

RESOURCES LIMITED

ASX ANNOUNCEMENT

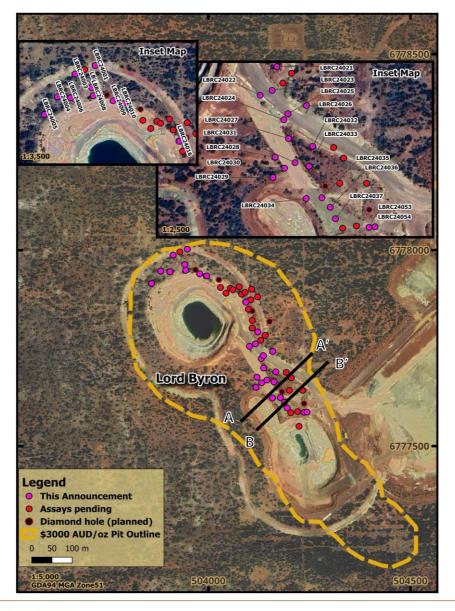
27 August 2024

WIDE ZONES OF MINERALISATION RESULTS RETURNED FROM LORD BYRON INFILL DRILLING

HIGHLIGHTS

- The first assay results have been received from the ~8,000m Lord Byron infill drilling program at the Jasper Hills Gold Project
- The program forms part of an Reverse Circulation (RC) and Diamond (DD) drill-out at Jasper Hills, which was designed to infill the resource, improve the JORC classification and provide information for mine planning at the proposed Lord Byron Open Pit and Fish Underground mines announced in the Jasper Hills Scoping Study¹
- Intercepts returned at Lord Byron, targeted to be mined via an open pit in 2025, include:
 - o LBRC24034:
 - **32m @ 1.25 g/t Au from 53m**
 - o LBRC24007:
 - 24m @ 1.53 g/t Au from 53m
 - o LBRC24037:
 - 19m @ 1.34 g/t Au from 73m
 - o LBRC24001:
 - 14m @ 1.44 g/t Au from 77m
 - o LBRC24015:
 - 12m @ 1.73 g/t Au from 177m
 - o LBRC24016:
 - 15m @ 1.47 g/t Au from 178m

- LBRC24008:
 - 5m @ 4.29 g/t Au from 92m
- LBRC24054:
 - 9m @ 1.47 g/t Au from 29m, and
 - 7m @ 3.36 g/t Au from 129m
- LBRC24032:
 - 9m @ 2.05 g/t Au from 95m, and
 - 4m @ 3.12 g/t Au from 71m
- **LBRC24027:**
 - 5m @ 2.13 g/t Au from 52m
- 54 RC holes and 2 DD holes have been drilled at Lord Byron, with assays pending for 25 RC holes, and an additional 9 DD drillholes remaining to drill at Lord Byron
- 30 RC holes and 8 DD holes have been completed at the Fish deposit, with assays to be reported when received and analysed. This drilling was completed to provide geological, metallurgical and geotechnical information to support near term mining operations
- The RC drilling rig has completed the program at Jasper Hills and has remobilised to Menzies to complete the infill drilling program at the Lady Shenton deposit
- A diamond drill rig is presently at Lord Byron completing a ~1,500m program with completion of all drilling at Jasper Hills targeted by early September 2024



Brightstar Resources Limited (ASX: BTR) (**Brightstar**) is pleased to announce the first results from RC infill drilling at the Lord Byron deposit, part of the 293koz Au Jasper Hills Gold Project. The program is targeting gold mineralisation within conceptual open pit shells beneath and between the existing open pits in order to increase confidence in the current resource.

Brightstar's Managing Director, Alex Rovira, commented "These assays represent the first results from the recently acquired Linden Gold exploration package at the Jasper Hills Gold Project. The results are highly encouraging and align with grades and widths we expected from the existing 244koz Au mineral resource.

The increased confidence from this infill drilling will feed back into future resource estimates and ultimately help guide the near-term development of open pit mining operations at Lord Byron, as detailed in our recent scoping study¹, which outlined the highly profitable production of 2.2Mt @ 1.6g/t for 115koz Au over three years.

Drilling continues with two drill rigs currently active at the Jasper Hills and Menzies Gold Projects, which will generate ongoing news flow in the coming months as assays are received and our geological understanding develops across our portfolio."

TECHNICAL DISCUSSION

The RC drilling program at the Lord Byron totals 54 drill holes for ~8,000m of drilling, with assays pending for 25 holes.

The program aimed to infill the inferred portion of the resource within optimised open pit shells to a nominal 20m x 20m spacing in order to facilitate and upgrade of the resource to Indicated classification. This supports the ongoing definitive feasibility study and the assessment of a potential fast-tracked mine development.

An additional 1,500m diamond drilling program is presently underway at Lord Byron, which will provide structural, geotechnical, and metallurgical data for mine design and planning purposes.

Geological Observations

The Lord Byron drillholes intersected thick sequences of amphibolite with interbedded BIF layers. Mineralisation was typically associated with significant shearing and abundant quartz veining with pyrite. An increase in biotite alteration was also common within zones of intense deformation. The shearing is interpreted to be represent the Bicentennial shear zone, a 100-m wide, NW-trending zone of ductile deformation and strong alteration.

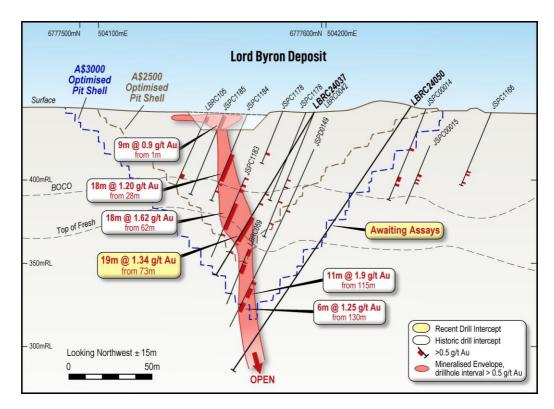


Figure 2 - Cross section A-A' showing LBRC24037 and LBRC24050 with mineralised >0.5g/t Au intercepts with reference to A\$2,500/oz and \$3,000/oz conceptual pit shells.

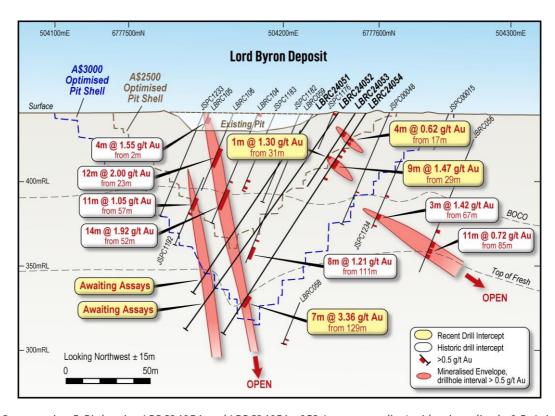


Figure 3 - Cross section B-B' showing LBRC24054 and LBRC24051 - 053 (assays pending) with mineralised >0.5g/t Au intercepts with reference to A\$2,500/oz and \$3,000/oz conceptual pit shells.

Figure 4 - RC and DD rigs drilling at the Fish Deposit (Jasper Hills, August 2024)

Table 1 – Significant Intercepts (>0.5g/t Au) for the Lord Byron RC drilling

Hole ID	From (m)	To (m)	Drilled Interval (m)	Au (g/t)	Interval	Gram- metres
LBRC24001	48	52	4	0.99	4m @ 0.99g/t from 48m	3.96
LBRC24001	77	91	14	1.44	14m @ 1.44g/t from 77m	20.16
LBRC24003					NSI	
LBRC24004	19	20	1	0.64	1m @ 0.64g/t from 19m	0.64
EBRC24004	26	27	1	0.56	1m @ 0.56g/t from 26m	0.56
	16	17	1	0.59	1m @ 0.59g/t from 16m	0.59
LBRC24005	26	27	1	1.24	1m @ 1.24g/t from 26m	1.24
	37	43	6	0.54	6m @ 0.54g/t from 37m	3.24
	48	49	1	0.6	1m @ 0.6g/t from 48m	0.6
188024000	26	30	4	1.14	4m @ 1.14g/t from 26m	4.56
LBRC24006	42	46	4	2.29	4m @ 2.29g/t from 42m	9.16
	25	26	1	2.67	1m @ 2.67g/t from 25m	2.67
LPDC24007	32	35	3	1.61	3m @ 1.61g/t from 32m	4.83
LBRC24007	53	77	24	1.53	24m @ 1.53g/t from 53m	36.72
	92	94	2	2.85	2m @ 2.85g/t from 92m	5.7
LBRC24008	35	40	5	1.29	5m @ 1.29g/t from 35m	6.45
LDNC24008	45	46	1	0.56	1m @ 0.56g/t from 45m	0.56

	55	64	9	1	9m @ 1g/t from 55m	9
	70	72	2	0.76	2m @ 0.76g/t from 70m	1.52
	77	78	1	1.35	1m @ 1.35g/t from 77m	1.35
	87	88	1	0.88	1m @ 0.88g/t from 87m	0.88
	92	97	5	4.29	5m @ 4.29g/t from 92m	21.45
	86	89	3	0.76	3m @ 0.76g/t from 86m	2.28
	100	102	2	2.43	2m @ 2.43g/t from 100m	4.86
LBRC24009	110	111	1	0.58	1m @ 0.58g/t from 110m	0.58
	121	124	3	1.2	3m @ 1.2g/t from 121m	3.6
	128	132	4	1.03	4m @ 1.03g/t from 128m	4.12
	140	141	1	1.31	1m @ 1.31g/t from 140m	1.31
	88	89	1	4.27	1m @ 4.27g/t from 88m	4.27
	110	111	1	0.58	1m @ 0.58g/t from 110m	0.58
LBRC24010	114	115	1	0.97	1m @ 0.97g/t from 114m	0.97
LBRC24010	133	136	3	2.25	3m @ 2.25g/t from 133m	6.75
	141	147	6	2.17	6m @ 2.17g/t from 141m	13.02
	167	170	3	0.59	3m @ 0.59g/t from 167m	1.77
LBRC24015	106	107	1	0.54	1m @ 0.54g/t from 106m	0.54

	143	144	1	1.43	1m @ 1.43g/t from 143m	1.43
	150	154	4	0.68	4m @ 0.68g/t from 150m	2.72
	164	165	1	0.65	1m @ 0.65g/t from 164m	0.65
	172	173	1	1.07	1m @ 1.07g/t from 172m	1.07
	177	189	12	1.73	12m @ 1.73g/t from 177m	20.76
	109	112	3	1.41	3m @ 1.41g/t from 109m	4.23
	155	156	1	0.91	1m @ 0.91g/t from 155m	0.91
LBRC24016	162	163	1	0.54	1m @ 0.54g/t from 162m	0.54
	167	169	2	0.9	2m @ 0.9g/t from 167m	1.8
	178		15	1.47	15m @ 1.47g/t from 178m	22.05
	197	198	1	0.58	1m @ 0.58g/t from 197m	0.58
100024022	90	91	1	6.84	1m @ 6.84 g/t from 90m	6.84
LBRC24022	102	109	7	1.33	7m @ 1.33 g/t from 102m	9.32
LBRC24023	125	134	9	1.5	9m @ 1.50g/t from 125m	13.5
IDD6246244	104	105	1	1.43	1m @ 1.43 g/t from 105m	1.43
LBRC24024A	111	123	12	0.98	12m @ 0.98 g/t from 111m	11.72
LDDC34035	49	50	1	0.82	1m @ 0.82 g/t from 49m	0.82
LBRC24025	54	58	4	1.78	4m @ 1.78 g/t from 54m	7.11

	62	66	4	1.2	4m @ 1.20 g/t from 62m	4.81	
	72	73	1	0.92	1m @ 0.92 g/t from 72m	0.92	
	121	124	3	2.95	3m @ 2.95 g/t from 121m	8.85	
	129	131	2	2.75 2m @ 2.75 g/t from 129m		5.5	
LBRC24026	72	76	4	0.75	0.75 4m @ 0.75g/t from 72m		
	45	48	3	0.86	3m @ 0.86g/t from 45m	2.58	
	52	57	5	2.13	5m @ 2.13g/t from 52m	10.65	
LBRC24027	65	66	1	0.66	1m @ 0.66g/t from 65m	0.66	
	90	92	2	1.1	2m @ 1.1g/t from 90m	2.2	
	100 101 1		1	0.59	1m @ 0.59g/t from 100m	0.59	
	3	4	1	1.3	1m @ 1.30 g/t from 3m	1.3	
LBRC24028	21	22	1	0.55	1m @ 0.55 g/t from 21m	0.55	
	23	24	1	1.23	1m @ 1.23 g/t from 23m	1.23	
LBRC24029	30	42	12	0.82	12m @ 0.82 g/t from 30m	9.83	
	54	56	2	1.02	2m @ 1.02 g/t from 54m	2.03	
LBRC24030					NSI		
LBRC24031					NSI		
LBRC24032	42	54	12	0.76	12m @ 0.76 g/t from 42m	9.15	
LDNC24032	58	59	1	0.91	1m @ 0.91 g/t from 58m	0.91	

	63	67	4	0.74	4m @ 0.74 g/t from 63m	2.97
	71	75	4	3.12	4m @ 3.12 g/t from 71m	12.49
	79	80	1	0.74	1m @ 0.74 g/t from 79m	0.74
	86	89	3	1.42	3m @ 1.42 g/t from 86m	4.26
	95	104	9	2.05	9m @ 2.05 g/t from 95m	18.41
	110	114	4	1.66	4m @ 1.66 g/t from 110m	6.64
	125	126	1	0.5	1m @ 0.50 g/t from 125m	0.5
	137	138	1	0.83	1m @ 0.83 g/t from 137m	0.83
	40	45	5	0.76	5m @ 0.76g/t from 40m	3.8
	52	56	4	1.65	4m @ 1.65g/t from 52m	6.6
	67	70	3	0.62	3m @ 0.62g/t from 67m	1.86
LBRC24033	77	78	1	1.56	1m @ 1.56g/t from 77m	1.56
LBRC24033	84	85	1	1.17	1m @ 1.17g/t from 84m	1.17
	89	93	4	1.14	4m @ 1.14g/t from 89m	4.56
	96	99	3	0.73	3m @ 0.73g/t from 96m	2.19
	102	106	4	0.68	4m @ 0.68g/t from 102m	2.72

	113	114	1	0.51	1m @ 0.51g/t from 113m	0.51
	46	47	1	1.19	1m @ 1.19 g/t from 46m	1.19
LBRC24034	53	85	32	1.25	32m @ 1.25 g/t from 53m	39.89
	89	90	1	1.9	1m @ 1.90 g/t from 89m	1.9
	64	67	3	0.6	3m @ 0.60 g/t from 64m	1.79
	74	78	4	0.76	4m @ 0.76 g/t from 74m	3.05
LBRC24035	83	84	1	7.07	1m @ 7.07 g/t from 83m	7.07
	93		8	1.16	8m @ 1.16 g/t from 93m	9.25
			1	0.57	1m @ 0.57 g/t from 105m	0.57
	63	71	8	1.09	8m @ 1.09 g/t from 63m	8.7
LBRC24036	92	98	6	0.98	6m @ 0.98 g/t from 92m	5.87
	104	105	1	1.48	1m @ 1.48 g/t from 104m	1.48
	56	57	1	0.76	1m @ 0.76 g/t from 56m	0.76
100034037	63	64	1	0.61	1m @ 0.61 g/t from 63m	0.61
LBKC2403/	LBRC24037 73		19	1.34	19m @ 1.34 g/t from 73m	25.43
	97	98	1	0.62	1m @ 0.62 g/t from 97m	0.62
LBRC24053	13	16	3	1.68	3m @ 1.68g/t from 13m	5.04

	21	22	1	0.88	1m @ 0.88g/t from 21m	0.88
	31	32	1	1.3	1m @ 1.30g/t from 31m	1.3
	108	109	1	0.62	1m @ 0.62g/t from 108m	0.62
	121	128	7	1.58	7m @ 1.58g/t from 121m	11.06
	133	136	3	0.78	3m @ 0.78g/t from 133m	2.34
	17	21	4	0.62	4m @ 0.62g/t from 17m	2.48
	25	26	1	0.62	1m @ 0.62g/t from 25m	0.62
LBRC24054	29	38	9	1.47	9m @ 1.47g/t from 29m	13.23
	45	46	1	0.5	1m @ 0.5g/t from 45m	0.5
	129	136	7	3.36	7m @ 3.36g/t from 129m	23.52

Table 2 – Lord Byron 2024 Reverse Circulation collar information Holes located on tenements M39/262 and M39/185. Grid coordinates shown in MGA94 Zone 51.

Hole ID	Easting	Northing	RL	Azimuth	Dip	Hole Depth (m)	Status
LBRC24001	503948	6778002	444	230	-60	95	This ASX Announcement
LBRC24002	503929	6777995	443	230	-60	72	Assays Pending
LBRC24003	503913	6777987	443	230	-60	48	This ASX Announcement
LBRC24004	503882	6777946	441	230	-60	42	This ASX Announcement
LBRC24005	503860	6777915	440	230	-60	70	This ASX Announcement
LBRC24006	503905	6777945	441	230	-60	48	This ASX Announcement
LBRC24007	503941	6777963	442	230	-60	96	This ASX Announcement
LBRC24008	503944	6777948	442	230	-60	110	This ASX Announcement

i I							This ASX
LBRC24009	503979	6777939	442	230	-60	150	Announcement
LBRC24010	503996	6777934	442	230	-54	170	This ASX Announcement
LBRC24011	504030	6777905	442	230	-56	180	Assays Pending
LBRC24012	504054	6777903	443	230	-56	205	Assays Pending
LBRC24013	504044	6777890	442	220	-55	180	Assays Pending
LBRC24014	504082	6777887	445	230	-58	90	Assays Pending
LBRC24015	504093	6777868	443	231	-55	210	This ASX Announcement
LBRC24016	504093	6777867	443	230	-59	198	This ASX Announcement
LBRC24017	504099	6777849	443	230	-55	230	Assays Pending
LBRC24018	504109	6777821	443	230	-57	210	Assays Pending
LBRC24019	504108	6777801	443	245	-55	180	Assays Pending
LBRC24020	504109	6777801	443	235	-55	180	Assays Pending
LBRC24021	504122	6777791	442	230	-60	190	Assays Pending
LBRC24022	504102	6777754	442	230	-60	138	This ASX Announcement
LBRC24023	504117	6777761	442	230	-60	162	This ASX Announcement
LBRC24024A	504131	6777723	442	255	-60	144	This ASX Announcement
LBRC24025	504136	6777731	442	206	-58	150	This ASX Announcement
LBRC24026	504159	6777741	444	230	-57	90	This ASX Announcement
LBRC24027	504137	6777699	442	230	-60	120	This ASX Announcement
LBRC24028	504120	6777675	441	230	-60	24	This ASX Announcement
LBRC24029	504118	6777649	441	230	-60	60	This ASX Announcement
LBRC24030	504132	6777661	441	230	-60	24	This ASX Announcement
LBRC24031	504145	6777668	441	230	-60	24	This ASX Announcement
LBRC24032	504167	6777689	442	230	-60	144	This ASX Announcement
LBRC24033	504162	6777664	441	230	-60	126	This ASX Announcement
LBRC24034	504163	6777626	441	230	-55	90	This ASX Announcement
LBRC24035	504178	6777624	441	230	-60	120	This ASX Announcement

LBRC24036	504189	6777611	441	230	-63	130	This ASX Announcement
LBRC24037	504195	6777597	440	230	-60	114	This ASX Announcement
LBRC24038	503995	6777934	442	230	-62	190	Assays Pending
LBRC24039	504061	6777899	443	230	-60	215	Assays Pending
LBRC24040	504076	6777907	444	230	-60	240	Assays Pending
LBRC24041	504091	6777892	444	230	-60	240	Assays Pending
LBRC24042	504107	6777900	444	230	-60	265	Assays Pending
LBRC24043	504105	6777873	443	230	-60	255	Assays Pending
LBRC24044	504122	6777881	443	230	-60	280	Assays Pending
LBRC24045	504130	6777770	444	228	-62	200	Assays Pending
LBRC24046	504141	6777782	443	228	-61	220	Assays Pending
LBRC24047	504193	6777688	444	230	-60	175	Assays Pending
LBRC24048	504205	6777674	444	230	-56	180	Assays Pending
LBRC24049	504200	6777642	443	230	-60	195	Assays Pending
LBRC24050	504233	6777642	445	230	-56	195	Assays Pending
LBRC24051	504204	6777585	441	220	-56	132	Assays Pending
LBRC24052	504221	6777588	441	220	-56	158	Assays Pending
LBRC24053	504237	6777586	440	210	-55	150	This ASX Announcement
LBRC24054	504244	6777587	440	230	-57	156	This ASX Announcement

Next Steps

Brightstar will advise the market of further drilling progress, including assay results and geological interpretations when they are completed.

The ~30,000m RC and DD drilling programs at the Menzies and Jasper Hills Gold Project are being completed to advance the projects through the definitive feasibility study workstreams currently underway, and in the case of the Jasper Hills project areas, to support the potential near-term development of open pit and underground mining operations.

References

1. Refer Brightstar Resources ASX announcement dated 25 March 2024 "Jasper Hills Scoping Study"

This ASX announcement has been approved by the Managing Director on behalf of the board of Brightstar.

FOR FURTHER INFORMATION, PLEASE CONTACT:

Alex Rovira

Managing Director

Email: alex@brightstarresources.com.au

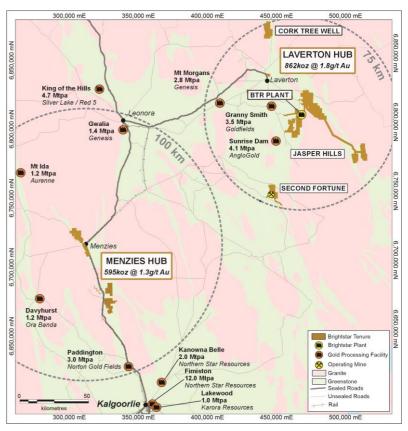
Investor Relations

Lucas Robinson

Phone: +61 408 228 889

Email: lucas@corporatestorytime.com

BRIGHTSTAR RESOURCES LIMITED



ABOUT BRIGHTSTAR RESOURCES

Brightstar Resources Limited is a Perthbased gold exploration and development company listed on the Australian Securities Exchange (ASX: BTR).

In May 2023, Brightstar completed a merger with Kingwest Resources Limited via a Scheme of Arrangement, which saw the strategic integration of Kingwest's Menzies Gold Project into the Company, with the Selkirk Mining JV at Menzies pouring first gold in March 2024 generating \$6.5M profit to Brightstar.

In June 2024, Brightstar finalised the offmarket takeover of unlisted WA-based gold mining company Linden Gold Alliance Limited which saw Brightstar transition to being an owner-operator at the underground Second Fortune Gold Mine located south of Laverton.

Brightstar Eastern Goldfield Asset locations

Hosted in the prolific Eastern Goldfields of Western Australia and ideally located proximal to significant regional infrastructure and suppliers, Brightstar holds a significant **JORC Mineral Resource of 28.7Mt @ 1.6g/t Au for 1.45Moz Au** across the portfolio.

Importantly, Brightstar owns the Brightstar processing plant (currently on care and maintenance), a 60-man accommodation camp and non-processing infrastructure, located 30km SE of Laverton and within 75km of +850koz Au of JORC Resources within the Laverton Hub including access to key haul road infrastructure.

With a proven strategy of resource growth across its portfolio, Brightstar is aggressively drilling to expand and develop its mineral resource inventory in the Tier-1 gold district of the Eastern Goldfields with the view to becoming a substantial ASX gold producer.

Table 3 - Consolidated JORC Resources of Laverton & Menzies Hubs

Location		М	easure	k	In	dicated			Inferred			Total	
	Au Cut-off (g/t)	Kt	g/t Au	Koz	Kt	g/t Au	Koz	Kt	g/t Au	Koz	Kt	g/t Au	Koz
Alpha	0.5	623	1.6	33	374	2.1	25	455	3.3	48	1,452	2.3	106
Beta	0.5	345	1.7	19	576	1.6	29	961	1.7	54	1,882	1.7	102
Cork Tree Well	0.5	-	-	-	3,036	1.6	157	3,501	1.3	146	6,537	1.4	303
Lord Byron	0.5	453	1.8	26	1,141	1.6	58	2,929	1.7	160	4,523	1.7	244
Fish	0.6	26	7.7	6	149	5.8	28	51	4.3	7	226	5.7	41
Gilt Key	0.5	-	-	-	15	2.2	1	153	1.3	6	168	1.3	8
Second Fortune (UG)	2.5	17	16.9	9	78	8.2	21	71	12.3	28	165	10.9	58
Total – Laverton		1,464	2.0	93	5,369	1.8	319	8,121	1.7	449	14,953	1.8	862
Lady Shenton System (Pericles, Lady Shenton, Stirling)	0.5	-	-	-	2,770	1.3	119	4,200	1.3	171	6,970	1.2	287
Yunndaga	0.5	-	-	-	1,270	1.3	53	2,050	1.4	90	3,320	1.3	144
Yunndaga (UG)	2.0	-	-	-	-	-	-	110	3.3	12	110	3.3	12
Aspacia	0.5	-	-	-	137	1.7	7	1,238	1.6	62	1,375	1.6	70
Lady Harriet System (Warrior, Lady Harriet, Bellenger)	0.5	-	-	-	520	1.3	22	590	1.1	21	1,110	1.2	43
Link Zone	0.5	-	-	-	145	1.2	6	470	1.0	16	615	1.1	21
Selkirk	0.5	-	-	-	30	6.3	6	140	1.2	5	170	2.1	12
Lady Irene	0.5	-	-	-	-	-	-	100	1.7	6	100	1.7	6
Total – Menzies		-	-	-	4,872	1.4	214	8,898	1.3	383	13,770	1.3	595
Total – BTR		1,464	2.0	94	10,242	1.6	533	17,019	1.5	832	28,723	1.6	1,457

Refer Note 1 below. Note some rounding discrepancies may occur.

Pericles, Lady Shenton & Stirling consolidated into Lady Shenton System; Warrior, Lady Harriet & Bellenger consolidated into Lady Harriet System.

Note 1: This Announcement contains references to Brightstar's JORC Mineral Resources, extracted from the ASX announcements titled "Cork Tree Well Resource Upgrade Delivers 1Moz Group MRE" dated 23 June 2023, "Maiden Link Zone Mineral Resource" dated 15 November 2023, "Aspacia deposit records maiden Mineral Resource at the Menzies Gold Project" dated 17 April 2024, and "Brightstar Makes Recommended Bid for Linden Gold", dated 25 March 2024.

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Brightstar Resources Limited's planned exploration program and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "expect," "intend," "may", "potential," "should," and similar expressions are forward-looking statements. Although Brightstar believes that its expectations reflected in these forward- looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that further exploration will result in the estimation of a Mineral Resource.

Competent Person Statement - Exploration

The information presented here relating to exploration of the Menzies, Laverton and Jasper Hills Gold Project areas are based on information compiled by Mr Edward Keys, MAIG. Mr Keys is a Member of the Australasian Institute of Geoscientists (AIG) and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as a "Competent Person" as that term is defined in the 2012 Edition of the "Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code 2012)". Mr Keys is a fulltime employee of the Company in the position of Exploration Manager and has provided written consent approving the inclusion of the Exploration Results in the form and context in which they appear.

Compliance Statement

With reference to previously reported Exploration Results and Mineral Resources, the Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of estimates of Mineral Resources that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

APPENDIX 1: JORC CODE, 2012 EDITION - TABLE 1

SECTION 1 SAMPLING TECHNIQUES AND DATA

(Criteria in this section apply to all succeeding sections)

Brightstar Resources Drilling – hole prefix LBRC24

Table 4 – Sampling Techniques & Data

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	and cut using an automated core saw. Half core samples are
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core	BTR RC holes were drilled utilising a 4.5 inch face sampling hammer and surveyed using a Axis Champ gyroscopic survey tool. Drilling was conducted by Topdrill using a Schramm C685 drill rig

	is oriented and if so, by what method, etc).	BTR Diamond drilling is drilled by Topdrill utilising a Sandvik DE840 drill rig. HQ and NQ diameter drill core was obtained. In areas of unconsolidated ground, triple tube configuration was used to maximise core recovery. All drill core was oriented (where possible), using the Axis Champ Ori system.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC sample recovery was qualitatively assessed and recorded by comparing drill chip volumes (sample bags) for individual meters. Sample depths were cross-checked every rod (6m). The cyclone was regularly cleaned to ensure no material build up and sample material was checked for any potential downhole contamination. Wet samples were recorded, although the majority of the samples were dry. In the CP's opinion the drilling sample recoveries/quality are acceptable and are appropriately representative for the style of mineralisation. No grade versus sample recovery biases, or biases relating the loss or gain of fines have been identified in BTR's drilling. For diamond core, sample recovery is recorded for every drill run, with intervals of core loss accurately logged.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 RC holes were logged on one metre intervals at the rig by the geologist from drill chips. Logging was recorded directly into LogChief computer software. Diamond core is logged to specific geological intervals Detailed geological logging includes the lithology, alteration, veining and mineralisation of the drill chips or core. Structural measurements are also taken from oriented drill core. Logging is both quantitative and qualitative in nature, depending on the feature. 100% of BTR drilling is geologically logged.

Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/secondhalf sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 RC drilling single 1 metre splits were automatically taken at the time of drilling by a cone splitter attached to the cyclone. For interpreted non-mineralised areas, 4 metre composite samples were collected from the drill rig by spearing each 1m collection bag. The 4 metre composites were submitted for assay. Composite samples returning grade >0.1g/t were resampled as 1m cone-split samples For interpreted mineralised areas, the 1 metre splits were bagged on the static cyclone splitter on the RC rig. QAQC samples (blanks and standards) were submitted for all samples at a rate of 1:25 Duplicate samples were taken over selected interpreted mineralised intervals to determine if sampling is representative. Sample preparation comprised industry standard oven drying, crushing, and pulverisation to less than 75 microns. Homogenised pulp material was used for assaying. Internal certified laboratory QAQC is undertaken including check samples, blanks and internal standards. Samples volumes were typically 1.0-4.0 kg and are considered to be of suitable size for the style of mineralisation.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 1m and 4m composite samples were assayed by 50g Fire Assay by Bureau Veritas Laboratory, Perth for gold. Laboratory QC involves the use of internal lab standards, certified reference material, blanks, splits and replicates. QC results (blanks, coarse reject duplicates, bulk pulverised, standards) are monitored and were within acceptable limits. ~5% standards were inserted to check on precision of laboratory results.

Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intersections have been reviewed by several company personnel. Data storage was captured electronically onsite using a standard set of templates, before uploading to a cloud-based server and imported into an externally managed Datashed geological database. No data was adjusted.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All drill collar locations were initially surveyed using a hand-held GPS, accurate to within 3-5m. All RC and DD holes are routinely surveyed by differential GPS (DGPS) once drilling is complete, although this has not yet occurred for recently completed holes given that the program has not been finished. Some historic drill collars have existing DGPS surveys The grid system used is MGA94 Zone 51. All reported coordinates are referenced to this grid. The site topography utilised a DTM from 2020 with accuracy <1m.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Holes are variably spaced. The current Lord Byron RC and diamond program is planned to infill the spacing to 20m x 20m No sample compositing of field samples has been applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The relationship between the drilling orientation and the orientation of mineralised structures is not considered to have introduced a sampling bias. Most holes have been drilled perpendicular to the main orientation of mineralisation. No drilling orientation related sampling bias has been identified at the project.
Sample security	The measures taken to ensure sample security.	Samples were collected on site under supervision of the geologist. Visitors needed permission to visit site. Once collected samples

		were bagged, they were transported to Kalgoorlie by company personnel or trusted contractors for assaying with Bureau Veritas. Despatch and consignment notes were delivered and checked for discrepancies.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Sampling techniques and data has been reviewed internally by company personnel

SECTION 2 REPORTING OF EXPLORATION RESULTS

Table 5 – Reporting of Exploration Results

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 M38/185 Lord Byron 987.45 Ha M38/162 Lord Byron 307.2 Ha M38/138 Fish 945.55 Ha M38/139 Fish 945.14 Ha All are granted tenements with no known impediments to obtaining a licence to operate
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The Jasper Hills Project has had numerous drilling campaigns undertaken by third parties contributing to the 2022 MRE Lord Byron AngloGold, 2001-2004 Crescent Gold, 2005-2012 Focus, 2013-2015 Sons of Gwalia, 1987, 1996-1999 Western Mining Corporation, 1988, 1989, 200 Fish Crescent Gold, 2005-2012

		Western Mining Co	orporation, 1988, 1989, 2000
Geology	Deposit type, geological setting and style of mineralisation.	of amphibolite and mineralization, the North-West strike The Fish deposit is hosted by a series with coarse grano derived from basa The Gilt Key deposit. The strat	eposit is hosted within a thick sequence id interbedded chert/BIF. There are 3 zones of e supergene zones, the central zone with a e and southern zone with a North strike. It is an orogenic style Archaean lode gold deposit is of narrow quartz-magnetite-amphibole BIFs oblastic texture, interbedded with amphibolite alt and dolerite is an orogenic style Archaean lode gold tigraphy is mafic volcanic rock (greenstone) with ded iron formation
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	provided in the bo Data for historical	for drillholes reported in this announcement is ody of the announcement collars referenced in this announcement is within the announcement
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades, and cut-off grades are usually Material and should be stated.	Significant interce	orted here have been length weighted. pts are reported above 0.5g/t with a maximum val of internal dilution (<0.5g/t) of 2m.

	 Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). True widths are not confirmed at this time although all drilling is planned close to perpendicular to interpreted strike of the target lodes at the time of drilling.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. Results from all drill holes in the program have been reported and their context discussed.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. No other exploration data is reported here.

Further work	• The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). • Additional drilling is being planned and if successful, further mineral resource estimates will be calculated.
	Diagrams clearly highlighting the areas of possible extensions, including
	the main geological interpretations and future drilling areas, provided this
	information is not commercially sensitive.

APPENDIX 2: Hole details for historic holes displayed on cross-sections in this announcement

Hole ID	Hole Type	Easting	Northing	RL	EOH (m)	Dip	Azi	From (m)	To (m)	Drilled Interval (m)	Au (g/t)	Notes
								25	26	1	0.58	
JSPC0014	RC	504249	6777638	442	61	-60	270	45	51	6	1.97	
								60	61	1	2.26	
JSPC0015	RC	504268	6777634	440	63	-60	270	42	48	6	0.97	
								39	42	3	0.9	
JSPC1166	RC	504273	6777670	440	54	-60	270	47	48	1	0.68	
								52	53	1	1.06	
JSPC1177	RC	504197	6777587	440	100	-60	270					NSI

			1		1							
								27	28	1	0.7	
				40	49	9	0.92					
JSPC1178	RC	504178	6777587	440	80	-60	270	60	76	16	1.05	
								87	92	5	0.62	
								98	99	1	2.38	
								44	45	1	0.65	
								49	54	5	0.51	
JSPC1183	RC	504198	6777557	440	80	-60	270	62	80	18	1.62	
								83	84	1	0.56	
								28	46	18	1.2	
JSPC1184	RC	504178	6777557	440	80	-60	270	48	49	1	0.57	
								53	54	1	0.8	
JSPC1185	RC	504158	6777557	440	83	-60	270	1	10	9	0.9	
								66	67	1	1.93	
JSPD0149	DD	504217	6777587	440	223	-62	262	115	126	11	1.9	
								130	136	6	1.25	
LBRC057	RC	504346	6777667	437	150	-60	272	107	108	1	0.83	

								118	120	2	1.45	
								85	86	1	0.74	
LBRC059	RC	504224	6777557	440	132	-60	272	90	98	8	1.21	
								102	110	8	1.33	
								46	47	1	1.65	
								51	52	1	0.57	
LBRC042	RC	504205	6777586	441	102	-60	272	61	62	1	1.06	
								76	77	1	1.15	
								88	93	5	1.09	
								2	6	4	1.55	
LBRC105	RC	504159	6777541	440	52	-60	272	42	45	3	3.08	
JSPC1233	RC	504177	6777518	440	70	-60	270					NSI
LBRC106	RC	504179	6777540	440	70	-60	270	23	35	12	2.0	
								0	1	1	0.71	
LBRC104	RC	504199	6777541	440	88	-58	275	46	47	1	4.15	
								52	66	14	1.92	
JSPC1192	RC	504198	6777518	440	90	-60	270	34	35	1	1.0	

								57	68	11	1.05	
								37	00	11	1.05	_
JSPC1182	RC	504218	6777556	439	60	-60	270					NSI
JSPC1176	RC	504217	6777587	440	60	-60	270	0	1	1	0.73	
								42	43	1	1.11	
								48	55	7	1.24	
LBRC058	RC	504282	6777554	439	156	-60	272	63	64	1	1.04	
								152	156	4	0.50	
								67	70	3	1.42	
JSPC1234	RC	504277	6777597	439	77	-60	270	74	75	1	0.98	
JSPC0048	RC	504253	6777596	440	75	-60	270	52	53	1	0.67	
								77	79	2	0.93	
JBRC056	RC	504303	6777626	439	114	-60	272	85	96	11	0.72	