

Australian Securities Exchange Announcement

13 September 2024

King River Resources Ltd (ASX:KRR) ('**KRR**' or the '**Company**') provides the following update on results for the 2024 drilling at Langrenus and Providence. Significant geochemical anomalies have been returned with results up to 0.2g/t Au, 0.91% Cu, 34g/t Ag, 65ppm Bi, 93ppm Sb, 206ppm As and 178ppm Co associated with newly discovered ironstone, alteration and structure zones (refer Table 2).

Last year, KRR allocated a \$2M drill budget to follow up on targets generated from its extensive 2023 geophysics programme including targets at the Tennant Creek East, Rover East, Kurundi and Barkly Projects which are along strike of geophysical and geological trends associated with known deposits of high-grade copper and gold including Rover, Bluebird and Mauretania. Drilling has moved to the Kurundi Regional project with assays pending from the Kurundi main prospect.

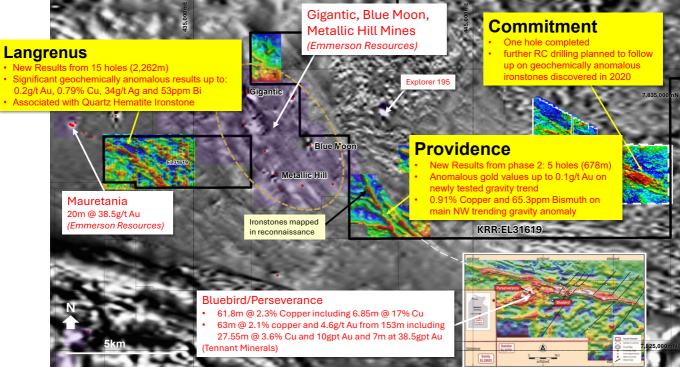


Figure 1: Location of Providence, Commitment and Langrenus results in relation to Gigantic/Metallic Hill deposits, Mauretania and Tennant Minerals Bluebird-deposit. Magnetics (black and white) and gravity (coloured), insert is Tennant Minerals Gravity map.

Langrenus Results

Langrenus is situated within the Mauretania-Hopeful Star trend, just 700m from the nearest historical mining and 1km along the strike of the Mauretania prospect where Emmerson Resources reported diamond drill result of 20m at 38.5g/t Au associated with copper, silver, bismuth, cobalt and antimony.

Assay results have been received for KRR's initial drilling at Langrenus (15 RC holes for 2,262m) with significant geochemical anomalies and gold results returned. These new results are associated with a broad quartz hematite structure with results of up to 0.2g/t Au, 53ppm Bi, 206ppm As, 93ppm Sb, 178ppm Co, and 3.8ppm Ag (location shown in Figure 2 and results listed in Table 2 – TTRC070, 74, 81, and 82). This

quartz hematite zone has an approximate down hole thickness of 20m with varying intensity of quartz veining and hematite/specular hematite in altered Warramunga siltstone units.

Also, significant copper (0.79% Cu), bismuth (48ppm Bi), and silver (34ppm Ag) were returned from strongly iron altered siltstones 100m to the north of the quartz hematite breccia (TTRC072).

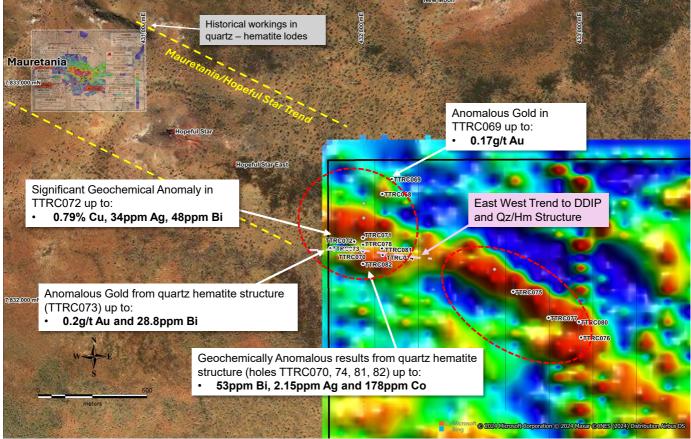


Figure 2: Summary of assay results at Langrenus, Area 1. shows Mauretania/Hopeful Star trend into KRR's EL31619 and 1vd gravity image.

Quartz hematite breccias are known to be formed as peripheral zones around mineralized ironstones and are also associated with the Hopeful Star and Mauretania deposits.

These new geochemically anomalous results are very promising and give KRR a strong structural target along strike of the complex ironstone and mineralised trend that hosts Mauretania and Hopeful Star. Further work is being planned to test the orientation and extents of this new geochemically anomalous structure.

Providence, Phase 2 Results

Results from phase 2 RC drilling at Providence have been received (five RC holes for 678m). This small programme was drilled to follow up on structures and geochemical results identified in KRR's 2023 drilling (ASX: KRR 8 March 2024) and to provide information for deeper targeting of stronger gravity anomalies and structural intersects.

Two of the holes returned significant geochemical anomalies (Table 2).

• TTRC084 returned anomalous gold values up to 0.1g/t Au from a previously undrilled northwest gravity trend east of the main northwest gravity anomaly (Figure 3).

TTRC88 returned 0.91% Copper and 65.3ppm Bismuth (in a 4m composite sample) at the northern
end of the main northwest gravity trend. The hole was drilled obliquely to previous holes at this
location and intersected a broad structure and ironstone zone from surface to 66m. The nature of
the structure intersected and the highly anomalous copper result near the start of the hole suggests
an east-west trending zone rather than the northwest trend that was originally targeted (Figure 3).

These new anomalous gold, bismuth and copper results at Providence are very encouraging and further work is being planned to test the orientation and extents of these geochemically anomalous ironstone associated structures.

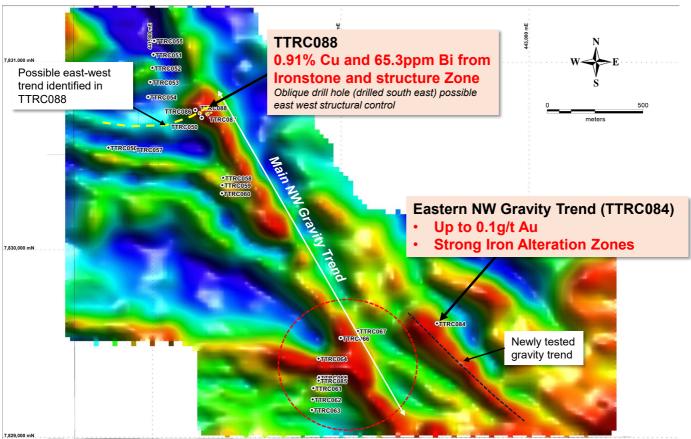


Figure 3: Completed RC drill holes and new significant results over 1vd Gravity image.

Commitment.

One hole for 240m was drilled at Commitment to test new DDIP chargeability targets. The programme was postponed after finding the ground too boggy for drilling due to late heavy seasonal rains and flooding. No significant results were returned from the first hole but future drilling will target the geochemically anomalous ironstones discovered by KRR under Cambrian cover in 2020.

Upcoming Drilling

Drilling is ongoing with the rig now at the Kurundi Regional Project testing new geophysical and structural targets (KRR ASX: 22 August 2024). The first phase of drilling at the Kurundi main prospect (where 2022 RC drilling returned multiple high grade gold intersections) has been completed (assays pending) with further drilling planned after Tarragans drilling is completed.

KRR expects to generate further drill targets as processing and interpretation of 2023 geophysical results continues for the remaining project areas. The market will be updated on these progressively.

New targets that are planned to be drilled include: Kurundi Regional (Millers, Tarragans), Kuiper (Kuiper 1 and 2) and Rover East (BIF Hill East, Anomaly 5 and Explorer 42).

The KRR 2023 Geophysical program and location of the Providence, Langrenus and Commitment projects are summarised below in Figure 4:

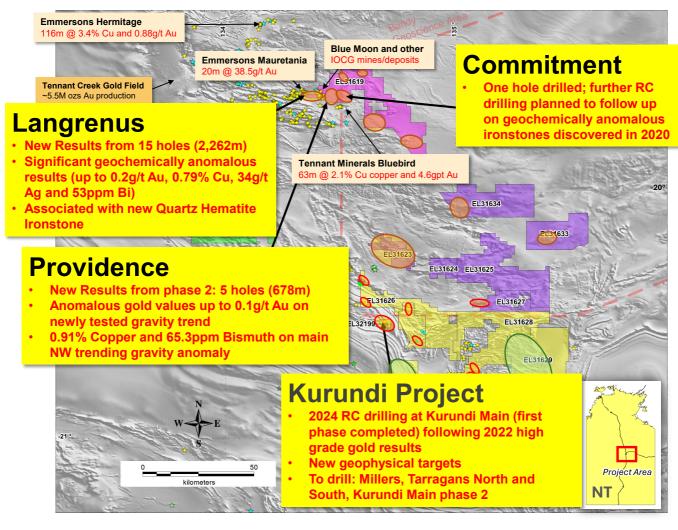


Figure 4: Tennant Creek Projects and recent exploration work (coloured polygons – KRR Tenements).

This announcement was authorised by the Chairman of the Company.

Anthony Barton

Chairman King River Resources Limited Email: info@kingriverresources.com.au Phone: +61 8 92218055

Competent Persons Statement

The Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the 'JORC Code') sets out minimum standards, recommendations and guidelines for Public Reporting in Australasia of Exploration Results, Mineral Resources and Ore Reserves.

The information in this report that relates to Exploration Results is based on information compiled by Ken Rogers and Andrew Chapman and fairly represents this information. Mr. Rogers is the Chief Geologist and an employee of the Company, and a member of both the Australian Institute of Geoscientists (AIG) and The Institute of Materials Minerals and Mining (IMMM), and a Chartered Engineer of the IMMM. Mr. Chapman is a Consulting Geologist contracted with the Company and a member of the Australian Institute of Geoscientists (AIG). Mr. Rogers has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Chapman and Mr. Rogers consent to the inclusion in this report of the matters based on information in the form and context in which it appears.

254 Adelaide Tce Perth WA 6000

PO Box Z5518, Perth WA 6831

PHONE: +61 (0)8 9221 8055 FAX: +61 (0)8 9325 8088 WEB: www.kingriverresources.com.au

TABLE 1 RC Drill Collar Locations, design coordinates, drilled since October 23.

HoleID	Propsect	Easting (m) MGA94 Z53	Northing (m) MGA94 Z53	Elevation (m)	Dip	Azimuth	Depth (m)
TTRC068	Langrenus	432,085	7,832,497	315	-60	210	150
TTRC069	Langrenus	432,128	7,832,566	315	-60	210	192
TTRC070	Langrenus	431,996	7,832,232	315	-60	180	132
TTRC071	Langrenus	431,996	7,832,295	315	-60	180	126
TTRC072	Langrenus	431,956	7,832,278	315	-60	360	222
TTRC073	Langrenus	431,846	7,832,247	315	-60	180	126
TTRC074	Langrenus	432,086	7,832,216	315	-60	180	180
TTRC075	Langrenus	432,684	7,832,047	315	-60	360	150
TTRC076	Langrenus	432,996	7,831,836	315	-60	180	198
TTRC077	Langrenus	432,846	7,831,927	315	-60	360	222
TTRC078	Langrenus	431,996	7,832,263	315	-60	180	126
TTRC079	Commitment	450,970	7,831,224	315	-60	25	240
TTRC080	Langrenus	432,986	7,831,908	315	-60	180	132
TTRC081	Langrenus	432,083	7,832,246	315	-60	180	126
TTRC082	Langrenus	431,996	7,832,175	315	-60	180	90
TTRC083	Langrenus	432,988	7,831,223	315	-60	354	90
TTRC084	Providence	442,511	7,829,608	330	-65	243	276
TTRC085	Providence	441,881	7,829,303	330	-60	360	84
TTRC086	Providence	441,226	7,830,745	330	-60	243	102
TTRC087	Providence	441,290	7,830,724	330	-60	243	132
TTRC088	Providence	441,251	7,830,729	330	-60	120	84

TABLE 2: Geochemically anomalous drill results. Selected based on geology and combination of values Au (>50ppb), Ag (>2ppm), Bi (>10ppm), As (>100ppm), Co (>50ppm), Cu (>500ppm), S (>500ppm) Sb (>20ppm). Below detection values are shown as "L"

Holeid	Sample ID	From	То	Au	As	Co	Cu	Fe	Mn	Ni	Pb	S	Zn	Ag	Bi	Мо	Sb	Th	U
				ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
TTRC068	5004307	0	1	0.17	L	8	5	14423	34	18	12	135	11	L	0.54	0.85	0.49	4.01	1.19
TTRC068	5004310	3	4	L	L	10	19	41977	304	26	13	571	50	L	0.79	2.63	2.05	4.94	1.42
TTRC068	5004311	4	5	L	11	10	22	59058	415	27	16	522	54	L	1.2	3.39	3.05	8	1.95
TTRC068	5004312	5	6	L	L	7	12	49672	333	13	13	600	31	L	1.13	1.94	3.23	13.75	2.92
TTRC068	5004313	6	7	L	L	8	13	41824	648	14	16	572	40	0.07	0.7	2.1	3.19	11.55	2.57
TTRC068	5004331	22	23	0.01	L	72	34	47177	4992	93	12	374	105	L	0.65	1.08	2.94	10.96	3.81
TTRC068	5004333	24	25	0.01	L	79	33	40496	4833	174	12	212	180	0.09	0.54	0.79	2.43	5.12	4.04
TTRC069	5004505	80	81	0.01	11	15	5	24108	291	23	7	722	55	0.08	0.31	1.46	2.02	105.98	5.9
TTRC070	5004551	2	3	0.05	L	11	15	34716	402	20	8	L	42	L	0.52	2.47	1.33	6.3	1.87
TTRC070	5004553	4	5	0.01	19	10	22	31671	723	41	20	903	64	L	9.39	11.04	2.36	5.49	2.47
TTRC070	5004558	9	10	0.01	17	36	25	73864	1892	60	40	347	46	0.16	4.61	1.95	22.28	35.53	9.68
TTRC070	5004569	20	21	L	22	70	25	42557	3759	97	21	274	102	L	0.64	3.24	4.99	7.82	5.25
TTRC070	5004570	21	22	L	17	80	22	42644	4666	83	22	247	100	L	0.82	2.8	5.75	18.57	7.08
TTRC070	5004571	22	23	L	19	65	22	44958	3990	70	21	234	100	0.06	0.77	2.29	4.94	20.43	7.79
TTRC070	5004572	23	24	L	16	73	24	48196	3903	71	50	251	143	L	0.88	2.27	5.03	17.18	6.77
TTRC070	5004573	24	25	L	14	105	103	51912	4583	115	27	217	135	L	0.86	2.18	5.18	12.4	5.91
TTRC070	5004576	25	26	L	16	122	50	31418	17139	146	22	212	175	L	0.62	1.98	2.51	6.75	6.01
TTRC070	5004577	26	27	L	18	101	67	48436	4389	132	22	226	166	L	0.76	2.92	4.76	15.98	7.25
TTRC070	5004578	27	28	L	14	105	59	44778	5219	135	19	191	180	L	0.73	2.14	3.53	15.63	7.37
TTRC070	5004579	28	29	L	21	56	45	45405	3655	101	18	204	143	L	0.7	2.14	4.03	18.01	9.33
TTRC070	5004580	29	30	L	20	176	80	31569	16723	374	15	216	501	L	0.48	4.18	2.77	11.73	9.38
TTRC070	5004581	30	31	L	23	178	70	29626	20381	427	14	230	626	L	0.62	6.12	2.36	7.69	9.63
TTRC070	5004582	31	32	L	24	148	47	36408	15288	340	16	204	475	L	0.63	5.91	2.64	9.98	7.46
TTRC070	5004583	32	33	L	16	70	29	51082	4034	163	21	197	170	L	0.82	2.67	4.4	16.47	8.31
TTRC070	5004584	33	34	L	20	79	28	44837	6989	177	21	224	240	L	0.78	3.11	3.55	14.1	8.72
TTRC070	5004585	34	35	L	21	126	29	44266	11713	187	21	230	275	L	0.77	3.55	4.05	14.3	9.13
TTRC070	5004595	44	45	L	17	13	65	48611	676	37	23	160	74	2.15	52.94	0.83	2.12	11.59	2.61
TTRC071	5004671	42	43	L	29	59	96	129415	9075	117	52	151	159	L	0.48	2.19	4.43	14.02	2.73
TTRC071	5004672	43	44	L	37	66	84	148077	11498	119	88	140	159	L	0.85	2.2	8.44	11.92	3.17
TTRC071	5004677	46	47	L	48	63	30	99333	10480	99	56	85	143	L	2.28	3.02	14.13	0.79	4.3
TTRC071	5004678	47	48	L	49	52	29	105388	7321	76	58	90	161	L	2.29	1.84	16.12	1.24	6.34
TTRC071	5004691	60	61	L	24	16	4	98791	3067	50	61	88	102	L	3.39	1.45	21.29	0.79	4.17
TTRC071	5004692	61	62	L	23	15	3	93940	2591	50	47	83	99	L	3.19	1.74	22.59	1.21	4.21
TTRC071	5004702	69	70	0.08	16	13	13	30587	1658	25	24	109	105	L	0.68	1.64	6.14	20.82	5.29
TTRC072	5004870	132	133	0.01	L	17	30	51826	559	35	19	824	73	L	0.99	3.47	4.29	0.42	0.86
TTRC072	5004889	161	162	L	10	19	41	59003	667	68	22	789	71	34.31	0.52	3.89	4.47	29.84	4.01
TTRC072	5004890	162	163	L	12	16	7	62290	1283	43	28	277	73	2.78	0.57	4.64	5.39	44.19	5.31
TTRC072	5004911	181	182	L	L	25	7878	72412	942	27	180	13365	645	3.88	47.54	0.95	1.52	3.89	1.11
TTRC072	5004930	201	202	L	24	13	7	41577	428	28	14	977	88	0.08	10.95	2.35	6.25	95.13	10.68
TTRC072	5004933	204	205	L	L	13	L	33737	544	42	6	636	92	0.12	0.7	10.03	3.25	43.73	5.87

Holeid	Sample ID	From	То	Au	As	Co	Cu	Fe	Mn	Ni	Pb	S	Zn	Ag	Bi	Mo	Sb	Th	U
				ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
TTRC073	5004962	12	13	L	19	13	2	36273	4099	5	40	202	42	0.09	2.29	1.35	22.76	109.88	10.38
TTRC073	5004966	16	17	L	20	12	13	24180	3044	7	58	184	30	0.05	2.32	1.76	30.62	45.94	4.62
TTRC073	5004967	17	18	L	51	L	7	33358	4011	12	59	309	63	0.09	7.61	2.27	65.15	59.06	4.51
TTRC073	5004968	18	19	L	49	17	6	93649	5930	8	93	300	35	L	15.49	1.75	53.4	27.51	3.83
TTRC073	5004969	19	20	L	62	22	8	117214	8951	12	113	327	53	L	20.82	1.49	62.31	16.83	3.9
TTRC073	5004970	20	21	L	68	25	10	129914	13546	11	125	445	45	L	20.07	1.47	76.99	22.58	3.93
TTRC073	5004971	21	22	L	71	32	11	126057	15296	13	134	268	58	L	20.98	1.36	77.82	15.1	3.51
TTRC073	5004972	22	23	L	75	26	10	132454	12387	21	148	285	62	L	21.93	3.66	83.13	14.54	3.64
TTRC073	5004973	23	24	L	77	22	9	136076	13161	11	149	262	54	L	24.86	2.11	93.11	21.21	4.16
TTRC073	5004976	24	25	L	76	19	8	103901	10153	9	116	241	53	L	28.78	1.56	91.63	15.54	3.4
TTRC073	5004977	25	26	L	76	24	9	114227	14847	9	127	176	43	L	27.28	1.73	78.13	9.08	3.54
TTRC073	5004978	26	27	L	78	17	7	123792	12390	9	133	204	37	L	26.96	1.46	82.37	11.54	3.6
TTRC073	5004979	27	28	L	84	25	11	130556	17778	11	133	158	43	L	27.13	1.74	77.45	5.66	2.9
TTRC073	5004980	28	29	L	86	35	97	125993	19972	14	122	142	60	L	22.81	1.71	68.72	3.64	2.59
TTRC073	5004981	29	30	L	43	14	24	38430	5434	7	79	217	47	L	2.87	1.17	29.57	42.91	3.73
TTRC073	5004982	30	31	L	67	20	19	87931	11665	11	192	290	83	L	11.66	1.38	51.32	14.19	3.97
TTRC073	5004983	31	32	L	74	27	20	95936	13432	22	101	180	56	L	14.23	4.43	47.6	10.53	3.12
TTRC073	5004984	32	33	L	64	14	14	70018	7584	13	94	62	38	L	12.59	4.28	40.73	15.26	2.03
TTRC073	5004985	33	34	L	69	29	16	120586	14389	12	139	200	70	L	12.9	1.36	59	18.36	3.95
TTRC073	5004986	34	35	L	44	28	15	74812	5216	38	101	108	62	L	4.61	3.57	37.31	11.89	3.62
TTRC073	5004987	35	36	L	39	55	20	50896	9449	64	104	195	97	L	2.37	1.29	20.57	69.88	5.86
TTRC073	5004988	36	37	L	42	27	13	42116	4978	28	51	168	60	L	1.7	1.17	37.77	82.41	5.62
TTRC073	5005020	66	67	L	27	9	19	24806	964	12	37	1468	87	0.4	10.75	1.48	4.38	37.74	4.67
TTRC073	5005049	92	93	0.2	12	10	8	48540	984	12	43	21	43	0.05	2.18	0.85	11.37	0.74	2.56
TTRC073	5005052	94	95	L	18	12	8	111505	5066	15	73	L	79	L	7.99	1.06	22.77	1.15	2.97
TTRC073	5005053	95	96	L	32	19	8	167635	5278	32	105	23	105	L	13.06	0.94	37.54	0.78	4.17
TTRC073	5005054	96	97	L	26	11	7	106165	2009	17	64	44	74	L	8.18	0.57	27.64	0.84	2.98
TTRC073	5005056	98	99	L	67	19	L	70214	6198	45	51	179	121	L	6.39	2.77	26.59	2.03	3.91
TTRC073	5005067	109	110	L	17	9	L	38149	1683	25	33	182	66	L	1.47	8.18	21.28	43.17	5.95
TTRC074	5005090	4	5	L	L	12	L	50029	1260	28	24	1199	38	L	1.27	2	4.32	14.7	3.21
TTRC074	5005097	11	12	L	65	88	21	106188	13774	26	90	225	57	L	5.17	2.73	18.59	19.99	7.03
TTRC074	5005101	13	14	L .	66	144	6	92500	12955	157	58	132	164	<u> </u>	4.62	3.82	18.78	3.51	5.96
TTRC074	5005102	14	15	L	48	53	L	64500	4547	75	34	217	101	L .	3.28	2.09	13.61	36.01	8.66
TTRC074	5005104	16	17	L	61	83	L	37925	6286	111	17	201	219	L .	1.63	3.15	5.73	19.06	7.12
TTRC074	5005107	19	20	L	33	78	L	124376	7560	118	61	108	156	L .	5.02	3.63	17.85	2.06	8.34
TTRC074	5005108	20	21	L	39	72	L	136641	9624	93	72	119	148		4.7	4.03	19.27	1.63	7.51
TTRC075	5005226	53	54	L	22	13	5	112585	1342	34	62	161	95	L	8.41	2.88	25.24	3.19	4.54
TTRC075	5005231	58	59 60	L	47	22 17	1	54446 158252	2136	53 24	34	62 156	198	0.06	3.71	4.53	25.02	39.37	9.92
TTRC075	5005232	59 60	60	L	38	17	L	158252	4039	24	134	156	116	L	7.09	3.39	51.81	1.95	4.87
TTRC075	5005233	60	61	L	28	13	L 1	126627	3401	23	134	80	110	L .	7.09	3.65	37.76	2.08	3.45
TTRC075	5005238	65	66	L	24	18	L 22	77980	2312	34	41	112	109	L .	4.44	5.47	23.46	24.12	5.29
TTRC075	5005239	66	67	L	30	20	32	127779	4989	38	55	112	147	L 1	6.01	3.71	30.84	6.4	3.5
TTRC075	5005240	67	68	L	35	24	14	131500	5550	50	57	91	181	L	6.31	4.3	29.3	2.92	2.48

Holeid	Sample ID	From	То	Au	As	Co	Cu	Fe	Mn	Ni	Pb	s	Zn	Ag	Bi	Mo	Sb	Th	U
				ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
TTRC075	5005241	68	69	L	36	20	12	137023	4774	39	64	195	106	L	7.55	4.15	32.95	1.9	2.92
TTRC075	5005242	69	70	L	40	21	4	126437	5598	37	64	240	103	L	6.75	2.24	31.09	7.15	3.87
TTRC075	5005243	70	71	L	31	16	L	80625	1383	34	35	143	84	L	4.43	4.57	34.16	61.27	16.36
TTRC075	5005251	76	77	L	18	13	7	64652	943	26	31	100	69	L	2.45	2.14	23.34	49.07	11.89
TTRC075	5005265	99	100	L	24	15	50	43006	500	32	17	614	87	0.05	3.96	1.5	10.12	32.25	7.03
TTRC075	5005279	117	118	L	12	15	10	49011	1124	41	21	924	66	0.09	1.09	3.01	8.25	9.32	2.17
TTRC076	5005367	101	102	L	35	25	L	129373	4885	43	99	110	148	L	6.18	1.7	32.38	10.94	8.19
TTRC076	5005368	102	103	L	32	21	57	112385	4198	31	75	111	133	0.12	4.7	2.35	26.26	13.94	9.57
TTRC076	5005371	105	106	L	26	16	6	72305	4050	24	44	76	141	0.08	2.65	3.16	24.99	21.85	6.51
TTRC076	5005372	106	107	L	58	23	1	181754	6571	31	96	76	153	L	7.53	2.24	45.82	2.5	4.49
TTRC076	5005373	107	108	L	86	20	4	193216	5897	37	96	86	129	L	7.26	4.68	50.99	2.28	7.25
TTRC076	5005382	114	115	L	21	14	3	104275	3128	27	55	38	118	0.41	6.27	3.67	23.49	12.31	7.44
TTRC076	5005383	115	116	L	19	15	197	97728	3414	26	52	39	123	0.32	5.59	3.44	22.82	12.44	5.81
TTRC076	5005384	116	117	L	16	17	31	103984	3814	29	60	41	110	0.27	6.54	3.46	22.41	9.91	5.19
TTRC076	5005385	117	118	L	16	20	35	98504	3908	38	57	55	114	0.22	6.72	3.59	24.29	12.78	6.13
TTRC076	5005386	118	119	L	19	19	16	58851	3012	39	64	26	125	L	7.81	2.07	26.14	3.91	4.94
TTRC076	5005423	162	166	L	14	12	5	43138	827	33	L	667	68	L	0.27	17.35	3.08	6	3.57
TTRC077	5005446	14	15	L	31	23	L	38168	1598	19	L	576	50	L	0.5	2.36	2.97	16.81	7.04
TTRC077	5005465	31	32	L	29	11	L	63368	4519	18	97	62	89	L	7.92	6.85	23.96	2.36	4.44
TTRC077	5005466	32	33	L	11	10	L	77868	3912	15	72	20	73	L	10.23	5.15	34.05	1.59	4.53
TTRC077	5005467	33	34	L	10	14	2	224983	3398	19	94	48	64	L	8.15	2.84	30.32	1.39	3.9
TTRC077	5005468	34	35	L	21	18	2	168149	2608	27	70	64	85	0.06	5.83	3.75	23.08	0.58	3.66
TTRC077	5005480	65	66	L	20	15	2	100464	3747	31	79	24	102	L	4.86	3.82	21.05	2.35	3.11
TTRC077	5005481	66	67	L	29	21	1	84396	4318	36	64	22	157	L	3.89	5.13	23.14	3.54	3.28
TTRC077	5005482	67	68	L	20	18	3	88062	3742	32	77	L	112	L	4.75	4.18	22.79	2.83	4.57
TTRC077	5005483	68	69	L	14	17	1	82680	3337	33	66	20	114	L	3.75	4.27	20.76	2.75	4.24
TTRC077	5005489	74	75	L	12	16	3	66070	2334	28	63	L	85	L	4.47	6.51	20.15	3.61	2.94
TTRC077	5005493	78	79	L	L	12	L	62035	1269	23	56	L	56	L	2.91	4.08	21.23	2.29	2.86
TTRC077	5005515	107	108	L	99	23	26	161738	5714	33	133	137	125	L	11.4	2.39	30.35	2.93	5.17
TTRC077	5005518	110	111	L	42	23	10	141912	4608	35	105	96	126	L	6.73	2.92	27.77	7.4	5.01
TTRC077	5005530	120	124	L	88	18	4	57828	1453	34	32	528	90	L	1.23	3.31	5.09	23.21	4.49
TTRC077	5005551	163	164	L	206	17	8	49426	1435	36	30	1299	91	L	1.53	6.67	5.32	5.02	3.07
TTRC078	5005631	24	25	L	L	51	10	38811	3129	48	13	199	124	L .	0.37	2.83	2.68	55.35	7.21
TTRC078	5005633	26	27	L	10	76	17	35178	3917	117	9	163	213	L	0.34	1.74	2.8	50.18	7.96
TTRC078	5005638	31	32	_ L _	14	57	8	61583	3725	208	19	189	176		0.44	2.51	2.68	34.92	7.71
TTRC079	5005684	0	4	L	L .	L	14	34265	156	52	19	667	7	0.41	0.17	17.19	0.06	24.63	2.39
TTRC080	5005877	82	86	0.04	L	14	1	43150	755	30	16	44	72	0.07	0.8	7.84	3.43	6.76	4.57
TTRC081	5005905	2	3	0.06	L 10	20	23	53958	282	33	25	39	100	0.09	0.75	1.83	1.08	4.11	5.49
TTRC081	5005913	22	23	0.03	10	139	22	114933	11374	178	84	101	122		7.32	3.15	24.78	3.45	5.71
TTRC081	5005914	23	24	0.04	16	121	19	116198	9854	164	90	102	116	L .	8.09	3.35	28.36	3.08	6.23
TTRC081	5005915	24	25	0.03	16	97	17	80798	7064	159	55	180	117	L .	5.41	7.27	18.82	4.23	5.39
TTRC081	5005916	25	26	0.03	L 10	89	19	47934	7929	236	44	118	147	L	1.53	5.46	6.55	9.61	4.43
TTRC081	5005918	27	28	0.05	10	35	12	36124	2961	56	36	119	54	0.08	1.63	5.52	4.21	22.49	5.86

Holeid	Sample ID	From	То	Au	As	Co	Cu	Fe	Mn	Ni	Pb	S	Zn	Ag	Bi	Mo	Sb	Th	U
				ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
TTRC081	5005919	28	29	0.03	16	81	17	46181	8166	123	37	170	105	L	1.45	8.4	7.91	17.55	5.82
TTRC081	5005920	29	30	0.03	28	89	24	36035	8549	118	38	127	93	L	2.19	14.26	6.63	14.7	4.54
TTRC081	5005921	30	31	0.03	14	58	120	48500	11141	67	58	151	91	L	2.07	3.33	6.42	15.99	6.38
TTRC081	5005923	32	36	0.03	13	76	31	44307	7902	137	39	90	116	0.05	1.5	7.09	6.82	20.69	7.27
TTRC081	5005926	36	40	0.01	20	85	18	28544	7976	216	17	130	269	0.91	0.82	5.21	5.38	8.21	5.65
TTRC081	5005927	40	44	0.04	32	70	19	38420	5941	148	18	186	227	0.78	1.85	8.96	5.78	13.35	7.52
TTRC081	5005928	44	48	0.05	27	30	7	25472	4098	97	6	125	234	1.15	2.52	3.43	3.84	12.71	7.77
TTRC081	5005929	48	52	0.07	37	18	8	36418	3701	66	12	119	175	0.91	3.23	4.37	5.19	8.97	8.34
TTRC081	5005946	83	84	0.05	L	9	15	36746	1283	62	10	108	39	L	0.91	17.93	3.07	8.48	7.92
TTRC081	5005949	85	86	0.05	L	13	5	35639	979	31	11	121	77	0.13	0.68	4.66	3.05	7.45	3.4
TTRC081	5005954	98	102	0.05	L	13	21	38623	1030	42	14	95	91	L	0.72	7.83	2.76	5.21	2.28
TTRC082	5005957	8	12	0.04	23	64	10	47031	5591	84	27	271	161	L	0.9	0.92	4.02	6.19	3.68
TTRC082	5005958	12	16	0.05	27	39	7	51330	2750	55	25	165	92	L	0.93	0.93	4.93	6.42	4.63
TTRC082	5005959	16	17	0.04	45	52	13	51036	2686	75	29	198	112	L	1.38	2.01	6.31	7.03	3.76
TTRC082	5005961	18	19	0.04	50	36	7	96898	3385	77	74	309	152	L	3.58	2.53	22.73	2.03	3.78
TTRC082	5005962	19	20	0.04	50	37	9	98734	6683	88	117	204	227	0.28	5.68	2.1	28.85	1.62	4.42
TTRC082	5005966	23	24	0.03	49	31	8	103947	6507	70	96	146	150	1.31	6.68	2.85	23.94	15.27	8.18
TTRC082	5005967	24	28	0.03	54	33	7	123009	7297	76	78	146	134	L	5.38	3.17	24.09	7.01	7.76
TTRC082	5005970	34	35	0.04	52	24	8	90856	5531	56	48	141	152	L	5.12	2.42	22.78	9.05	6.92
TTRC082	5005971	35	36	0.05	60	103	25	78550	23018	132	36	162	294	L	3.23	4.78	22.51	15.02	6.8
TTRC082	5005972	36	37	0.04	55	71	17	113792	25169	117	56	139	251	L	5.76	8.36	26.07	8.68	5.29
TTRC082	5005973	37	38	0.03	41	28	9	95516	7931	70	49	75	126	L	5.42	3.48	22.83	10.27	5.9
TTRC082	5005977	39	40	0.02	28	53	11	27783	15624	99	28	184	253	L	1.56	9.52	5.16	36.9	10.54
TTRC084	5006034	6	7	0.03	50	9	21	108111	1256	31	66	251	30	L	3.77	6.48	21.81	0.85	1.79
TTRC084	5006035	7	8	0.03	29	5	20	86723	659	85	55	787	20	L	2.81	26.35	16.54	1.71	1.52
TTRC084	5006036	8	9	0.03	45	5	15	107114	1269	22	89	245	19	L	4.41	5.65	21.44	1.24	1.82
TTRC084	5006037	9	10	0.03	34	6	12	159910	2659	12	126	163	20	L	6.6	3.04	40.23	1.3	2.21
TTRC084	5006038	10	11	0.03	40	7	11	175204	2541	14	122	140	19	L	7.47	3.01	54.99	1.21	2.11
TTRC084	5006039	11	12	0.03	46	8	20	102368	1316	19	66	176	30	L	4	4.3	21.56	2.25	2.83
TTRC084	5006102	100	101	0.05	10	15	8	41420	942	31	10	48	88	L	0.7	1.36	2.46	12.74	4.23
TTRC084	5006110	111	112	0.06	L	17	9	33684	1247	46	13	99	86	L	0.82	8.65	2.68	14.34	4.36
TTRC084	5006117	133	134	0.05	L	16	7	34361	1059	37	8	67	91	L	0.88	3.95	2.84	8.47	2.96
TTRC084	5006118	134	135	0.1	L	12	6	31238	638	32	6	61	55	L	2.02	3.57	2.7	16.58	4
TTRC084	5006135	152	153	L	69	20	13	130728	4126	34	101	30	97	L	6.55	4.25	26.61	3.7	5.48
TTRC084	5006136	153	154	L	87	18	13	128258	3584	28	97	22	80	L	5.23	5.61	34.03	7.08	4.27
TTRC084	5006143	160	161	0.05	L	11	14	47299	634	26	18	92	48	L	1.33	4.44	4.67	4.63	3.28
TTRC084	5006144	161	162	0.07	14	15	15	44584	1310	30	20	82	100	L	0.97	5.59	3.6	3.23	2.9
TTRC084	5006152	174	178	0.06	19	13	6	45050	1416	25	38	64	69	L .	1.8	2.68	9.28	6.25	3.18
TTRC084	5006155	186	190	0.05	L .	14	6	35551	1330	27	5	70	77	L .	1	2.82	2.82	6	3.83
TTRC084	5006162	214	218	0.08	L .	12	6	38998	1920	33	7	54	71	L .	0.73	6.74	2.21	10.14	5.21
TTRC084	5006163	218	219	0.05	L .	13	5	40636	2084	36	8	57	68	L .	0.8	7.94	2.42	11.58	5.83
TTRC084	5006164	219	220	0.05	L	11	5	29616	1316	29	8	27	53	L	0.61	5.69	2.49	6.92	3.59
TTRC084	5006166	224	228	0.06	L	15	6	39298	1611	34	19	65	74	L	0.78	4.8	3.02	4.27	3.62

Holeid	Sample ID	From	То	Au	As	Co	Cu	Fe	Mn	Ni	Pb	S	Zn	Ag	Bi	Мо	Sb	Th	U
				ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
TTRC084	5006168	232	236	0.06	L	9	3	11125	1604	28	L	54	111	L	0.29	6.57	2.22	1.45	1.18
TTRC084	5006169	236	240	0.09	26	18	11	17653	1759	38	70	58	75	L	1.47	2.8	7.77	1.94	2.3
TTRC084	5006170	240	244	0.07	26	23	9	28349	5109	35	105	89	122	L	3.09	3.91	14.63	1.64	1.93
TTRC084	5006171	244	248	0.05	27	14	6	21277	2887	26	59	35	97	L	2.86	3.81	16.35	3.36	2.22
TTRC084	5006172	248	252	0.06	66	18	7	33748	3487	26	78	45	114	L	4.98	4.54	39.84	11.54	3.85
TTRC084	5006173	252	254	0.05	93	23	7	38352	4149	35	109	163	106	L	4.36	4.37	42.06	1.35	2.6
TTRC084	5006179	257	258	0.01	79	16	12	129150	3092	32	94	133	88	L	7.27	4.79	33.37	2.33	1.83
TTRC085	5006185	0	4	0.01	15	10	8	38486	404	22	14	599	28	L	0.44	3.84	1.47	2.99	1.54
TTRC086	5006227	2	3	L	15	8	9	55483	366	27	29	9629	26	L	1.27	6.53	5.52	5.37	3.02
TTRC086	5006228	3	4	L	L	5	8	49004	208	42	16	687	20	L	0.74	15.72	2.76	5.28	2.02
TTRC086	5006229	4	5	L	L	7	7	44960	224	29	16	531	32	L	0.91	9.15	3.35	5.77	2.79
TTRC086	5006231	6	7	L	L	8	8	56532	304	39	17	2703	30	L	1.02	12.36	4.82	4.22	2.78
TTRC086	5006232	7	8	L	13	6	20	65764	301	22	27	570	27	L	1.5	6.11	4.94	3.64	2.4
TTRC086	5006235	10	11	L	12	20	6	86114	1235	38	26	234	34	0.07	1.91	5.78	20.81	1.32	3.32
TTRC086	5006238	13	14	L	12	10	13	90745	1007	25	32	136	28	0.05	1.82	5.64	23.15	0.9	1.82
TTRC086	5006314	89	90	0.05	L	13	8	37073	721	22	L	79	47	L	1.74	5.95	3.16	10.8	2.98
TTRC087	5006333	28	32	L	14	16	9	69159	1164	32	15	70	67	L	2.5	6.62	20.73	9.46	4.37
TTRC087	5006337	35	36	L	23	15	6	76898	1386	42	31	51	61	0.06	2.39	3.61	21.95	5.36	3.29
TTRC087	5006338	36	37	L	25	18	6	95054	1963	48	33	44	90	L	3.02	1.74	23.1	3.16	3.23
TTRC087	5006366	77	78	L	L	15	6	47073	816	28	10	837	57	0.16	1.09	9.26	4.31	4.45	2.62
TTRC088	5006395	0	4	0.01	18	26	9134	92318	1067	32	217	15327	698	3.91	65.37	0.59	1.67	13.6	2.79
TTRC088	5006401	7	8	L	12	10	11	91884	377	27	26	815	33	0.05	1.98	8.52	9.13	11.38	4.41
TTRC088	5006456	70	71	L	17	16	4	75748	1202	37	28	72	40	0.1	3.82	4.97	21.76	5.13	4.44
TTRC088	5006460	74	75	0.02	16	13	8	56315	946	35	37	115	47	L	1.71	12.24	21.79	8.17	6.3
TTRC088	5006461	75	76	0.02	20	13	11	73605	1107	37	56	127	49	L	2.43	7.24	38.03	6.59	7.4
TTRC088	5006462	76	77	0.02	27	13	15	70683	899	34	49	253	52	0.11	4.75	4.9	45.38	6.46	6.92
TTRC088	5006463	77	78	L	25	14	9	77916	1199	36	56	160	54	L	2.36	5.16	54.17	27.94	10.67
TTRC088	5006464	78	79	L	26	11	5	65466	746	30	41	144	43	L	1.99	5.39	26.81	5.4	7
TTRC088	5006465	79	80	0.02	26	11	3	66093	686	30	44	88	47	L	2.02	9.66	34.65	5.55	6.46

TABLE 3NT TENEMENTS TREASURE CREEK PTY LTD(wholly-owned subsidiary of King River Resources Limited)

Tenement	Project	Ownership	Comment
EL31617		100%	
EL31618		100%	
EL31619		100%	
EL31623		100%	
EL31624		100%	
EL31625		100%	
EL31626		100%	
EL31627		100%	
EL31628	Tennant Creek	100%	
EL31629		100%	
EL31633		100%	
EL31634		100%	
EL32199		100%	
EL32200		100%	
EL32344		100%	
EL32345		100%	
MLC629		100%	
ML32745		100%	Application

Note:

EL = Exploration Licence (granted)

Appendix 1: King River Resources Limited JORC 2012 Table 1 The following section is provided to ensure compliance with the JORC (2012) requirements for the reporting of exploration results: SECTION 1 : SAMPLING TECHNIQUES AND DATA

Criteria	JORC Code explanation	Commentary
Sampling Techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling	This ASX Release dated 13 September 2024 reports on the recent drilling results at Langrenus, Providence and Commitment. <i>Historical Drilling</i>
Sampling Techniques (continued)	taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	 There is no meaningful historical drilling within EL31619 at Providence. <i>Current RC Programme</i> RC Sampling: All samples from the RC drilling are taken as 1m samples. Samples are sent to NAL Laboratory in Pine Creek for assaying. Appropriate QAQC samples (standards, blanks and duplicates) are inserted into the sequences as per industry best practice. Samples are collected using cone or riffle splitter. Geological logging of RC chips is completed at site with representative chips being stored in drill chip trays. Onsite XRF analysis is conducted on the fines from RC chips using a hand-held Niton XRF Model XL3T 950 Analyser. These results are only used for onsite interpretation and preliminary assessment subject to final geochemical analysis by laboratory assays. It is mentioned in the text that lead was detected by the niton – actual values are not quoted and the results are used as an interpretive tool for further drill hole design. The RC drilling rig has a cone splitter built into the cyclone on the rig. Samples are taken on a one meter basis and collected directly from the splitter into uniquely numbered calico bags. The calico bag contains a representative sample from the drill return for that metre. This results in a representative sample being taken from drill return, for that metre of drilling. The remaining majority of the sample return for that metre is collected and stored in a green plastic bag marked with that specific metre interval. The cyclone is blown through with compressed air after each plastic and calico sample bag is removed. If wet sample or clays are encountered, then the cyclone is opened and cleaned manually and with the aid of a compressed air gun. Geological logging of RC chips is completed at site with representative chips being stored in drill chip trays. Downhole surveys of dip and azimuth are conducted using a single shot camera every 50m to 100m to detect deviations of the hole from the planned dip and azimuth (every

Criteria	JORC Code explanation	Commentary
		DGPS to a greater degree of accuracy (close spaced infill drilling is pegged and picked up with DGPS).
		Aspects of the determination of mineralisation that are Material to the Public Report.
		RC Sampling: Sampling is done from the 1m splits in altered or mineralised rock and at 4m composites in unaltered/unmineralised rock.
		KRR Samples are assayed by NAL Laboratory for multi <elements (inductively="" a="" acid="" analysis="" and="" assay="" assayed="" atomic="" au="" being="" by="" coupled="" dependent="" digest="" either="" element="" emission="" fire="" followed="" for="" four="" grade="" icp<aes="" icp<aes.<="" icp<ms="" is="" mass="" multi="" on="" or="" plasma="" processed="" ranges).="" spectrometry)="" spectroscopy)="" td="" using="" with=""></elements>
		Laboratory QAQC procedures summary:
		Following drying of samples at 85°C in a fan forced gas oven, material <3kg was pulverised to 85% passing 75µm in a LM<5 with samples >3kg passing through a 50:50 riffle split prior to pulverisation. Fire assay was undertaken on a 30g charge using lead flux Ag collector fire assay with aqua regia digestion and ICP <aes 0.25g="" a="" acid="" acids="" and="" combination="" completed="" determination="" digestion.="" element="" finish.="" for="" four="" hydrofluoric="" icp<aes="" icp<ms="" including="" instrumentation.<="" methodology="" multiple="" near="" of="" on="" td="" total="" undertaken="" using="" was="" with=""></aes>
Drilling techniques	Drill type (e.g. core, reverse circulation, open <hole air<br="" hammer,="" rotary="">blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face<sampling bit="" or="" other<br="">type, whether core is oriented and if so, by what method, etc.).</sampling></hole>	<i>Current RC Programme</i> The RC drilling uses a 140 mm diameter face hammer tool. High capacity air compressors on the drill rig are used to ensure a continuously sealed and high pressure system during drilling to maximise the recovery of the drill cuttings, and to ensure chips remain dry to the maximum extent possible.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed,	Current RC Programme
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	RC samples are visually checked for recovery, moisture and contamination.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Geological logging is completed at site with representative RC chips stored in chip trays and core in diamond core trays.
		RC Samples are collected using cone or riffle splitter. Geological logging of RC chips is completed at site with representative chips being stored in drill chip trays.

Criteria	JORC Code explanation	Commentary
		To date, no detailed analysis to determine the relationship between sample recovery and grade has been undertaken for any drill program. This analysis will be conducted following any economic discovery.
		The nature of IOCG mineralisation within ironstones is considered to significantly reduce any possible issue of sample bias due to material loss or gain.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 <i>Current RC Programme</i> Geological logging is carried out on all drill holes with lithology, alteration, mineralisation, structure and veining recorded. Logging of records lithology, mineralogy, mineralisation, structures (foliation), weathering, colour and other noticeable features. Selected mineralised intervals were photographed in both dry and wet form. All drill holes are geologically logged in full and detailed lithogeochemical information is collected by the field XRF unit to help determine potential mineralised intersections. The data relating to the elements analysed is used to determine further information regarding the detailed rock composition and mineralised intervals.
Sub <sampling techniques and sample preparation</sampling 	 If core, whether cut or sawn and whether quarter, half or all core taken. If non<core, and="" dry.<="" etc.="" li="" or="" riffled,="" rotary="" sampled="" sampled,="" split,="" tube="" wet="" whether=""> For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub<sampling li="" maximise="" of="" representivity="" samples.<="" stages="" to=""> Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second<half li="" sampling.<=""> Whether sample sizes are appropriate to the grain size of the material being sampled. </half></sampling></core,>	 Geophysics: The UAV survey was flown with a PAS H100 Rotary Wing Electric helicopter with onboard GNSS GPS receiver accuracy of Vertical: ±0.5 m, Horizontal: ±1.5 m (hovering). The Gravity survey was completed with a Scintrex CG-5 Autograv meter which has an accuracy of 0.01mgal. The DDIP survey was carried out with a GDD Tx4 Transmitter along with a SmartEM24 receiver. <i>Current RC Programme</i> There is no diamond drilling reported, any core is sampled half core using a core saw. RC samples are collected in dry form. Samples are collected using cone or riffle splitter when
		available. Geological logging of RC chips is completed at site with representative chips being stored in drill chip trays.

Criteria	JORC Code explanation	Commentary
		Assay preparation procedures ensure the entire sample is pulverised to 75 microns before the sub-sample is taken. This removes the potential for the significant sub-sampling bias that can be introduced at this stage. Field QC procedures maximise representivity of RC samples and eliminate sampling errors, including the use of duplicate samples. Also the use of certified reference material including assay standards and with blanks aid in maximising representivity of samples. For fire assay a run of 78 client samples includes a minimum of one method blank, two certified reference materials (CRMs) and three duplicates. For the multi <element 35="" 9001:2008.<br="" a="" analytical="" and="" blank,="" certified="" client="" consists="" crms="" duplicates.="" facility="" is="" iso="" lot="" method="" method,="" minimum="" of="" one="" qc="" samples="" the="" to="" two="" up="" with="">Field duplicates were taken every 20th sample for RC samples.</element>
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Geophysics: Geophysical field data is collected by the contracted survey companies then reviewed by their geophysicist before submitted to geophysical consultants employed by KRR - Core Geophysics – for further review, this review work is ongoing during the survey and also after the survey for final processing. IP survey parameters below: Array Type: Dipole-Dipole (DDIP) Receiver Dipole Spacing: 50m Receiver Station Spacing: 50m Receiver Line Length: various from 800-1000 m Transmitter Dipole Spacing: 50m Transmitter Station Spacing: 50 m Transmitter Station Spacing: 50 m Transmitter Station Spacing: 50 m

Criteria	JORC Code explanation	Commentary
		 Line Direction: various Transmitter Frequency: 0.125Hz (2 sec time base)
		Current RC Programme
		RC drill samples as received from the field are being assayed by NAL Laboratory for multi <elements (inductively="" (nitric,="" 9001:2008.<="" a="" acid="" acids)="" analysis="" analytical="" and="" assay="" assayed="" atomic="" au="" being="" by="" certified="" coupled="" dependent="" digest="" either="" element="" emission="" facility="" fire="" followed="" for="" four="" grade="" hydrochloric,="" hydrofluoric="" icp<aes="" icp<aes.="" icp<ms="" is="" iso="" mass="" minimum="" multi="" of="" on="" or="" perchloric="" plasma="" processed="" ranges).="" spectrometry)="" spectroscopy)="" td="" the="" to="" using="" with=""></elements>
		Handheld XRF instruments for RC drilling A handheld XRF instrument (Niton XRF Model XL3T 950 Analyser) is used to systematically analyse the RC chips onsite. Reading time was 60 seconds. The instruments are serviced and calibrated at least once a year. Field calibration of the XRF instrument using standards is undertaken each day. If It is mentioned in the text that gold was detected by the niton – actual values are not quoted and the results are used as an interpretive tool for further drill hole design. Detection of gold by the niton device is not considered reliable as it is possible that a mineral with similar characteristics was detected.
		Nature of quality control procedures adopted for RC drilling Laboratory QA/QC involves the use of internal lab standards using certified reference material, blanks, splits and replicates as part of in house procedures. The Company will also submit an independent set of field duplicates, standards and blanks (see above).
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	<i>Geophysical:</i> All survey data was transferred to contractor personnel on a daily basis for verification.
		RC:
		Data entry carried out by field personnel thus minimizing transcription or other errors. Careful field documentation procedures and rigorous database validation ensure that field and assay data are merged accurately. Significant intersections are verified by the Company's Chief Geologist and Senior Consulting Geologist.
	The use of twinned holes.	This is the first drill programme at the relevant targets and work is at an early exploration stage

Criteria	JORC Code explanation	Commentary
		no twin holes have been drilled yet.
Verification of sampling and assaying (continued)	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	<i>Current RC Programme</i> Geological data was collected using handwritten log sheets and imported in the field onto a laptop detailing geology (weathering, structure, alteration, mineralisation), sampling quality and intervals, sample numbers, QA/QC and survey data. This data, together with the assay data received from the laboratory and subsequent survey data was entered into the Company's database.
	Discuss any adjustment to assay data.	No adjustments or calibrations will be made to any primary assay data collected for the purpose of reporting assay grades and mineralised intervals.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down <hole and="" locations="" mine="" other="" surveys),="" trenches,="" used<br="" workings="">in Mineral Resource estimation.</hole>	 Geophysics The UAV data has been collected automatically by the on-board integrated GPS which employs a recording rate of 10Hz. Gravity Data points were located using Hi Target V100 GNSS receivers for the base and rover operating via RTK through a robust radio network. Accuracy of the positioning is better than 5cm in both horizontal and vertical. The IP survey data points were located with Garmin hand held GPS which provides an accuracy around 5m All data were collected in WGS84 datum converted to MGA Zone 53 grid system <i>Current RC Programme</i> GPS pickups of exploration drilling is considered adequate at this stage of preliminary exploration.
	Specification of the grid system used.	All rock samples, drill collar and geophysical sample locations recorded in GDA94 Zone 53.
	Quality and adequacy of topographic control.	Geophysical: Topographic locations interpreted from GPS pickups (barometric altimeter), DEMs and field observations. Adequate for first pass exploration. Current RC Programme Topographic locations interpreted from GPS pickups (barometric altimeter), DGPS pickups, DEMs and field observations. Adequate for first pass reconnaissance. Best estimated RLs were assigned during drilling and are to be corrected at a later stage.
	Data spacing for reporting of Exploration Results.	 Geophysical: The UAV line spacing was 50m with data recorded every 0.1 second to provide stations at

Criteria	JORC Code explanation	Commentary
Data spacing and distribution		 approximately 50cm. The base station recorded every 1 second. The Gravity spacing ranged from 25m x 25m, 100m x 50m and 100m x 100m. The IP lines ranged from 200m to 250m spacing with receiver electrodes at 50m spacing. The data density is considered appropriate to the purpose of the survey.
		Current RC Programme
		Exploration holes vary from 25m to 700m spacing.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	<i>Geophysics:</i> The geophysical work designed to generate/confirm exploration targets for drilling. The spacing is purely to provide targeting information for future drilling.
		Current RC Programme
		Drilling at the Project is at the exploration stage and mineralisation has not yet demonstrated to be sufficient in both geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications to be applied.
	Whether sample compositing has been applied.	Current RC Programme
		RC drill samples are taken at one metre lengths and adjusted where necessary to reflect local variations in geology or where visible mineralised zones are encountered, in order to preserve the samples as representative.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	<i>Geophysics</i> The geophysical work designed to generate/confirm exploration targets for drilling. The spacing is purely to provide targeting information for future drilling.
		The orientation of the survey data collection is design where possible to be perpendicular to the main or most relevant structures and is sufficient to locate discrete anomalies At Commitment the DDIP lines are SW to NE to test an interpreted northwest target trend. Gravity surveys are on a north south/east west even spaced grid pattern.
		Current RC Programme:
		The drill holes are drilled at an angle of -60 degrees (unless otherwise stated) on an azimuth designed to intersect the modelled mineralised zones at a near perpendicular orientation. However, the orientation of key structures may be locally variable and any relationship to mineralisation has yet to be identified.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No orientation-based sampling bias has been identified in the data to date.

Criteria	JORC Code explanation	Commentary
Sample security	The measures taken to ensure sample security.	 KRR Samples: Chain of Custody is managed by the Company until samples pass to a duly certified assay laboratory for subsampling and assaying. The rock chip and RC sample bags are stored on secure sites and delivered to the assay laboratory by the Company or a competent agent. When in transit, they are kept in locked premises. Transport logs have been set up to track the progress of samples. The chain of custody passes upon delivery of the samples to the assay laboratory. Pulps will be stored until final results have been fully interpreted.
Audits or Reviews	The results of ay audits or reviews of sampling techniques and data.	Sampling techniques and procedures are regularly reviewed internally, as is data. To date, no external audits have been completed on the drilling programme. Geophysical data was verified by Core Geophysics.

SECTION 2 : REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The Tennant Creek Project comprises 16 granted exploration licences, one granted mining lease and one application mining lease. Details are listed in Table 3 of the announcement. The tenements are 100% owned by Treasure Creek Pty Ltd (a wholly owned subsidiary of King River Resources Limited), located over the Tennant Creek-Davenport Inliers, south, east and south east of Tennant Creek in the Northern Territory. The Kurundi Native Title Claim (DCD2011/015) covers the Kurundi Pastoral Lease PPL 1109 affecting EL31623, 31624, 31626, 31628, 31629, EL32199 and EL32200. The Davenport and Murchison Ranges sites of conservation significance affect portions of EL31626, 31627, 31628, 31629, EL32199, EL32200, EL32344 and EL32345.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Tennant Creek Project: Tennant Creek mineral field has had a long history of exploration and mining (since 1933). Historical exploration around the main Tennant Creek Gold Field primarily included work by Giants Reef, Peko, Posiedon, Roebuck, Normandy (later Newmont) and Tennant Creek Gold. Exploration was primarily based on geophysical surveys targeting coincident gravity and ground magnetic anomalies, followed by RC or diamond drilling. Lines of RAB or Aircore holes were also drilled where specific geophysical models were not present. Currently the bulk of the Tennant Creek mineral field is held by Emmerson Resources. Treasure Creeks applications are outside of the main gold field (except ELA31619) extending from Tennant Creek to Hatches Creek gold fields. Historic exploration over the applications east of the Stuart highway has been sparse and sporadic, with companies including Giants Reef, Normandy, Newmont doing minimal, if any, on ground work (on ground work included a few very broad spaced RAB lines). In the early to mid-2000's Arafura completed some broad spaced soil samples but relinquished the ground without pursuing any anomalies that were discovered. Applications west of the highway cover ground that was involved in exploration around the Rover Gold Field, including companies such as Geopeko, Giants Reef, Newmont, Western Desert Resources and Tennant Creek Gold. Exploration included magnetic and gravity surveys, geophysical analysis, targeted RC and diamond drilling. The tenements in this area cover significant IOCG targets generated from this work. EL31617 covers ground held by Tennant Creek Gold/Western Desert Resources as part of their Rover Exploration Project which they relinquished in 2014 in favour of their developing iron ore projects. Rock chip sample results referred to at Kurundi and Whistle Duck were taken were taken by various companies in the 1960's.

Criteria	JORC Code explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	Exploration at Tennant Creek is targeting Iron Oxide-Copper Gold (IOCG) style of mineralisation in several settings, lithologies and structural complexities within the Proterozoic Tennant Creek-Davenport Inliers.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Drill information reported in this announcement relates to KRC's 2023 RC drilling and is presented in Table 1, Table 2 and Figures 1 to 4.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut <off and="" are="" be="" grades="" material="" should="" stated.<="" td="" usually=""><td> Drill intersections: Intersections calculated using a weighted average of grade vs metres. Also: No metal equivalent calculations used. No upper cuts used in intersection calculations. </td></off>	 Drill intersections: Intersections calculated using a weighted average of grade vs metres. Also: No metal equivalent calculations used. No upper cuts used in intersection calculations.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	The KRR downhole drill intersects in this report have been reported as geochemically anomalous results selected based on geology and combination of values Au (>50ppb), As (>100ppm), Co (>50ppm), Cu (>500ppm), S (>500ppm), Sb (>20ppm), Ag (>2ppm). These values are considered key elements in Tennant Creek IOCG deposit mineralisation. No metal equivalent values are used for reporting exploration results.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	 Down hole widths have been quoted in this report. The main targets are assumed vertical. o Drill holes were drilled perpendicular to structure strike where possible. o This is the first drilling at Providence and a full interpretation of the respective prospect is still yet to be done.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being	Figure 1 shows the location of Providence, Langrenus and Commitment in relation to surrounding IOCG Deposits and the nearby geophysical trends, Figure 2 shows the main

Criteria	JORC Code explanation	Commentary
	reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	mineralised trends close to Langrenus, drill hole locations and summary of anomalous results, and Figure 3 shows the main mineralised trends close to Providence, drill hole locations and summary of anomalous results, Figure 4 summarises KRR's holdings, and recent exploration work and targets.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Reports on recent exploration can be found in ASX Releases that are available on our website at <u>www.kingrivercopper.com.au</u> . The exploration results reported are representative of the mineralisation style with grades and/or widths reported in a consistent manner.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Historic exploration on KRR's Tennant Creek holdings is sparse. Historic exploration at Providence is sparse, there has been little exploration in these areas. KRR is the first company to drill at the Providence prospect. There is no relevant historical drilling within EL31619 at the Providence, Commitment and Langrenus target areas. KRR has previously undertaken reconnaissance and ground geophysics at Providence. KRR has previously undertaken rock chip sampling and reconnaissance, ground geophysics, and RC drilling at its Langrenus and Commitment areas.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large <scale drilling).<br="" step<out="">Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</scale>	KRR plans to implement a focused, thorough gold and copper exploration process utilising contemporary geophysical and exploration techniques. A large geophysics programme across KRR's main targets has been completed and KRR is planning to allocate 13,500m of RC drilling to the best targets generated to be completed 2023/2024 this started with drilling at Providence and Langrenus and will now continue at Kurundi Regional Project.