

Inca Expands High-Grade Gold-Antimony System at Hurricane

Maiden Drilling Program Imminent

HIGHLIGHTS

Drilling imminent

- Equipment on-site preparing drill pads and access tracks.
- RC rig mobilisation upon completion of site works.

Bouncer South mineralised zone significantly expanded:

• Rock chip assays confirm high-grade gold-antimony mineralisation over a further 90m of strike and 70m in surface width.

Peak rock chip results include:

- 6.53% Sb and 6.44 g/t Au (IRX00088)
- 6.49% Sb and 1.22 g/t Au (IRX00091)
- 5.66% Sb and 2.25 g/t Au (IRX00092)

Typhoon Prospect extended:

• Rock chip sample returns 40.02 g/t Au (IRX00045), extending known mineralisation 100m northwest along strike.

Stacked vein potential emerging between Typhoon and Hurricane:

 Rock chip assays of 12.29 g/t Au and 3.60 g/t Au (IRX00050 and IRX00051) indicate multiple goldbearing structures in a previously untested zone between known prospects.

High-grade rock chip results at Hurricane South

• Returns 69.48 g/t Au (IRX00059) from outcropping quartz veining, located 70m east of known mineralisation, highlighting potential for additional parallel veins in the Hurricane corridor

Inca Minerals Limited (ASX: ICG) ("Inca" or **"the Company")** is pleased to provide an update on exploration activities at its 100%-owned Hurricane Project, located ~125 km northwest of Cairns in the Hodgkinson Province, north Queensland.

The Company has received additional assay results from rock chip sampling across several key prospects, including Typhoon, Hurricane, Holmes, Tornado, and Bouncer. The results extend the footprint of known high-grade gold and antimony mineralisation, building on previous sampling that confirmed the presence of a significant orogenic system. Multiple samples returned gold grades above 10 g/t Au, with a peak result of 69.5 g/t Au, while antimony values reached as high as 6.5% Sb (Table 1).

At Bouncer South, sampling returned consistently high-grade gold and antimony values across a broad area, extending the mineralised footprint 90 metres southeast along strike and over 70 metres in width. The combined presence of gold-dominant stockworks and high-grade gold–antimony lodes strongly support a multiphase orogenic model.

At Typhoon, sampling has extended known mineralisation 100 metres northwest along strike. Additionally, between Typhoon and Hurricane, assays of 12.29 g/t Au (IRX00050) and 3.60 g/t Au (IRX00051) indicate additional stacked quartz vein sets within a corridor linking the two prospects.

These results collectively demonstrate the growing scale and geological complexity of the Hurricane system, with strong potential for both high-grade shoots and broader mineralised zones.

Maiden Drill Program on track for July start

Field preparations are well advanced, with a bulldozer currently on-site constructing drill pads and access tracks. A reverse circulation (RC) rig has been secured, and drilling will commence immediately upon completion of site works.

Figure 1. Regional view of the Hurricane Project area, showing gold-in-rock assay results across key targets including Bouncer, Hurricane, Holmes, Tornado, Cyclone, and Monsoon. Circles represent results reported previously (ASX: 5 & 13 February and 4 June 2025), while squares show the latest sampling results.

Results and Interpretation

The latest rock chip assay results continue to expand the mineralised footprint of the Hurricane Project, providing further evidence of a multiphase gold–antimony system. High-grade results from Bouncer, Hurricane, and Typhoon confirm that mineralisation at each prospect extends over substantial strike length and width, highlighting the potential scale of the system.

Bouncer South

The most significant results from this program were returned from Bouncer South, where rock chip sampling has extended known high-grade antimony mineralisation a further 90 metres southeast along strike, with a surface width exceeding 70 metres (Figure 2). Seven samples (IRX00087 to IRX00093) confirm consistent Au-Sb mineralisation, including (Table 1):

- 6.53% Sb and 6.44 g/t Au (IRX00088)
- 6.49% Sb and 1.22 g/t Au (IRX00091)
- 5.66% Sb and 2.25 g/t Au (IRX00092)
- 3.86% Sb and 0.27 g/t Au (IRX00090)
- 3.16% Sb and 1.82 g/t Au (IRX00087)
- 2.15% Sb and 0.92 g/t Au (IRX00089)

Figure 2. Rock chip gold assay results from the Bouncer Prospect, circles represent results reported previously (ASX: 5 & 13 February and 4 June 2025), while squares show the latest sampling results.

These results confirm the continuity of high-grade antimony lodes at surface, extending well beyond previously defined mineralisation. The mineralisation is hosted in west-dipping quartz-sulphide veins, supporting a model involving multiple mineralising phases, including a late-stage antimony-rich overprint on earlier gold-dominant stockworks (Figure 3).

Figure 3. Rock chip sample IRX00088 from Bouncer South, returning 6.44 g/t Au and 6.53% Sb. Sample comprises quartz–sulphide veining with abundant stibnite, consistent with high-grade antimony mineralisation.

Typhoon / Hurricane Corridor

Rock chip sampling across Typhoon, Hurricane, and the intervening corridor continues to confirm highgrade gold mineralisation along strike, while also highlighting the presence of additional mineralised zones between the two prospects (Figures 4 & 5).

At Typhoon, a peak result of 40.02 g/t Au (IRX00045) was returned from outcropping quartz veining, extending known mineralisation approximately 100 metres northwest. Additional anomalous results, including 0.29 g/t Au (IRX00053), support continuity of gold-bearing structures across the broader zone.

Between Typhoon and Hurricane, samples IRX00050 (12.29 g/t Au) and IRX00051 (3.60 g/t Au) confirm the presence of stacked quartz vein sets, highlighting the potential for the corridor to host multiple parallel mineralised structures.

At Hurricane South, sample IRX00059 returned 69.48 g/t Au from quartz veining located 70 metres east of known mineralisation, further supporting the interpretation of a multi-lode vein system extending through the Hurricane corridor.

Figure 4. Rock chip gold assay results from the Hurricane / Typhoon Corridor, circles represent results reported previously (ASX: 5 & 13 February and 5 June 2025), while squares show the latest sampling results.

Figure 5. Extensive quartz veining exposed at surface within the Typhoon Prospect. Veins are visible across the outcrop area in subparallel orientations, extending northwest from previously sampled high-grade zones.

Next Steps

Field preparations are nearing completion, with a bulldozer currently constructing drill pads and access tracks. An RC rig has been secured and will mobilise upon completion of site works.

About the Hurricane Project

The Hurricane Project is located in the Hodgkinson Province of northeastern Queensland, a structurally complex terrane within the Mossman Orogen and host to the historic Hodgkinson Goldfield.

The province is underlain by metamorphosed Siluro-Devonian turbiditic metasediments that have undergone multiple deformation events, including folding, thrusting, and brittle-ductile shearing — key controls on gold mineralisation.

Gold systems in the region are typical of orogenic deposits, with mineralisation hosted in quartz veins, breccias, and stockworks along reactivated fault zones. Mineralising fluids are interpreted to have originated from deep crustal sources.

At Hurricane, mineralisation is consistent with sediment-hosted orogenic gold systems, marked by a core Sb–As–Au–Ag geochemical signature. This association is shared with globally significant deposits such as Macraes (NZ) and Fosterville (VIC).

With favourable structural architecture, a well-established mineralising environment, and large areas still untested, the Hurricane Project offers strong potential for the discovery of new high-grade gold systems in a historically productive but underexplored district.

Figure 4. Location of the Hurricane Project in northeastern Queensland, approximately 125 km nor-northwest of Cairns. The project lies within the historically productive Hodgkinson Province and is surrounded by numerous past-producing gold mines and prospects.

This announcement has been authorised for release by the Board of Inca Minerals Limited.

Investor Enquiries:

Trevor Benson Chief Executive Officer (08) 6263 4738 Info@incaminerals.com.au Peter Taylor NWR Communications 0412 036 231 Peter@nwrcommunications.com.au

COMPETENT PERSON STATEMENT

The information in this report that relates to Data and Exploration Results is based on information compiled and reviewed by Mr Gregor Bennett a Competent Person who is a Member of the Australian Institute of Geoscientists (AIG) and Exploration Manager at Inca Resources. Mr Bennett has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he has undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Bennett consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Appendix 1

Table 1: Sample Locations and Assay Results (GDA94 Zone 55)

Sample ID	Prospect	Easting	Northing	RL	Au g/t	Sb %
IRX00045	Typhoon	255202	8150126	329	40.016	NSR
IRX00046	Typhoon	255164	8150185	330	0.058	NSR
IRX00047	Typhoon	255165	8150073	331	0.005	NSR
IRX00048	Typhoon	255176	8150052	333	0.028	NSR
IRX00049	Typhoon	255177	8150025	332	0.032	NSR
IRX00050	Hurricane	255120	8149942	335	12.29	NSR
IRX00051	Hurricane	255097	8149934	335	3.599	NSR
IRX00052	Hurricane	255030	8149901	337	0.029	NSR
IRX00053	Typhoon	255550	8149809	337	0.289	NSR
IRX00054	Hurricane South	255839	8149695	313	0.007	NSR
IRX00055	Hurricane South	255909	8149709	309	0.005	NSR
IRX00056	Hurricane South	255980	8149657	309	0.005	NSR
IRX00057	Hurricane South	256213	8149499	311	0.005	NSR
IRX00058	Hurricane South	256182	8149346	325	0.018	NSR
IRX00059	Hurricane South	256183	8149381	322	69.475	NSR
IRX00060	Tornado	253630	8148845	497	1.54	NSR
IRX00061	Tornado	253639	8148764	483	0.075	NSR
IRX00062	Tornado	253662	8148771	481	0.817	NSR
IRX00063	Holmes	252678	8148074	468	0.234	NSR
IRX00064	Holmes	252724	8147934	429	0.006	NSR
IRX00065	Holmes	252696	8147925	425	1.529	NSR
IRX00066	Holmes	252668	8147945	425	0.035	NSR
IRX00067	Holmes	252597	8148023	462	1.848	NSR
IRX00068	Holmes	252597	8148036	469	3.889	NSR
IRX00069	Hurricane	254706	8150042	408	0.116	NSR
IRX00070	Hurricane	254733	8150031	401	0.005	NSR
IRX00071	Bouncer	249071	8153023	278	0.89	NSR
IRX00072	Bouncer	249140	8152741	322	0.005	NSR
IRX00073	Bouncer	249137	8152756	319	0.005	NSR
IRX00074	Bouncer	249131	8152754	318	0.01	NSR
IRX00075	Bouncer	249131	8152730	320	0.013	NSR
IRX00076	Bouncer	249165	8152711	329	0.005	NSR
IRX00077	Bouncer	249100	8152761	311	0.005	NSR
IRX00078	Bouncer	249096	8152762	311	0.005	NSR
IRX00079	Bouncer	249092	8152760	310	0.005	NSR
IRX00080	Bouncer	249083	8152762	309	0.005	NSR
IRX00081	Bouncer	248945	8152809	284	0.005	NSR
IRX00082	Bouncer	249168	8153111	290	0.005	NSR
IRX00083	Bouncer	248960	8152982	278	0.005	NSR
IRX00084	Bouncer	248961	8152989	279	0.005	NSR
IRX00085	Bouncer	248847	8152921	268	0.005	NSR
IRX00086	Bouncer	248849	8152919	267	0.005	NSR

IRX00087	Bouncer South	249484	8152533	316	1.816	3.16
IRX00088	Bouncer South	249534	8152565	309	6.44	6.53
IRX00089	Bouncer South	249542	8152561	308	0.917	2.15
IRX00090	Bouncer South	249551	8152545	306	0.268	3.86
IRX00091	Bouncer South	249557	8152530	305	1.222	6.49
IRX00092	Bouncer South	249569	8152511	303	2.251	5.66
IRX00093	Bouncer South	249546	8152492	304	0.005	NSR

Appendix 2

JORC Code, 2012 Edition – Table 1

Section 1. Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed 	 Samples were obtained from in-situ rock chip sampling conducted by Inca Minerals during geological reconnaissance at the Hurricane Project. Sampling was conducted across visibly mineralised outcrop, targeting quartz veining and associated alteration zones. Industry-standard sampling protocols and internal QAQC procedures were followed. All samples were submitted to Intertek Laboratories in Townsville for analysis using fire assay (for gold) and multi-element ICP-OES/ICP-MS techniques.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Not applicable – No drilling reported in this release.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. 	 Not applicable – No drilling reported in this release.

Criteria	JORC Code explanation	Commentary
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Rock chip sample locations and geological observations were recorded in field notebooks and digitised into the company database. Logging included lithology, alteration style, veining, oxidation state, and visible mineralisation. Field logging was qualitative in nature, supported by handheld GPS and photographic records.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled 	 Approximately 1–3 kg rock chip samples were placed in labelled calico bags and transported to Intertek Townsville. At the laboratory, samples were dried, crushed to 10 mm, then pulverised to 85% passing 75 µm using LM5 or equivalent mills. Sample preparation followed Intertek's internal protocols aligned with industry best practice. The sample size and preparation methods are considered appropriate for reconnaissance-scale rock chip sampling.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external 	 All samples were analysed at Intertek Townsville. Samples were subjected to 50 g fire assay with ICP-MS finish for gold. Multi-element analysis was performed by four-acid digest and ICP-OES/ICP-MS. Internal QAQC at the lab included standards, blanks, and duplicates. Assay data were reviewed by Inca staff, and no issues with assay quality or laboratory performance were identified.

Criteria	JORC Code explanation	Commentary
	laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant rock chip results were reviewed and verified by Inca Minerals' technical staff. No external check assays or twin samples were submitted at this stage. Assay data were received from Intertek in digital format and imported into Inca's geological database. Geological logging and sample descriptions were recorded in the field using standard templates. No adjustments were made to the assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Sample locations were recorded using a handheld GPS, with accuracy generally within ±3 m. Locations are reported in GDA94, MGA Zone 55. This is considered sufficient for early-stage reconnaissance exploration.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Rock chip samples were collected at irregular intervals based on outcrop availability and visual prospectivity. This spacing is considered appropriate for reconnaissance exploration. No compositing of samples has been undertaken.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Rock chip sampling is reconnaissance in nature and not designed to systematically test mineralised structures. Mapping indicates that mineralised quartz veins at the Bouncer prospect dip ~40° to the southwest, while Bouncer South structures dip ~60° west. No orientation-based sampling bias is known at this stage, but further work will be required to assess structural controls and optimise sample orientation.
Sample security	The measures taken to ensure sample security.	 Sample security was maintained by Inca personnel from collection through to laboratory delivery. Samples were placed in calico bags, then sealed in polyweave sacks for transport. Samples were delivered directly to Intertek Townsville by company staff.

Criteria	JORC Code explanation	Commentary
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 No external audits or reviews of sampling techniques or data have been completed at this time.

Section 2. Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Hurricane Project is located in north Queensland and comprises three granted Exploration Permits for Minerals (EPMs): EPM 27518, EPM 25855, and EPM 19437. The tenements are held 100% by Inca Minerals Ltd through its wholly owned subsidiary, Placer Gold Pty Ltd. The project area covers parts of Hurricane Station and Nychum Station, both of which are freehold properties. Inca has secured land access agreements with both landholders in accordance with the Queensland Land Access Code. The area is subject to native title interests and ILUA agreements. Inca Minerals is actively engaged with relevant stakeholders and has protocols in place for cultural heritage management and access. At the time of reporting, all tenements are in good standing, and there are no known impediments to ongoing exploration.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Historical exploration over the Hurricane Project area has been undertaken by several companies, notably Homestake Gold of Australia, Sanworth Pty Ltd, Pan Australian Exploration Pty Ltd, and others between the late 1980s and mid-1990s. Work focused on evaluating gold and antimony mineralisation associated with quartz breccia veins and structural corridors related to the Hurricane and Retina Fault systems. Sanworth Pty Ltd carried out regional stream sediment and rock chip sampling, identifying multiple gold and antimony anomalies within the project area. While some follow-up was completed, the work remained largely first-pass in nature. Homestake undertook more detailed field programs including mapping, rock chip sampling across multiple vein systems (Hurricane, Typhoon, Bouncer, Pedersen). This work contributed to early interpretations of vein geometries and mineralisation styles, though no drilling was completed. Pan Australian compiled historical exploration data across the broader Hodgkinson Province and conducted regional geochemical reviews, identifying additional target areas based on multielement anomalies. Several other companies held overlapping or adjacent tenure but conducted only limited fieldwork, focusing on desktop assessments. The historical datasets, though fragmented and largely unvalidated, were later consolidated and reassessed by Placer Gold and Inca Minerals to inform modern

Criteria	JORC Code explanation	Commentary		
		exploration strategies and target generation.		
Geology	Deposit type, geological setting and style of mineralisation.	 The Hurricane Project is located within the Hodgkinson Province of northeastern Queensland, a geologically complex terrane within the Mossman Orogen. The province hosts the historic Hodgkinson Goldfield, which produced approximately 9.7 tonnes of gold between 1875 and 1924 at an average grade of 37 g/t Au. The Hodgkinson Province is characterised by metamorphosed Siluro-Devonian turbiditic metasediments that have undergone multiple deformation events. These events resulted in tight folding, regional thrusting, and the development of brittle-ductile shear zones, which serve as primary controls on gold mineralisation. Gold systems in the region are typical of orogenic deposits, with mineralisation hosted in quartz veins, breccias, and stockwork vein arrays formed along reactivated fault zones. The mineralising fluids are interpreted to have originated from deep crustal sources, migrating upward along major structural conduits. Mineralisation at the Hurricane Project is consistent with sediment-hosted orogenic gold systems, defined by a core geochemical signature of Sb–As–Au–Ag. This association is common to several globally significant deposits, including Macraes (New Zealand) and Fosterville (Victoria). With favourable structural architecture, a well-established mineralising environment, and significant portions of the project area remaining untested by modern exploration, the Hurricane Project offers strong potential for the discovery of new high-grade gold systems in a historically productive but underexplored district. 		
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person 	 No drilling results are reported in this announcement. Sampling relates solely to surface rock chip samples collected during field reconnaissance. Drill hole information is not applicable. 		

Criteria	JORC Code explanation	Commentary
	should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent 	 No data aggregation or averaging techniques have been applied to the rock chip results. Individual sample assays are reported as received from the laboratory. No top-cuts have been applied. No metal equivalent values have been used or reported.
Relationship between mineralisatio n widths and intercept lengths	 Values should be clearly stated. These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Not applicable – no drilling results are reported in this announcement. Rock chip samples represent point data and do not reflect true widths of mineralisation.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Relevant maps, sample locations and geological figures are provided in the main text of the announcement and associated appendices.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All rock chip assay results from the sampling program are reported, including both elevated and background values. No selective reporting of high-grade results has occurred.

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 All material exploration data, including geological context, sampling methods, and relevant historical information, has been included in the body of the announcement. Previous historical exploration work is referenced where applicable.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further work will include additional geological mapping, infill and extension rock chip sampling, and planning of targeted drilling across priority vein systems. Specific focus areas include the Hurricane, Tornado, Holmes, and Bouncer vein sets where high-grade gold and antimony values have been identified.