ASX ANNOUNCEMENT Tajiri Project – New Sakura Discovery

25 September 2019

Tajiri set for further resource growth following adjacent mineral sands discovery

Maiden auger drilling program at nearby Sakura prospect reveals extensive new zones of mineralisation

HIGHLIGHTS

- New discovery provides further evidence that Strandline's 100%-owned Tajiri project in Tanzania is a world-class mineral sands deposit
- The Sakura discovery comprises extensive mineralisation from surface along strike from Tajiri
- Samples visually indicate higher-grade strands within a broad halo of mineral sands anomaly spanning ~5km x 0.5 to 1km
- Sakura discovery has potential to add significant tonnes to the already-large Tajiri Resource which contains 268mt @ 3.3% Total Heavy Mineral (THM)
- Strandline is now progressing laboratory tests and evaluating Resource potential at Sakura
- Tajiri is Strandline's second major mineral sands project in Tanzania behind the 'developmentready' Fungoni Project, where project financing is advancing

Strandline Resources (**ASX: STA**) is pleased to announce that it has made a significant mineral sands discovery at its newly granted Sakura tenement, which forms part of its world-scale Tajiri mineral sands project in Northern Tanzania.

The discovery is situated some 10km along strike of Strandline's 100%-owned Tajiri Project.

The Sakura deposit shows the potential to materially expand the Tajiri resources, which currently stands at 268Mt at 3.3 % THM, containing 8.8Mt of in-situ valuable heavy minerals (see ASX announcement 9 July 2019).

The maiden drilling campaign commenced in August 2019 with a final drill density of 200m centres on 400m spaced lines over 5km of strike. Drill samples were logged in the field based on visual estimates, showing widespread titanium-dominated mineralisation from surface to depths of 6 to 7m, similar to that seen at other zones within Tajiri.

Strandline is now in the process of exporting samples for laboratory testing, which will be followed by mineral assemblage review and potential Mineral Resource Estimation.

Strandline Managing Director Luke Graham said the Sakura discovery had strong potential to underpin a substantial increase in the already-large Resource base at Tajiri.

"Tajiri is a world-class deposit with a rich titanium-dominated mineral sands content," Mr Graham said. "These initial results from Sakura pave the way for further growth in the Resource and reaffirms its development potential."

19SAG231

EOH – open at depth for future AC drilling

Tajiri Project – New Sakura Discovery

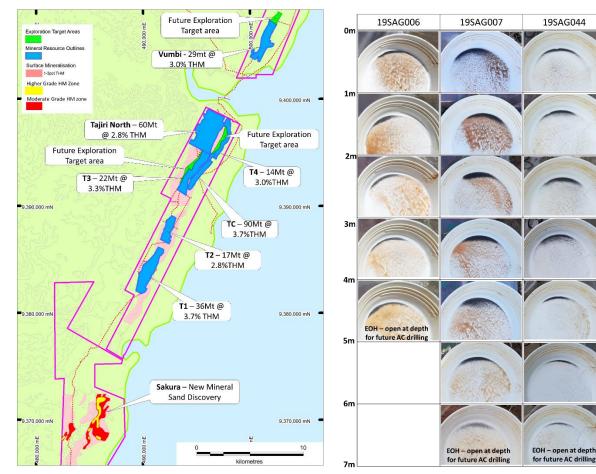


Figure 1 Tajiri Project Mineral Resources, showing a series of high value deposits from surface (plan view)

SUMMARY OF THE SAKURA PROSPECT

A total of 223 holes for 1,124m of drilling was completed over the Sakura prospect with a drill density of 200m centres on 400m spaced lines. The mineralisation halo forms an extensive blanket of shallow mineral sand extending 5,000m along strike, parallel to the modern coastline with widths ranging 200 to over 1,000m with an average between 500 and 600m. The depth extent of the high-grade zone of mineralisation is partly limited by the auger drilling method to between 6 and 7m with some holes showing signs of continued mineralisation.

Lower grade mineralisation was encountered in most of the holes beyond the more coherent high and moderate grade anomalies as shown in Figure 3. The drill program has effectively closed off the mineralisation at Sakura apart from potential depth extensions. The Company plans to drill the depth extents when an AC rig is available on site in due course.

The mineralisation is hosted in red/brown sand/silt with similar slimes and oversize to that of the Tajiri T1 and T2

Figure 2 Images Auger drilling pan samples of selected intersections at Sakura tenement, as part of the Tajiri Mineral Sands Project

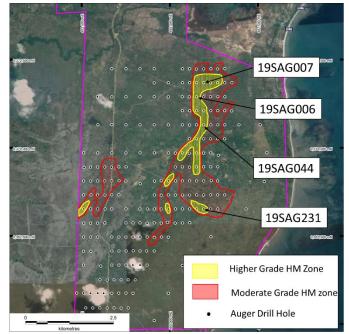


Figure 3 Sakura Anomaly Drill Pattern (Aug-Sept 2019)

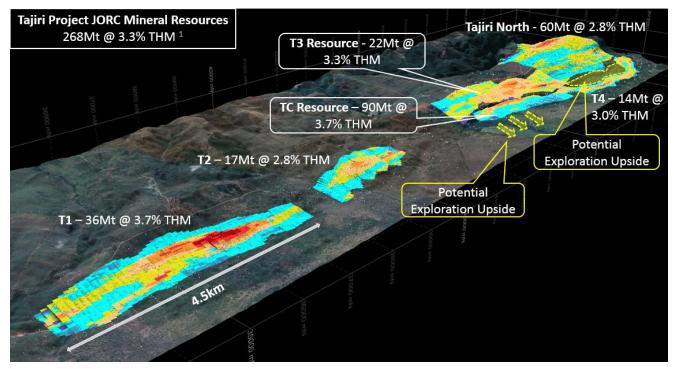
Mineral Resources along strike to the north. The mineral assemblage has been microscopically assessed in the field with the preliminary findings indicating a high valuable titanium-dominated heavy mineral composition

with low trash content. On this basis, it is anticipated the mineral assemblage could be similar to the T1 assemblage which comprises 71% ilmenite, 10% rutile, 6% zircon and 3% garnet. Examples of the higher grade panned down hole auger samples are provided in Figure 2.

Assays from the initial phase of auger drilling are expected to be received early in the December quarter 2019.

SUMMARY OF THE TAJIRI PROJECT

Strandline has a globally significant portfolio of mineral sands projects in Tanzania and Australia at different stages of exploration and development. The Company's growth strategy offers a combination of near-term production assets and a growing pipeline of prospective development assets such as Tajiri.


The Tajiri deposits are situated in northern Tanzania near the Port City of Tanga, some 35km to the north. The 100%-owned tenements comprise a series of higher-grade mineral sand deposits along a 30km mineralised corridor, including the T1, T2, T3, T4, TC, Tajiri North and Vumbi deposits.

Mineralisation at Tajiri starts at surface, with no overburden and contains large coherent higher-grade domains comprising mostly high-value titanium-dominated mineral assemblage, with elevated zones of zircon and occasionally almandine garnet.

Tajiri hosts a world-scale JORC-compliant Mineral Resource Estimate of 268Mt @ 3.3% THM, with a contained Heavy Mineral (HM) content of 8.8Mt, including in-situ rutile (580,000t), zircon (335,000t), ilmenite (5,206,000t) and almandine garnet (1,477,000t).

Several resource zones (Tajiri TC, T3 and Vumbi) remain open along or across strike providing significant opportunities to grow resources further over time. The mineralisation also shows strong geological and grade continuity along and across strike, which bodes well for future feasibility and development activities.

Tajiri has the geological critical mass, robustness and market appeal to advance project feasibility, and underpins Strandline's outstanding long-term production outlook in Tanzania. For more information on the Tajiri project refer to ASX Announcement 9 July 2019.

Notes:

¹ The Vumbi deposit of 29 Mt @ 3.0% THM is not shown, but is included in the Tajiri Project Global MRE of 268Mt @ 3.3% THM

Figure 4 Tajiri Project Mineral Resources (excluding Vumbi Deposit) - 3D Image showing target areas for future exploration

Summary	of Mineral	Resources (1)						THM Asse	mblage (2	2)		
Denesit	THM %	Mineral Resource	Tonnage	Insitu HM	THM	SLIMES	OS	Ilmenite	Zircon	Rutile	Leucoxene	Garnet
Deposit	cut-off	Category	(Mt)	(Mt)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
Т3	1.70%	Measured	19	0.6	3.4	37	6	64	4	7	0	5
тс	1.70%	Measured	55	1.9	3.5	23	10	42	2	5	0	38
		Total	74	2.5	3.4	27	9	48	3	5	0	30
Tajiri T1	1.50%	Indicated	36	1.3	3.7	34	4	71	6	10	0	3
Tajiri North	1.70%	Indicated	60	1.7	2.8	47	4	75	4	6	1	1
T2	1.70%	Indicated	17	0.5	2.8	32	11	58	4	7	0	18
Т3	1.70%	Indicated	3	0.1	2.8	39	4	66	5	8	1	4
T4	1.70%	Indicated	14	0.4	3.0	24	6	61	4	8	0	12
тс	1.70%	Indicated	35	1.4	4.1	27	9	46	3	6	0	36
		Total	165	5.4	3.3	36	6	64	4	7	0	13
Vumbi	1.70%	Inferred	29	0.9	3.0	30	12	64	4	7	1	2
		Total	29	0.9	3.0	30	12	64	4	7	1	2
		Grand Total	268	8.8	3.3	33	7	59	4	7	0	17

 Table 1 JORC 2012 Mineral Resource Estimate for the Tajiri Project, at July 2019

Notes:

¹ Mineral Resources reported at various THM cut-offs

² Mineral Assemblage is reported as a percentage of insitu THM content

³ Appropriate rounding applied

TANZANIA MINERAL SANDS COMPETENT PERSON'S STATEMENTS

The information in this report that relates to Exploration Results is based on, and fairly represents, information and supporting documentation prepared by Mr Brendan Cummins, a permanent employee of Strandline. Mr Cummins is a member of the Australian Institute of Geoscientists and he has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which has been undertaken to qualify as Competent Persons as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Cummins consent to the inclusion in this release of the matters based on the information in the form and context in which they appear. Mr Cummins is a shareholder of Strandline Resources.

FORWARD LOOKING STATEMENTS

This report contains certain forward looking statements. Forward looking statements are only predictions and are subject to risks, uncertainties and assumptions which are outside of the control of Strandline. These risks, uncertainties and assumptions include commodity prices, currency fluctuations, economic and financial market conditions, environmental risks and legislative, fiscal or regulatory developments, political risks, project delay, approvals and cost estimates. Actual values, results or events may be materially different to those contained in this announcement. Given these uncertainties, readers are cautioned not to place reliance on forward looking statements. Any forward looking statements in this announcement reflect the views of Strandline only at the date of this announcement. Subject to any continuing obligations under applicable laws and ASX Listing Rules, Strandline does not undertake any obligation to update or revise any information or any of the forward looking statements in this announcement to reflect changes in events, conditions or circumstances on which any forward looking statements is based.

ABOUT STRANDLINE

Strandline Resources Limited (ASX: STA) is an emerging heavy mineral sands (HMS) developer with a growing portfolio of 100%-owned development assets located in Western Australia and within the world's major zircon and titanium producing corridor in South East Africa.

Strandline's strategy is to develop and operate quality, high margin, expandable mining assets with market differentiation and global relevance.

Strandline's project portfolio contains high quality assets which offer a range of development options and timelines, geographic diversity and scalability. They includes two zircon-titanium rich, 'development ready' projects, being the Fungoni Project in Tanzania and the large Coburn Project in Western Australia, as well as a series of titanium dominated exploration targets spread along 350km of highly prospective Tanzanian coastline, including the advanced and large scale Tajiri Project in northern Tanzania.

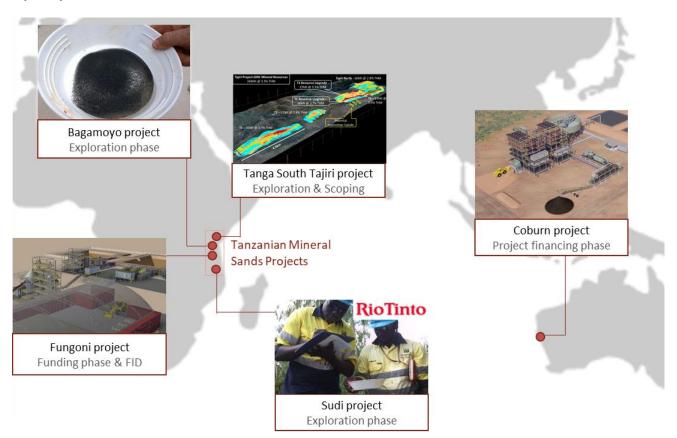


Figure 5 Strandline's world-wide mineral sands exploration & development projects

For further enquiries, please contact: **Luke Graham** CEO and Managing Director Strandline Resources Limited T: +61 8 9226 3130 E: enquiries@strandline.com.au

For media and broker enquiries: **Paul Armstrong** Read Corporate T: +61 8 9388 1474 E: paul@readcorporate.com.au

Appendix 1

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 A small water bottle cap of sand was scooped from each 1m sample The same cap is used for every pan sample The standard sized cap sample is to ensure visual calibration is maintained for consistency in visual estimation The samples are panned as reconnaissance technique to assist with identifying more prospective units and mapping of THM occurrences The Auger drill spoil is collected as a 1m sample and then homogenised at the drill site with total sample bagged and weighed The field samples are then taken back to the field camp for riffle spitting into smaller subsample sizes of 450 – 600gm which are then sent to the laboratory for further sample size reduction and preparation for final laboratory analysis
Drilling techniques	 Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Auger drilling using a manual Dormer Engineering tube auger Drill rods are 1m long 62mm open hole drilling technique
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Auger drilling is considered to be an early stage relatively unsophisticated technique of drilling suitable for initial evaluations It is open hole and drill recoveries are estimated according to the volume of drill spoils that forms around the holes. No significant losses of sample were observed due to the shallow depths of drilling (<7m.) A very small volume of water is added to the hole if the soils become too sandy to aid recovery of the sample Auger drilling is stopped when the sample return is deemed inadequate or depth of penetration is too slow. There is potential for contamination in open hole drilling techniques, but sample bias is minimised due to the shallow drill hole depths and high clay content holding the drill hole open

Criteria	JORC Code explanation	Commentary
Logging Sub-sampling	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. If core, whether cut or sawn and whether 	 The 1.0m drill intervals were logged onto paper field sheets prior to updating into an excel spreadsheet. Logging was completed on a split sample for better representivity The auger samples were logged for lithology, colour, grainsize, rounding, sorting, visual THM, slimes and any relevant comments - such as slope and vegetation Damp samples were dried in the sun and
techniques and sample preparation	 quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 broken up gently using a rubber mallet to fit through the riffles The homogenized 1m drill samples were split in a field camp with a levelled single layer riffle splitter to reduce sample size A total of 450 to 600gm was deposited into calico bags bags and sent to the laboratory for analysis in Perth, WA The sample sizes were deemed suitable based on industry experience of the geologists involved Field duplicates of the samples were completed at a rate of 5%
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	• No assay data provided
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All results are checked by the Chief Geologist, in addition to the independent consulting Resource Geologist when appropriate No assay data provided
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 A handheld GPS was used to identify the positions of the auger drill holes in the field The handheld GPS has an accuracy of +/- 5m The datum used is WGS84 UTM zone 37S The accuracy of the locations is sufficient for this early stage exploration

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Various grid spacing was used in the Auger program ranging from 800 x 200 and infilled to 400 x 200m The 200m spaced Auger holes along the lines are sufficient to provide a moderate degree of geological and grade continuity within the top 7m The 800m wide spaced lines are considered appropriate for early stage evaluation Closer spaced and deeper drilling will be undertaken at the appropriate stage of exploration to increase confidence
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The Auger drilling was oriented perpendicular to the current coast line which approximates the potential orientation of the palaeo- strandline Drill holes were vertical and the nature of the mineralisation is relatively horizontal
Sample security	The measures taken to ensure sample security.	 Auger samples remained in the custody of Company representatives until they were transported to Dar Es Salaam for final packaging, exportation approval and securing The samples were then sent using a commercial transport company (DHL) to Perth and delivered directly to the laboratory after quarantine inspection and heat treatment The laboratory inspected the packages and did not report tampering of the samples
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	No audits or reviews have been undertaken

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The exploration work was completed on tenements that are 100%owned by the Company in Tanzania or are able to be acquired for 100% ownership The Sakura tenement is PL 11376/2017 and has been offered and accepted by the Company which is now awaiting the printing of the license documents and payment of the first years rent in advance. Once granted all PL tenements have a four year term Traditional landowners and Chiefs of the affected villages were supportive of the auger sampling program.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 Historic exploration work was completed by Tanganyika Gold in 1998 and 1999 The Company has obtained the hardcopy reports and maps in relation to this information The historic data comprises surface sampling, limited AC drilling and mapping The historic results are not reportable under JORC 2012
Geology	 Deposit type, geological setting and style of mineralisation. 	 Two types of heavy mineral sand style are possible in Tanzania Thin but high grade strandlines which may be related to marine or fluvial influences Large but lower grade deposits related to windblown sands The coastline of Tanzania is not well known for massive dunal systems such as those developed in Mozambique however some dunes are known to occur and cannot be discounted as an exploration model. Palaeo strandlines are more likely and will be related to ancient shorelines or terraces in a marine or fluvial setting. In Tanzania three terraces have been documented and include the Mtoni terrace (1-5m ASL), Tanga (20-40m ASL) and Sakura Terrace (40 to 60m ASL). Strandline mineral sand accumulations related to massives storm events are thought to be preserved at these terraces above the current sea level.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	 See Appendix 2 for drill hole information and an estimate of the down hole mineralization strength based on visual panned estimates. The visual panned estimates provide a relative abundance of mineralization in the pan. High – significant mineralization encountered from the hole, Moderate – anomalous mineralization encountered from the hole and Low – background mineralization encountered down hole.

Criteria	JORC Code explanation	Commentary
	 If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	None used
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Vertical auger holes are thought to represent close to true thicknesses of the mineralisation Downhole depths and widths are equivalent
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Figures and plans are displayed in the main text
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All drill data is presented and available for review in Appendix 2
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 No other material exploration information has been gathered by Strandline resources.

Criteria	JORC Code explanation	Commentary
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further work will include AC drilling sampling with more surface prospecting Additional mineral and assemblage analysis will also be undertaken on suitable composite HM samples to determine valuable heavy mineral Potential for a Mineral Resource Estimate to be undertaken. As the project advances TiO2 and contaminant test work will also be undertaken

Appendix 2

HOLE_ID	UTM_E_WGS84	UTM_N_WGS84	RL	DIP	AZIMUTH	EOH_M	Heavy mineral description based on pan samples visual estimates
19SAG001	485750	9372249	23	-90	360	7	Moderate
19SAG002	485357	9372257	25	-90	360	5	Low
19SAG005	486161	9372258	23	-90	360	6	Low
19SAG006	485755	9371461	25	-90	360	5	High
19SAG007	485756	9371862	23	-90	360	7	High
19SAG008	485356	9371859	23	-90	360	7	Low
19SAG009	484956	9371861	24	-90	360	5	Low
19SAG010	486155	9371463	24	-90	360	7	Moderate
19SAG011	486154	9371858	23	-90	360	6	High
19SAG012	486556	9371461	23	-90	360	4	Low
19SAG013	486555	9371860	23	-90	360	7	Moderate
19SAG016	486956	9370667	24	-90	360	8	Low
19SAG018	486555	9371065	23	-90	360	4	Moderate
19SAG020	486556	9370666	23	-90	360	8	Low
19SAG021	486157	9371066	23	-90	360	8	Moderate
19SAG032	484954	9371462	25	-90	360	7	Low
19SAG033	485349	9371461	24	-90	360	6.5	Low
19SAG035	484554	9372257	24	-90	360	6	Low
19SAG036	484552	9371856	25	-90	360	6	Low
19SAG037	484554	9371463	25	-90	360	7	Low
19SAG038	485355	9371065	25	-90	360	7	Low
19SAG039	485756	9371066	24	-90	360	6	High
19SAG040	485355	9370667	26	-90	360	7	Low
19SAG041	485755	9370667	24	-90	360	7	Low
19SAG042	486156	9370667	23	-90	360	7	Moderate
19SAG044	485755	9370269	24	-90	360	7	High
19SAG045	486155	9370270	23	-90	360	6	Moderate
19SAG046	485354	9369873	24	-90	360	5.6	High
19SAG047	485752	9369867	23	-90	360	7	High
19SAG048	486156	9369872	21	-90	360	6	Moderate
19SAG050	485755	9369474	24	-90	360	6	High
19SAG051	486157	9369475	20	-90	360	5	Moderate
19SAG052	485755	9369077	21	-90	360	5	Moderate
19SAG053	486174	9369088	20	-90	360	4	Moderate
19SAG054	485756	9368680	20	-90	360	4	Moderate
19SAG055	486155	9368679	18	-90	360	4	Moderate
19SAG056	485756	9368281	17	-90	360	5	High
19SAG057	486155	9368283	14	-90	360	4	Moderate
19SAG060	484554	9370667	26	-90	360	6	Low
19SAG061	484954	9370667	26	-90	360	7	Low
19SAG062	484954	9369872	23	-90	360	6	Low
19SAG063	484557	9369872	25	-90	360	5	Low
19SAG064	484153	9369871	27	-90	360	6	Low
19SAG065	483754	9369872	26	-90	360	6	Low
19SAG066	483353	9369872	35	-90	360	5	Low
19SAG067	482953	9369872	35	-90	360	4	Low

HOLE_ID	UTM_E_WGS84	UTM_N_WGS84	RL	DIP	AZIMUTH	EOH_M	Heavy mineral description based on pan samples visual estimates
19SAG068	482553	9369872	29.5	-90	360	5	Low
19SAG069	485354	9369076	24	-90	360	7	Moderate
19SAG070	484952	9369075	27	-90	360	5	High
19SAG071	484562	9369071	26	-90	360	5	Low
19SAG072	484161	9368994	25	-90	360	5	Low
19SAG073	483752	9369076	24	-90	360	4	Low
19SAG074	483354	9369077	28	-90	360	4	Moderate
19SAG075	482953	9369077	33	-90	360	5	Low
195/(6075	482553	9369077	34	-90	360	4	Low
19SAG077	485355	9368281	22	-90	360	6	Low
195/(G077 195AG078	484955	9368281	24	-90	360	8	High
195/(6079	484557	9368279	26	-90	360	6	Low
195/(G075	484150	9368280	25	-90	360	5	Low
195AG080 19SAG081	483753	9368281	24	-90	360	4	Low
195AG081 19SAG082	483353	9368280	23	-90	360	4	Low
195AG082	482953	9368281	27	-90	360	4	Moderate
195AG085	482555	9368283	31	-90	360	4	High
195AG084 19SAG085	484956	9367484	17	-90	360	5	Low
195AG085	484555	9367484	21	-90	360	6	Moderate
195AG080 19SAG087	484154	9367487	23	-90	360	7	Low
195AG087 195AG088	483754	9367486	26	-90	360	6	Low
195AG088 195AG089	483754	9367486	25	-90	360	5	Low
195AG089 19SAG090	483334	9367480	25	-90	360	4	Low
195AG090 19SAG091	482554	9367486	27	-90	360	3	Low
195AG091 19SAG093	482334	9366691	22	-90	360	4	Low
195AG095 19SAG094	483753	9366691	22	-90	360	5	Low
195AG094 19SAG095	483333	9366664	24	-90	360	4	Low
195AG095 19SAG096	482551	9366690	23	-90	360	3	Low
195AG090 19SAG097	482551	9365896	19	-90	360	3	Low
195AG097 19SAG098	483754	9365894	22	-90	360	3	Low
195AG098 195AG099	483332	9365896	22	-90	360	5	Low
195AG099 195AG100	482553	9365895	24	-90	360	4	
195AG100 19SAG101	482333	9365100	19	-90	360	5	Low
195AG101 19SAG102	483333	9365100	23	-90	360	7	Low
195AG102 19SAG103	482554	9365101	25	-90	360	7	Low
195AG105 19SAG104	482334	9370665	25	-90 -90	360	6	Low
195AG104 19SAG105	484133	9370668	27	-90 -90	360	5	Low
195AG105 19SAG106	483755	9370669	33	-90 -90	360	5	Low
		9370670	35	-90	360	5	
19SAG107 19SAG108	482958 484154	9371462	26	-90 -90	360	5	Low
195AG108 19SAG109	484154	9371462	26	-90 -90	360	6	Low
195AG109 19SAG110	483754	9371462	24	-90 -90	360	5	Low
195AG110 19SAG111	483535	9371465	26.5	-90 -90	360	3	Low
			26.5	-90 -90	360	3	
19SAG112	484155	9372256		-90 -90	360		Low
19SAG113	483755	9372258	22			6	Low
19SAG114	483352	9372258	22	-90	360	3	Low
19SAG155	485558	9372257	24	-90	360	7	Low
19SAG157	485951	9372252	23	-90	360	7	Moderate

HOLE_ID	UTM_E_WGS84	UTM_N_WGS84	RL	DIP	AZIMUTH	EOH_M	Heavy mineral description based on pan samples visual estimates
19SAG158	485957	9371863	23	-90	360	7	High
195/(G159	485557	9371863	24	-90	360	7	Low
195/(G162	486354	9371859	23	-90	360	6	High
195/(0102 19SAG167	486356	9371464	23	-90	360	7	Moderate
195/(G167 195AG168	485955	9371461	24	-90	360	7	Moderate
195/(0100 195AG169	485550	9371461	23	-90	360	7	Low
195AG105 19SAG170	486359	9371066	23	-90	360	6	Low
195AG170 19SAG171	485957	9371066	24	-90	360	6	High
195AG171 19SAG172	486754	9371059	23	-90	360	4	Low
195AG172 19SAG173	485560	9371066	22	-90	360	4	Low
195AG173 19SAG177	487557	9370666	13	-90	360	2	Low
195AG177 19SAG181	485956	9370667	23	-90	360	6	High
195AG181 19SAG182	485555	9370661	23	-90	360	5	Low
195AG182 19SAG183	485355	9370667	23	-90	360	7	Moderate
195AG185 19SAG184	485555	9370269	23	-90	360	4	
195AG184 19SAG185	485956			-90 -90	360	4	Low Moderate
		9370270	23		360		Moderate
19SAG186	486355	9370269 9369874	25	-90	360	6 3	
19SAG189	487746		11	-90			Low
19SAG194	486372	9369806	24	-90	360	2.5	Low
19SAG196	485152	9369867	24	-90	360	4	Low
19SAG203	485549	9369863	23	-90	360	5	Moderate
19SAG204	485953	9369866	23	-90	360	6	Low
19SAG205	486357	9369475	21	-90	360	4	Low
19SAG206	485954	9369474	22	-90	360	4	Low
19SAG209	485558	9369076	24	-90	360	6	Moderate
19SAG210	485156	9369077	25	-90	360	5	Low
19SAG211	484755	9369079	26	-90	360	7	Low
19SAG213	483154	9369077	32	-90	360	5	Moderate
19SAG214	483557	9369081	27	-90	360	5	Moderate
19SAG216	482753	9369077	34	-90	360	4	Low
19SAG217	486355	9369075	20	-90	360	4.8	Low
19SAG219	487673	9369063	12	-90	360	4	Low
19SAG221	485954	9369074	21	-90	360	5	Moderate
19SAG222	485557	9368283	19	-90	360	6	Low
19SAG223	485157	9368283	23	-90	360	7	Low
19SAG224	484756	9368280	24	-90	360	5	Moderate
19SAG226	483165	9368280	26	-90	360	4.2	Low
19SAG228	484357	9368283	27	-90	360	6	Low
19SAG229	487156	9368283	12	-90	360	2	Low
19SAG230	482756	9368283	29	-90	360	3	Low
19SAG231	485956	9368281	16	-90	360	5	High
19SAG232	486161	9367496	11	-90	360	4	Low
19SAG234	484757	9367486	19	-90	360	4	Low
19SAG235	483956	9367487	25	-90	360	5.5	Low
19SAG238	484356	9367488	23	-90	360	5	Low
19SAG239	482754	9367486	25	-90	360	5	Low
19SAG240	484354	9366690	17	-90	360	4	Low
19SAG241	484153	9366691	20	-90	360	4	Moderate

HOLE_ID	UTM_E_WGS84	UTM_N_WGS84	RL	DIP	AZIMUTH	EOH_M	Heavy mineral description based on pan samples visual estimates
19SAG242	485553	9369465	25	-90	360	6	Low
19SAG242B	483949	9366692	22	-90	360	4	Low
19SAG243	485354	9366683	12	-90	360	3	Low
19SAG245	483552	9366692	24	-90	360	5	Low
195/16215 195AG251	486355	9368679	18	-90	360	5	Moderate
19SAG251B	483119	9365891	24	-90	360	5	Low
195AG2512	483550	9365896	21	-90	360	3	Low
195/(G252 195AG256	484953	9365894	11	-90	360	3	Low
195AG250 19SAG257	483953	9365893	17	-90	360	5	Low
195AG259	485558	9368678	20	-90	360	6	Moderate
195AG259B	485558	9365896	20	-90	360	3	Low
195AG255B	485954	9368679	19	-90	360	7	Moderate
195AG260B	483934	9365892	25	-90	360	3.8	Low
195AG200B	482730	9365092	19	-90	360	2.9	
							Low
19SAG264 19SAG265	482749	9365099	25	-90	360 360	6	Low
	482349	9365098	25	-90		4	Low
19SAG267	484555	9365121	11	-90	360	3.5	Low
19SAG268	483151	9365098	22	-90	360	6	Low
19SAG269	485355	9369474	25	-90	360	6	Moderate
19SAG270	485155	9369473	26	-90	360	6	Moderate
19SAG271	485359	9368677	21	-90	360	5	Moderate
19SAG272	485155	9368676	23	-90	360	5	Low
19SAG273	484954	9368679	25	-90	360	6	Low
19SAG274	484756	9368673	27	-90	360	6	Moderate
19SAG275	484559	9368677	26	-90	360	6	Low
19SAG276	486559	9372261	8.5	-90	360	4	Low
19SAG277	486349	9372251	19	-90	360	6	Moderate
19SAG278	486756	9371860	22	-90	360	4	Moderate
19SAG279	486555	9370269	23	-90	360	4	Low
19SAG280	486555	9368680	17	-90	360	4	Moderate
19SAG281	486360	9368282	14	-90	360	3	Moderate
19SAG282	484556	9367884	25	-90	360	6	Low
19SAG283	484754	9367883	23	-90	360	6	Low
19SAG284	484934	9367901	21	-90	360	6	Moderate
19SAG285	485150	9367883	19	-90	360	6	Low
19SAG286	485360	9367884	16	-90	360	5	Low
19SAG287	485564	9367889	14	-90	360	3	Low
19SAG288	484155	9367884	26	-90	360	5.7	Low
19SAG289	483954	9367886	25	-90	360	5.9	Low
19SAG290	484354	9367883	25	-90	360	5	Low
19SAG291	484555	9367089	18.6	-90	360	4	Low
19SAG292	483758	9367091	24	-90	360	5	Low
19SAG293	484153	9367089	22	-90	360	5	Low
19SAG294	483958	9367097	23.5	-90	360	5	Low
19SAG295	483555	9367090	25	-90	360	6	Low
19SAG296	484338	9367089	21	-90	360	4	Low
19SAG297	484016	9366274	19.5	-90	360	5	Low
19SAG298	483614	9366271	20	-90	360	4	Low

HOLE_ID	UTM_E_WGS84	UTM_N_WGS84	RL	DIP	AZIMUTH	EOH_M	Heavy mineral description based on pan samples visual estimates
19SAG299	483223	9366266	23.5	-90	360	6	Low
19SAG300	483817	9366271	21.5	-90	360	4	Low
19SAG301	483018	9366271	25.5	-90	360	5	Low
19SAG302	483417	9366273	23	-90	360	5	Low
19SAG303	483616	9365473	20	-90	360	5	Low
19SAG304	483219	9365474	22	-90	360	3	Low
19SAG305	483814	9365477	17	-90	360	2.8	Low
19SAG306	483016	9365476	24	-90	360	4	Low
19SAG307	482816	9365476	24	-90	360	4	Low
19SAG308	482616	9365476	25	-90	360	4	Low
19SAG309	483415	9365477	20	-90	360	5	Low
19SAG310	483153	9369473	34	-90	360	4.8	Moderate
19SAG311	483553	9369476	27	-90	360	5	Low
19SAG312	482569	9369463	33	-90	360	2.5	Low
19SAG313	482955	9369472	34	-90	360	3	Low
19SAG314	483347	9369469	32	-90	360	4	Moderate
19SAG315	483757	9369476	27	-90	360	5	Low
19SAG316	482751	9369473	38	-90	360	4	Low
19SAG317	483157	9368677	27	-90	360	3	Moderate
19SAG318	483553	9368679	23	-90	360	5	Low
19SAG319	482556	9368679	32	-90	360	3.8	Low
19SAG320	482951	9368676	30	-90	360	4	Low
19SAG321	483354	9368679	26	-90	360	4	Low
19SAG322	482762	9368680	30	-90	360	4.7	Moderate
19SAG323	483153	9367884	24	-90	360	3	Low
19SAG324	482558	9367881	29	-90	360	3	Low
19SAG325	482950	9367881	27	-90	360	3	Low
19SAG326	483754	9367884	25	-90	360	4	Low
19SAG327	482755	9367880	28	-90	360	3	Low
19SAG328	483553	9367486	25	-90	360	5	Low
19SAG329	482551	9367087	25	-90	360	2	Low
19SAG330	483353	9367089	26	-90	360	6	Low
19SAG331	482757	9367084	25	-90	360	2	Low
19SAG332	486553	9368295	13.5	-90	360	2.5	Low
19SAG333	486751	9368684	14.5	-90	360	2.5	Low