSL2290	289213	6483609	493	34	80	WCSL385	289296	6482558	505	34	84
WCSL1253	289821	6482658	499	59	56	WCSL2303	291579	6482403	499	21	85	WCSL390	289346	6482608	504	25	87
WCSL1256	289771	6482583	501	42	55	WCSL2310	291534	6482578	499	31	81	WCSL395	289346	6482708	502	49	51
WCSL1261	289796	6482583	500	52	52	WCSL2313	291509	6482649	499	129	59	WCSL396	289346	6482733	501	44	58
WCSL1262	289796	6482558	501	47	44	WCSL2314	291506	6482673	498	56	63	WCSL397	289346	6482758	501	41	54
WCSL1263	289796	6482533	502	48	52	WCSL2315	291499	6482697	497	48	53	WCSL398	289371	6482758	501	42	47
WCSL1265	289821	6482583	500	54	50	WCSL2317	291484	6482742	496	32	80	WCSL401	289071	6482558	507	56	54
WCSL1266	289821	6482558	501	56	62	WCSL2318	291479	6482767	495	31	83	WCSL438	289221	6482608	507	55	37
WCSL1269	289846	6482608	500	40	54	WCSL2324	291440	6482906	494	32	83	WCSL446	289371	6482708	502	45	46
WCSL127	288949	6482141	516	29	88	WCSL2327	291424	6482962	491	30	83	WCSL479	289396	6482708	502	45	65
WCSL1270	289846	6482583	500	70	66	WCSL233	288628	6482156	513	33	81	WCSL481	289396	6482758	501	46	46
WCSL1271	289846	6482558	501	107	55	WCSL2336	291368	6483179	487	28	80	WCSL482	289561	6483003	495	48	48
WCSL1271	289846	6482533	501	53	64	WCSL2337	291360	6483202	486	26	82	WCSL487	289536	6483053	494	45	46
WCSL1273	289871	6482630	500	64	54	WCSL2344	291315	6483371	481	27	86	WCSL489	289536	6483003	494	57	51
WCSL1274	289871	6482608	500	140	45	WCSL2352	291267	6483540	481	29	86	WCSL493	289271	6482833	504	52	35
WCSL1274	289871	6482583	500	139	59	WCSL2354	291253	6483586	479	34	80	WCSL503	289221	6482858	505	41	62
WCSL1277	289896	6482633	500	48	43	WCSL2354	288608	6482213	511	35	86	WCSL524	289511	6483053	494	45	50
WCSL1277	289896	6482608	500	45	38	WCSL2366	291173	6483882	472	30	82	WCSL524 WCSL526	289511	6483078	496	40	36
WCSL1278 WCSL1280	289746	6482508	505	45	56 54	WCSL2368	291173	6483930	472	35	81	WCSL526 WCSL529	289511	6483203	496	46	42
WCSL1280	289746	6482483	505	42	52	WCSL2306 WCSL2376	291137	6484096	468	31	82	WCSL529	289536	6483153	496	62	41
WCSL1281 WCSL1282	289746	6482458	506	57	51	WCSL2376 WCSL2380	291103	6484054	488	37	83	WCSL535	289536	6483128	496	54	51
WCSL1282 WCSL1283	289746	6482433	505	95	50	WCSL2380 WCSL2382	290408	6484011	492	25	81	WCSL535 WCSL537	289561	6483103	495	50	45
WCSL1283	289746	6482408	505	103	53	WCSL2382 WCSL2398	290422	6483638	492	27	87	WCSL537 WCSL538	289561	6483128	495	57	45
WCSL1284 WCSL1285	289746	6482383	505	98	46	WCSL2398 WCSL2415	290543	6482481	482 506	36	87	WCSL538 WCSL539	289561	6483153	495 495	57	32
WCSL1285 WCSL1286	289746 289746	6482383	505	98 89	46 45	WCSL2415 WCSL2417	290870	6482481	506 506	36	87	WCSL539 WCSL541	289561 289561	6483203	495 494	53 47	53
															494 495		47
WCSL1287	289746	6482308	508	48	54	WCSL2418	290847	6482554	508	28	80	WCSL549	289486	6483053		63	
WCSL1288	289746	6482283	509	195	51	WCSL242	288706	6481929	522	29	83	WCSL553	289461	6483003	495	49	52
WCSL1291	289746	6482208	508	44	58	WCSL243	288713	6481911	524	38	83	WCSL554	289461	6483028	495	43	58
WCSL1296	289796	6482308	506	55	58	WCSL2433	290169	6483275	501	54	56	WCSL570	289436	6483028	497	46	61
WCSL1297	289796	6482333	506	82	54	WCSL2436	290742	6482940	499	35	80	WCSL571	289436	6483003	497	43	53
WCSL1298	289796	6482383	505	59	36	WCSL2491	290102	6483491	493	44	50	WCSL573	289411	6483028	498	46	41
WCSL1304	289796	6482508	503	48	59	WCSL2492	290108	6483468	493	44	55	WCSL583	289311	6483003	503	48	68
WCSL1312	289796	6482658	499	40	65	WCSL2493	290116	6483440	494	61	61	WCSL597	289336	6483128	496	44	67
WCSL1313	289846	6482658	500	282	38	WCSL2494	290122	6483419	495	51	52	WCSL602	289336	6483028	501	58	44

$T \wedge$			Λ
	R	G	Δ

											UUA						
Sample ID	Easting	Northing	RL (m)	Cu (PPM)	Zn (PPM)	Sample ID	Easting	Northing	RL (m)	Cu (PPM)	Zn (PPM)	Sample ID	Easting	Northing	RL (m)	Cu (PPM)	Zn (PPM)
WCSL1329	289871	6482683	500	107	39	WCSL2495	290130	6483394	496	46	49	WCSL609	289361	6483128	496	52	54
WCSL1330	289871	6482658	500	63	32	WCSL2496	290136	6483375	497	57	50	WCSL612	289361	6483203	493	40	50
WCSL1332	289896	6482658	501	98	41	WCSL2497	290137	6483345	498	100	48	WCSL623	289386	6483003	499	49	50
WCSL1333	289896	6482683	501	103	36	WCSL2498	290149	6483322	499	58	52	WCSL644	289586	6483128	493	47	52
WCSL1334	289896	6482708	501	43	39	WCSL2499	290157	6483298	500	47	52	WCSL645	289586	6483103	494	40	53
WCSL1345	289921	6482708	501	42	45	WCSL2502	290176	6483226	504	45	49	WCSL646	289611	6483178	493	47	51
WCSL1347	289921	6482658	501	53	37	WCSL2503	290182	6483202	506	50	52	WCSL661	289196	6482358	507	40	87
WCSL1348	289921	6482633	501	43	50	WCSL2505	290194	6483154	509	41	65	WCSL672	289471	6482358	508	64	48
WCSL1355	289946	6482758	498	48	40	WCSL2506	290203	6483130	510	41	57	WCSL674	289521	6482358	508	43	60
WCSL1357	289946	6482708	500	40	61	WCSL2507	290209	6483107	509	43	54	WCSL681	289671	6482358	507	40	51
WCSL1359	289946	6482658	501	50	33	WCSL2508	290215	6483082	508	45	57	WCSL682	289696	6482358	506	65	49
WCSL1366	289971	6482758	497	51	50	WCSL2509	290222	6483059	507	56	44	WCSL683	289721	6482358	506	81	46
WCSL1370	289971	6482658	501	48	56	WCSL2511	290233	6483013	505	41	48	WCSL684	289746	6482358	506	193	33
WCSL1380	289821	6482383	505	42	63	WCSL2513	290247	6482963	504	41	51	WCSL685	289771	6482358	506	104	27
WCSL1387	289846	6482508	502	51	64	WCSL2514	290255	6482939	504	47	39	WCSL686	289796	6482358	506	82	44
WCSL1388	289846	6482483	503	40	65	WCSL2560	289965	6482411	503	41	57	WCSL688	289846	6482358	505	43	56
WCSL1392	289846	6482383	505	40	65	WCSL2562	289977	6482364	504	44	55	WCSL689	289871	6482358	505	40	53
WCSL1393	289846	6482333	505	43	52	WCSL2563	289982	6482337	506	94	44	WCSL692	289946	6482358	505	51	52
WCSL1394	289846	6482308	505	111	57	WCSL2566	289997	6482265	507	30	82	WCSL699	289796	6482158	508	41	66
WCSL140	289121	6482633	507	60	43	WCSL2586	290109	6481800	521	39	81	WCSL727	289146	6482158	511	41	60
WCSL1421	289471	6482283	510	43	57	WCSL2630	288770	6482314	510	31	80	WCSL727 WCSL728	289146	6481958	516	31	80
WCSL1421	289471	6482308	509	42	47	WCSL2633	288714	6482260	514	43	76	WCSL728 WCSL764	289371	6482933	500	42	55
WCSL1426	289464	6482407	507	47	56	WCSL2639	288605	6482158	512	29	88	WCSL764 WCSL768	289271	6482933	503	44	49
WCSL1427	289471	6482433	506	46	64	WCSL264	289042	6481876	519	31	84	WCSL771	289221	6482958	501	50	37
WCSL1427 WCSL1429	289521	6482333	508	40	68	WCSL2643	288534	6482087	517	33	88	WCSL771 WCSL773	289271	6482958	503	43	44
WCSL1429 WCSL143	289121	6482708	507	32	92	WCSL2643 WCSL265	289049	6481858	517	30	91	WCSL775 WCSL776	289321	6482958	503	41	49
WCSL1430	289521	6482308	507	98	64	WCSL266	288789	6481927	524	33	86	WCSL776 WCSL777	289346	6482958	503	41	54
	289521			147											498	45	
WCSL1431		6482288	510		59	WCSL2673	288865 288888	6482082	518	28	81	WCSL781	289421	6482983	498 500	55	41
WCSL1436	289571	6482258	511	119	55	WCSL2676		6482125	518	28	83	WCSL783	289371	6482983			36
WCSL1437	289571	6482283 6482733	510 507	54 54	69	WCSL2678	288912	6482173	516	28	88	WCSL784	289346	6482983	502 503	49	35
WCSL144	289121				47	WCSL268	289068	6481801	520	32	91	WCSL785	289321	6482983		56	48
WCSL1443	289621	6482258	511	192	39	WCSL2680	288934	6482218	515	38	88	WCSL835	289786	6483153	492	56	51
WCSL1446	289671	6482208	510	445	47	WCSL2681	288944	6482240	514	31	81	WCSL836	289811	6483153	492	43	51
WCSL1449	289671	6482283	511	84	48	WCSL2684	288976	6482309	513	38	83	WCSL837	289811	6483128	492	41	50
WCSL1451	289671	6482308	510	90	58	WCSL2686	288999	6482352	513	33	82	WCSL839	289761	6483128	492	399	40
WCSL1452	289671	6482333	508	59	59	WCSL2687	289008	6482376	511	28	83	WCSL845	289611	6483103	493	40	62
WCSL1453	289721	6482333	508	58	51	WCSL2689	289032	6482418	509	29	84	WCSL856	289761	6483078	492	44	51
WCSL1454	289721	6482308	509	60	38	WCSL269	289075	6481782	520	24	80	WCSL866	289711	6483053	493	41	69
WCSL1455	289721	6482283	510	128	54	WCSL2698	289120	6482357	509	65	31	WCSL878	289636	6483028	494	67	39
WCSL1458	289721	6482208	509	46	63	WCSL2699	289116	6482332	510	57	53	WCSL880	289586	6483028	494	52	51
WCSL146	289146	6482758	506	42	41	WCSL270	289082	6481763	520	26	80	WCSL881	289586	6483003	495	43	46
WCSL1461	289771	6482233	508	186	49	WCSL2701	289111	6482307	510	43	51	WCSL882	289611	6483003	495	48	52
WCSL1462	289771	6482283	507	138	46	WCSL2703	289103	6482257	510	30	84	WCSL883	289636	6483003	495	44	38
WCSL1463	289771	6482308	507	57	48	WCSL2707	289088	6482158	511	43	76	WCSL890	289446	6482983	496	48	51
WCSL1464	289771	6482333	507	92	42	WCSL2714	289065	6481985	516	34	80	WCSL893	289546	6482983	495	57	54
WCSL1491	289886	6483278	490	42	59	WCSL2715	289060	6481961	517	26	80	WCSL894	289546	6482958	496	148	40
WCSL1493	289861	6483303	488	45	53	WCSL2719	289046	6481859	519	27	81	WCSL895	289521	6482958	496	40	45
WCSL1495	289861	6483253	491	44	58	WCSL2721	289039	6481812	520	23	87	WCSL901	289521	6482933	497	51	45
WCSL1497	289861	6483203	491	41	66	WCSL2722	289034	6481785	521	29	96	WCSL902	289546	6482933	498	55	50
WCSL1498	289861	6483178	492	41	65	WCSL2738	292417	6482889	503	29	92	WCSL906	289621	6482983	496	44	52
WCSL151	289146	6482658	507	44	42	WCSL2740	292399	6482936	501	27	83	WCSL916	289746	6482958	494	40	48
WCSL1515	289861	6483128	492	47	60	WCSL2742	292383	6482984	498	29	100	WCSL919	289646	6482958	496	40	51
WCSL1516	289886	6483153	492	40	53	WCSL2749	292327	6483152	499	31	81	WCSL921	289596	6482958	497	44	48
WCSL1517	289886	6483178	492	54	56	WCSL276	288771	6482354	510	35	82	WCSL922	289571	6482958	497	41	48
***************************************	203000	0403170	772	. 54			2007/1	0-102334	510	33	. 02	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2033/1	0-102,530	737	71	

WCSL1519 289886 6 WCSL1532 289971 6 WCSL1533 289946 6 WCSL1535 289921 6 WCSL1542 289921 6 WCSL1543 289921 6 WCSL1543 289921 6 WCSL1543 289921 6	Northing 6483228 6482483 6482483 6482458 6482408 6482383 6483278	RL (m) 491 502 502 502 503 504	Cu (PPM) 50 102 46 44 52	2n (PPM) 53 41 50 67	WCSL2765 WCSL2769	292209 292201	Northing 6483481	RL (m) 485	Cu (PPM) 28	Zn (PPM) 84	Sample ID WCSL924	Easting 289771	Northing 6482933	RL (m) 494	Cu (PPM)	Zn (PPM)
WCSL1532 289971 6 WCSL1533 289946 6 WCSL1535 289921 6 WCSL1542 289921 6 WCSL1543 289921 6 WCSL1543 289921 6 WCSL1546 289386 6	6482483 6482483 6482458 6482408 6482383 6483278	502 502 502 503	102 46 44	41 50	WCSL2765			485	28	0.4	WCCLO24	200771	C402022	101	10	
WCSL1533 289946 6 WCSL1535 289921 6 WCSL1542 289921 6 WCSL1543 289921 6 WCSL1543 289921 6 WCSL1556 289386 6	6482483 6482458 6482408 6482383 6483278	502 502 503	46 44	50		292201				04	VVC3L524	209//1	6482933	494	40	52
WCSL1535 289921 6 WCSL1542 289921 6 WCSL1543 289921 6 WCSL1556 289386 6	6482458 6482408 6482383 6483278	502 503	44		WCSI 2769		6483502	484	33	84	WCSL927	289696	6482933	496	46	58
WCSL1542 289921 6 WCSL1543 289921 6 WCSL1556 289386 6	6482408 6482383 6483278	503		67		292170	6483597	486	31	84	WCSL928	289646	6482933	497	44	58
WCSL1543 289921 6 WCSL1556 289386 6	6482383 6483278		E2		WCSL2778	292104	6483784	484	35	81	WCSL929	289621	6482933	497	40	55
WCSL1556 289386 6	6483278	504	32	58	WCSL278	288758	6482392	510	34	84	WCSL930	289596	6482933	498	41	52
			50	63	WCSL2789	292014	6484048	472	28	82	WCSL931	289571	6482933	498	44	38
	_	491	41	62	WCSL279	288751	6482411	510	36	85	WCSL932	289696	6482908	496	50	56
WCSL1573 289261 6	6483178	494	29	88	WCSL280	288745	6482430	510	29	90	WCSL933	289721	6482908	496	45	54
WCSL1604 289536 6	6482408	506	82	54	WCSL2808	291866	6484471	465	28	81	WCSL936	289746	6482883	495	40	40
WCSL1607 289571 6	6482408	506	44	49	WCSL281	288738	6482448	510	25	88	WCSL937	289721	6482883	496	52	43
WCSL1608 289571 6	6482433	506	44	49	WCSL2810	291848	6484516	464	30	81	WCSL940	289721	6482858	496	47	42
WCSL1614 289621 6	6482408	506	60	45	WCSL282	288732	6482467	510	24	81	WCSL941	289746	6482858	495	51	51
WCSL1620 289671 6	6482433	506	48	42	WCSL283	288725	6482486	510	28	81	WCSL947	289471	6482908	498	48	58
WCSL1621 289671 6	6482458	506	44	48	WCSL2841	289444	6483935	483	27	80	WCSL948	289496	6482908	499	42	37
WCSL1622 289671 6	6482408	506	106	46	WCSL2843	289468	6483975	482	29	85	WCSL949	289521	6482908	499	45	49
WCSL1623 289671 6	6482374	506	43	55	WCSL2849	291051	6484281	474	31	105	WCSL951	289546	6482908	498	43	45
WCSL1624 289721 6	6482383	505	129	44	WCSL2851	291045	6484303	477	33	107	WCSL952	289571	6482908	498	43	46
WCSL1626 289736 6	6482408	505	96	48	WCSL2853	291028	6484349	479	28	87	WCSL957	289621	6482884	497	43	52
WCSL1627 289721 6	6482433	505	245	41	WCSL2854	291024	6484370	479	23	82	WCSL960	289496	6482883	499	52	44
WCSL1629 289721 6	6482483	506	41	56	WCSL2855	291017	6484401	477	30	86	WCSL961	289471	6482883	499	40	48
WCSL163 289196 6	6482658	505	40	49	WCSL2856	291008	6484425	475	29	87	WCSL968	289075	6482858	501	46	59
WCSL1630 289721 6	6482508	505	47	55	WCSL2857	291001	6484449	473	31	82	WCSL970	289096	6482883	501	40	60
WCSL1632 289771 6	6482483	504	43	52	WCSL2858	290995	6484471	471	33	89	WCSL980	289261	6483003	502	45	67
WCSL1633 289758 6	6482458	505	54	41	WCSL286	288272	6482266	515	26	95	WCSL982	289286	6483028	501	40	61
WCSL1635 289771 6	6482408	505	45	43	WCSL2860	290980	6484516	469	22	80	WCSL987	289286	6483078	498	41	60
WCSL1636 289771 6	6482383	505	71	35	WCSL2864	290953	6484616	467	34	84	WCSL991	289396	6482833	500	42	59
WCSL1644 289211 6	6483053	498	46	75	WCSL2890	290345	6484301	489	32	80	WCSL992	289421	6482833	499	43	45
WCSL1645 289236 6	6483053	499	44	51	WCSL2911	289753	6484700	476	37	105	WCSL993	289446	6482833	499	44	49
WCSL165 289271 6	6482658	505	49	32	WCSL2930	289892	6484273	480	40	59	WCSL994	289471	6482858	499	56	53
WCSL169 289486 6	6483078	496	48	33	WCSL2934	289922	6484178	482	27	97	WCSL995	289446	6482858	499	41	42
WCSL1691 288906 6	6481660	526	33	80	WCSL2968	289168	6484422	486	28	87	WCSL996	289421	6482858	499	43	44
WCSL170 289511 6	6483102	497	41	42	WCSL2969	289155	6484402	488	33	81	WCSL998	289496	6482733	500	46	44
WCSL1707 288713 6	6481363	529	59	121	WCSL2970	289144	6484379	488	26	82						
WCSL1708 288673 6	6481363	530	51	69	WCSL2971	289133	6484356	486	23	82						

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Soil geochemical sampling: 2024 soil sampling was at 25m spacing along lines nominally perpendicular to stratigraphy to assess the geochemical changes across the stratigraphic sequence as well as intersect mapped veining. Line spacing due to the folded stratigraphy varied from 100m up to 900m in spacing; this allowed for infill of areas of copper anomalism to have greater confidence in the trend shown and obtain a spread of results away from identified trends in copper anomalism. Previous Taruga soil sampling at Wyacca was on a 25m x 25m grid around the central copper anomalous area or on a NW lines oblique to structures thought significant. Samples were taken at an average depth of 0.2m which regularly was on bedrock, giving a good representation of the rock below. Soil samples were sieved to retrieve representative material <2mm and a sample size minimum of 100g for analysis. For every 30th sample location a duplicate sample is taken from the same point to assess sampling variability. Rock samples: The labelled hand samples shown in this document are from Worrumba 21 historic workings. The shaft is located at GPS 289468E / 6482557N (GDA94 zone54) and hand samples were taken from adjacent rock dumps. These samples were used for visual inspection only. Aircore (AC) and Rotary Air Blast (RAB) drill sampling was completed with drill sample collected at 1m intervals with sample collected from an onboard cyclone as a bulk sample that is later sub sampled using conventional spear sampling techniques for a representative sample. B samples were also collected for statistical comparison for assessing sampling repeatability. Aircore and RAB drilling can have some drilling limitations including depth capability, water affecting sample quality, unstable ground and blocked sampled return which can lead to holes ending earlier than full target depth. Reverse Circulation (RC) drill sampling completed at 1m intervals with sample returned through an on-board static cone splitter generating a

Cuitouio	IODC Code symlometics	TARUGA
Criteria	JORC Code explanation	Commentary
		 Soil, aircore and RAB sample analysis via portable XRF. An Olympus Vanta portable XRF (pXRF) was used to analyse samples. A pXRF with suitable quality control checks was deemed sufficient for the assessment of base metal element trends in soil samples. The Vanta pXRF is owned and operated by Taruga with ongoing assessment of the quality and accuracy of sample results. During analysis, after every 25th sample a standard (certified reference material or CRM) is analysed with results checked at the time for discrepancies with the certified laboratory values. During sampling every 30th sample is duplicated and on analysis the results of the duplicate samples are compared for variations. Taruga has completed analysis and calibration checks across a range of CRM and lab analysed samples and found the base metal, in particular copper and zinc, to be reliable and within an acceptable analysis variations of <5% without additional calibration factors being applied. Each sample interval was geologically logged (rock type, alteration, weathering etc.) including pXRF readings to support mineral identification and indicative mineralisation trends. HQ Core is sampled after geological and structural logging. Core is cut to ½ core through a standardised procedure that includes consistent sampling of the same side of the cut core. Core is geologically logged and sampled to lithological, structural and mineralised boundaries with sample intervals between 30cm and 1m in length to allow sufficient sample for representative analysis. All relevant details regarding previous Taruga and Historical Drilling, Rock, Soil and Stream sampling techniques have included or been released previously.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Drilling methods at Wyacca by Taruga have included Aircore (AC) and RAB with hammer attached and a 4" diameter bit, RC drilling with a 5 ½" diameter bit. Sample is returned through a cyclone and for RC via a cone splitter generating a bulk reference sample and 2 representative A and B samples for analysis and QAQC. The drill rigs used include onboard air and for RC an auxiliary compressor. The AC/RAB drill rig is capable of depths of 120m in perfect conditions; the RC drill rig was capable of drilling to a maximum depth of 350m. Drilling methods previously included Diamond Core HQ size drilled from surface with a nominal 63.5mm core diameter. Where possible core was orientated to allow for structural measurements. Downhole surveys were not taken for AC/RAB drill holes whilst RC and Diamond Core drill holes had downhole surveys taken at 6m (collar), 30m and every subsequent 30m drilled with a final survey at end of hole depth. All relevant details regarding drilling have been included or been released previously.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results asses Measures taken to maximise sample recovery and ensure representative nature of the 	AC/RAB drill sampling was completed with drill sample collected at 1m intervals with sample collected from an onboard cyclone as a bulk sample that is later sub

Criteria	JORC Code explanation	Commentary
	samples. • Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	sampled using conventional spear sampling techniques for a representative sample. Duplicate spear samples were taken and analysed with comparable results obtained indicating minimal sampling bias. RC drill sample was collected as 1 metre intervals downhole from a cone splitter in pre-numbered sample bags. A bulk sample was used for logging rock type and field recordings, whilst 2 representative samples of 3-4kg each were collected simultaneously for primary analysis and QAQC as well as secondary B sample reference. Sample validity included comparison of sample weights to ensure sample recovery was within acceptable limits, with intervals of poor recovery and possible sample issue causes such as groundwater intercepts being recorded. The cone splitter was regularly cleaned and assessed to minimise potential sample contamination. Core recovery was assessed through measurement of core in relation drilled depths and core blocks. Core recoveries were within acceptable industry standard limitations. No sample quality issues were noted outside the standard variances between drilling and sampling methods. All relevant details regarding drilling have been included or been released previously.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Soil samples were field logged and digitally recorded at the sample location. Records include GPS location, observed colour, grain size, lithology, regolith, sampled soil horizon and land surface notes. In descriptions 'dolomite' is an inclusive term describing dolomite, ankerite and siderite in the carbonate veins observed. All carbonates are a cream to beige colour requiring petrology to confirm mineral assemblages. Some petrology has been completed confirming dolomite and ankerite within mineral assemblages relevant to mineralised veins. All drill chips were field logged per metre and representative reference material retained in chip trays which were photographed for a digital reference. Subsequent review of chips and field logging was conducted to ensure records are consistent and accurate. Core drill holes were geologically logged by industry standard methods, including lithology, structure, alteration and mineralisation. All core trays were photographed wet and dry. The logging is qualitative in nature and of sufficient detail supporting interpretations. Samples are reviewed for mineralogy using a hand lens or microscope.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. 	 Soil sampling included duplicate samples taken every 30th sample location. Duplicate samples were from the same hole/location and were a secondary sample/split of the main sample. AC/RAB drill sampling was completed with drill sample collected at 1m intervals with sample collected from an onboard cyclone as a bulk sample that is later sub sampled using conventional spear sampling techniques for a representative sample. RC drill sample included the simultaneous collection of bulk sample and

Criteria	JORC Code explanation	Commentary
	 Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 2 representative A and B samples of 3-4kg each maximises the sample quality and ensures samples are representative. All drill samples were dry before analysis. Any wet sample was still collected by the same method to ensure consistency with excess moisture sun dried prior to analysis. No sample bias through lost material is likely in this process. Additional cleaning was completed on the cone splitter after introduction of wet sample. Core is cut to ½ core through a standardised procedure that includes consistent sampling of the same side of the cut core. Core is sampled to lithological, structural and mineralised boundaries with sample intervals between 30cm and 1m in length to allow sufficient sample for representative analysis. Intervals selected for laboratory analysis are identified through visual logging by a geologist and utilises a handheld pXRF to confirm the presence of mineralisation. A Vanta pXRF was used with regular use of reference blank and standards/certified reference material (CRM) to ensure accuracy of readings.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 An Olympus Vanta portable XRF (pXRF) was used to analyse soil samples. A pXRF with suitable quality control checks was deemed sufficient for the assessment of base metal element trends in soil samples. The pXRF has a lower limit for Cu detection of 10ppm and Zn 5ppm. The Vanta pXRF is owned and operated by Taruga with ongoing assessment of the quality and accuracy of sample results. During analysis after every 25th sample a standard (certified reference material or CRM) is analysed with results checked at the time for discrepancies with the certified laboratory values. In addition a silica blank was used as part of the standard rotation. During sampling every 30th sample is duplicated and on analysis the results of the duplicate samples are compared for variations. Taruga has completed analysis and calibration checks across a range of CRM and lab analysed samples and found the base metal in particular copper and zinc to be reliable and within an acceptable analysis variation of <5% without additional calibration factors being applied. pXRF analysis run times totalled 60 seconds per sample split to the 3 analysing beams 30/20/10. Base metal analysis is dominant in beam 1. Geochemical analysis by pXRF should be considered as a preliminary or trend indicator only and accuracy subject to confirmation by laboratory assay. Results from pXRF analysis can vary significantly from laboratory assay. Laboratory samples are analysed at Bureau Veritas, Adelaide for broad suite multi-element analysis using 4-acid digest ICP-MS. Gold and PGE analysis was by Fire Assay ICP-OES. Laboratory submissions included QA/QC controls standards/CRM and duplicate samples. Laboratory QAQC has additional checks including standards, blanks and repeat samples that were conducted regularly on every batch. Company standards are included every 25th sample and a duplicate every 30th. No new laboratory assay data is being reported in this document.

		IARUGA
Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All soil sampling data is digital and compiled using Micromine and linked via site and sample ID. Data is stored securely with digital backups. All data entry procedures include data checks. No adjustments are required or made to pXRF readings. No independent verification of new data has been completed. Taruga's geologists have sufficient experience to carry out geological sampling and logging and have experienced senior geologists and technical consultants available for verification and validation of results and measurements. Significant intercepts are reported by Company representatives based on best practice and available information. All significant intercepts are reported as downhole lengths and are not necessarily indicative of true thickness unless stated. Drill logs and measurements were all recorded in hard copy on paper before digital data entry. All data is stored securely with digital backups. All data entry procedures include data validation.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All planned soil sample locations were found via GPS tablet and actual sample location recorded using a handheld GPS. The location accuracy <5m being sufficient for the purposes in which the data is being used. Datum used is GDA94 Zone 54. All AC/RAB drillholes were surveyed using a DGPS for accurate collar locations. All prior drillhole collars were surveyed after drilling using a handheld GPS. Downhole surveys were not taken for AC/RAB drill holes. RC and Diamond Core downhole surveys were taken at 6m (collar), 30m and every subsequent 30m drilled with a final survey at end of hole depth. Downhole surveys were taken with a reflex single shot or gyroscopic hole survey tool when available.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 2024 soil sampling was at 25m spacing along lines nominally perpendicular to stratigraphy to assess the geochemical changes across the stratigraphic sequence as well as intersect mapped veining. Line spacing due to the folded stratigraphy varied from 100m up to 900m in spacing, this allowed for infill of areas of copper anomalism to have greater confidence in the trend shown and obtain a spread of results away from identified trends in copper anomalism. Previous Taruga soil sampling at Wyacca was on a 25m x 25m grid around the central copper anomalous area or on a NW lines oblique to structures thought significant. No data compositing, point data shown. The drilling completed to date was designed to explore stratigraphic/lithological or mineralisation extents with data collected sufficient to guide and define further exploration activities. AC, RAB and RC sample intervals and analysis are single metre interval samples; no sample compositing has been used.

Criteria	JORC Code explanation	Commentary
		 Core sample intervals are based on lithological, structural and mineralised boundaries. Drill spacing and any pXRF sample data is insufficient to be used in a Mineral Resource Estimate.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structure and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralise structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drillholes are angled towards the interpreted stratigraphic horizon in a deliberate orientation to gain perspective of stratigraphic or structural orientation and may
Sample security	The measures taken to ensure sample security.	 All soil samples are collected in the field and taken to the site office for sorting, checking and pXRF analysis within 24 hours. Samples are under Taruga supervision at all times. Drill samples are collected, processed and for laboratory analysis despatched by the Supervising Geologist via courier to Bureau Veritas, Adelaide.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 No external audits completed. Internal processes routinely review the appropriate application of sampling techniques in relation to current knowledge of stratigraphy and mineralisation style.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Exploration Licences EL6541, EL6695 and EL6829 (Mt Craig Project) is 100% owned by Strikeline Resources Pty Ltd a subsidiary of Taruga Minerals Limited. The tenements are in good standing with no known impediments to operate in the area.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Historical Exploration at the Mt Craig and Wyacca Projects has been previously reported. Historical activities included small-scale historic mining for base metals, including the Wyacca, Worrumba 19 and Worrumba 21 Mines. From the 1960's onwards numerous companies explored the region with soil, stream and rock chip sampling, geophysics and drilling campaigns. The most prominent prior exploration was conducted by Cams Leases Pty Ltd., Copper Range (SA) Pty Ltd., Gold Copper Exploration Ltd., SAEI Triassic Coal Exploration & Utah Development Company Ltd.

		IARUGA
Criteria	JORC Code explanation	Commentary
		Historical VTEM Survey, in 2013 UTS Geophysics Pty Ltd was commissioned by Daktyloi Metals Pty Lds to carry out an airborne electromagnetic survey over the northern portion of the Mt Craig Project.
Geology	Deposit type, geological setting and style of mineralisation.	The Wyacca Project stratigraphic target horizon exposed at surface is a dolomitic hematite breccia which can be traced along strike at surface where exposed. This broad low level mineralised copper horizon which extends several kilometres forms the contact between the lower member of the Tapley Hill formation the Tindelpina shale and the Wilyerpa formation. The horizon dips variably from at 35-45 degrees to the North East within a sedimentary package of dominantly shales and underlying siltstones that are part of an asymmetric fold. High grade copper zones outcrop along the stratigraphic horizon and in several locations have historic workings over them. Whilst zones of mineralisation within the Tapley Hill Formation near Worrumba 21 historical workings appear steeper dipping at ~65 degrees to the North East. The Wyacca area has cross cutting structures identified in mapping and geophysics. Recent additional structural and mineral investigations has highlighted the importance of folding and the North-East fold plunge and axial trace in conjunction with observed veining with a North-East orientation. The mineral investigations highlight the quartz, dolomite with copper system as potentially relating to an igneous source with fluids following along fracture and bedding plane pathways which include the sedimentary Tindelpina stratigraphic contact, sedimentary horizons within the Tapley Hill Formation and cross cutting structures. Currently the Wyacca Project is likely a vein system within sedimentary rocks as opposed to a sediment hosted copper system. Ongoing work will assist in further defining the projects deposit type and geological setting.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	All relevant drillhole and soil information is included in the report, appendices or has been previously released.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	 No data aggregation or averaging applied to the soil sampling point data. Where applicable when significant intercepts and aggregate data is are reported they are weighted average grades considering variable sampling lengths.

Criteria	JORC Code explanation	Commentary
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Where relevant widths identified in drilling or mapping activities have been described or shown. Vein widths and density of veining is highly variable. Veins may be a few centimetres up to metre width with vein zones a few metres wide. Holes drilled in a deliberate orientation to gain perspective of structural or stratigraphic orientation may not be a direct reflection of true thickness. All reported lengths are to be considered downhole lengths unless stated as calculated true thickness.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Appropriate plan diagrams and images are provided in the report.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All soil sample location points are shown in the included diagrams with grade ranges colour coded and shown in the image legend. The Company has applied a cut-off of > 40ppm Cu and > 80ppm Zn for reporting anomalous pXRF soil sampling results. All relevant information is reported within the document or included in the appendices if not reported previously.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All relevant and meaningful exploration or known historical exploration data is included in this report or has been reported previously.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 A continuation of mapping and sampling activities are expected to continue whilst investigating the NE vein corridor and copper mineralisation trends. The collection of additional gravity data is being considered to extend data over current areas of exploration focus.