

EXPLORATION UPDATE

AIM: ALL, ASX: A11, OTC: ALLIF

12 January 2023

Final Resource Drilling Results Received New Mineralised Pegmatites Confirmed Ewoyaa Lithium Project Ghana, West Africa

Atlantic Lithium Limited (AIM: ALL, OTC: ALLIF, ASX: A11 "Atlantic Lithium" or the "Company"), the funded African-focussed lithium exploration and development company targeting to deliver Ghana's first lithium mine, is pleased to announce final assay results from the resource and exploration drilling programme completed at the Ewoyaa Lithium Project ("Ewoyaa" or the "Project") in Ghana, West Africa.

HIGHLIGHTS:

- Final assay results received for a further 10,052m of exploration and infill diamond core ("DD") drilling and reverse circulation ("RC") drilling completed at the Ewoyaa Project, part of the now completed resource evaluation and exploration RC and DD programme.
- Newly reported assay results confirm new mineralised pegmatites at the Grasscutter North, Kaampakrom North and Assan targets, outside the currently defined 30.1Mt @ 1.26% Li₂O Ewoyaa JORC (2012) Compliant Mineral Resource Estimate ("MRE" or the "Resource").
- Multiple high-grade drill intersections reported at the Kaampakrom North, Grasscutter North, Anokyи and Grasscutter West targets, including highlights of:
 - GRC0825: 36m at 1.23% Li₂O from 42m
 - GDD0102A: 22.2m at 1.62% Li₂O from 73.3m
 - GRC0837: 20m at 1.6% Li₂O from 44m
 - GDD0103: 15.1m at 1.24% Li₂O from 55.4m
 - GRC0842: 12m at 1.55% Li₂O from 93m
 - GRC0839: 13m at 1.35% Li₂O from 99m
 - GRC0850: 12m at 1.24% Li₂O from 96m
 - GRC0341: 12m at 1.03% Li₂O from 134m
 - GRC0844: 7m at 1.69% Li₂O from 162m
 - GRC0872: 8m at 1.48% Li₂O from 34m
- All assay results now reported for the total approximate 47,000m drilling programme completed.
- Resource upgrade targeted for Q1 2023; to inform Definitive Feasibility Study ("DFS") targeted for completion mid-2023.

- Recently announced processing plant FEED engineering contract (refer *RNS of 13 December 2022*) awarded to Primero to optimise the Project's flow sheet, identify long lead items, maximise the Project's long-term profitability, reduce execution risk and ultimately support the advancement of the Project towards becoming a financially and operationally robust lithium-producing mine.
- Recently announced Pre-Feasibility Study (refer *RNS of 22 September 2022*) delivers exceptional financial outcomes for a 2Mtpa operation, producing an average c. 255,000tpa of 6% Li₂O spodumene concentrate ("SC6") over a 12.5-year operation:
 - LOM revenues exceeding US\$4.84bn, Post-tax NPV₈ of US\$1.33bn, IRR of 224% over 12.5 years
 - US\$125m capital cost with industry-leading payback period of <5 months
 - C1 cash operating costs of US\$278 per tonne of 6% lithium spodumene concentrate Free on Board ("FOB") Ghana Port, after by-product credits
 - Average Life of Mine ("LOM") EBITDA of US\$248m per annum
 - 18.9Mt at 1.24% Li₂O Maiden Ore Reserve
 - Average annualised US\$1,359/dry metric tonne SC6 pricing used

Commenting on the Company's latest progress, Lennard Kolff, Interim Chief Executive Officer of Atlantic Lithium, said:

"Drilling continues to deliver high-grade drill intersections outside the current MRE.

"This last batch of results has delivered multiple near-surface drill intersections in new pegmatites defined outside of the resource footprint at the Kaampakrom North and Grasscutter North targets including highlights of 36m at 1.23% Li₂O from 42m and 20m at 1.62% Li₂O from 44m.

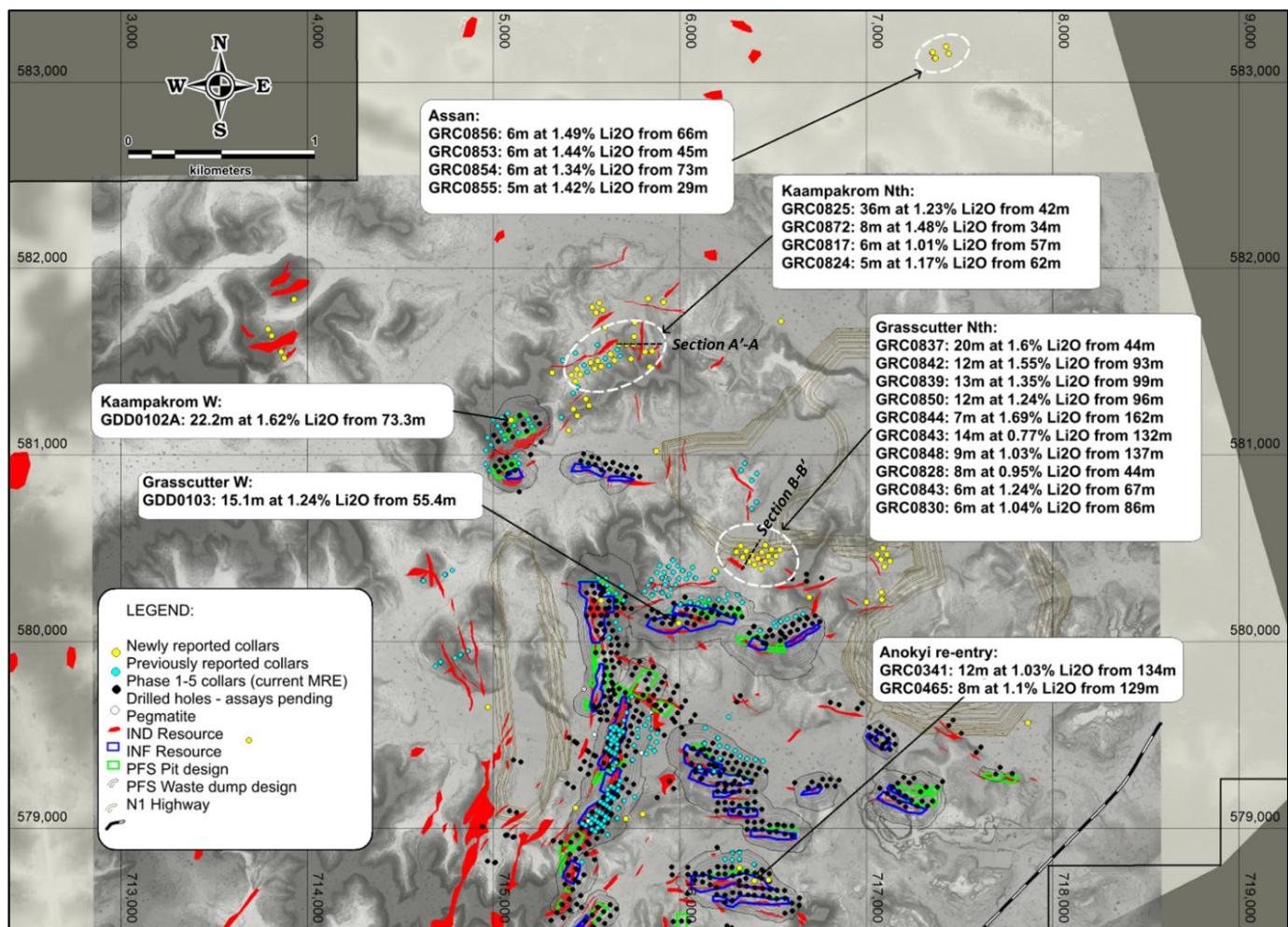
"Drilling has also returned high-grade, near-surface results at the Assan target approximately 3km north-east of the northern-most current pit design including highlights of 6m at 1.49% Li₂O from 66m and 6m at 1.44% Li₂O from 45m, demonstrating further potential within the mineralised pegmatite swarm.

"We have now reported all assay results for the approximate 47,000m drilling programme, with a Resource upgrade targeted for Q1 2023 and a DFS targeted for completion mid-2023.

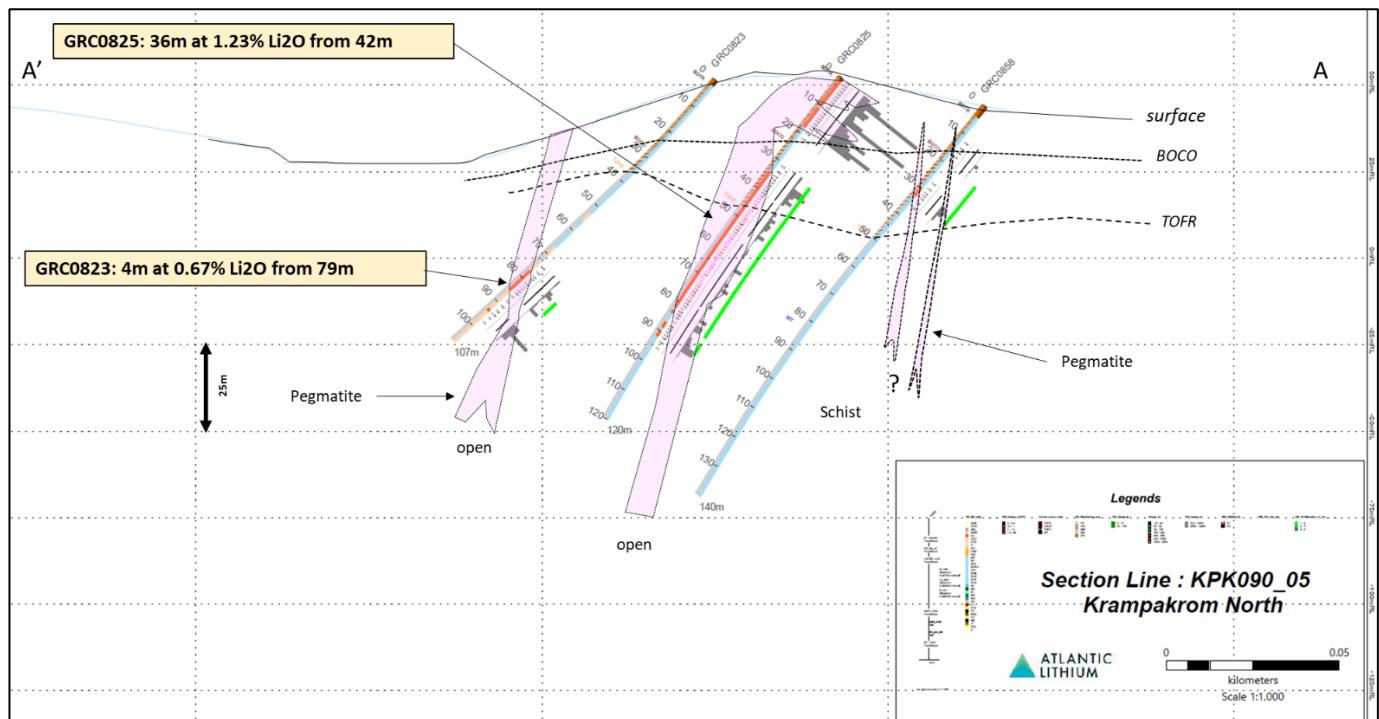
"With the Pre-Feasibility Study delivered, the Mining Licence application submitted, the FEED engineering contract awarded and the funding agreement with our partner Piedmont Lithium in place, we feel the Company is ideally positioned to benefit from the ongoing lithium demand expected over the coming years."

New Drilling Results:

All remaining assay results have been received for an additional 10,052m of RC and DD drilling from the completed drill programme at the Ewoyaa Project. Multiple high-grade drill intersections are reported for exploration drilling results outside of the currently defined Resource at the Kaampakrom North, Grasscutter North and Assan targets as well as infill and metallurgical holes within the current MRE (refer **Table 1**, **Appendix 1** and **Appendix 2**).


Table 1: Drill intersection highlights at greater than 8 Li x m, reported at a 0.4% Li₂O cut-off and maximum of 4m of internal dilution.

Hole ID	Target	Deposit	From m	To m	Interval m	Hole depth m	assay Li ₂ O %	Intersection	metal content Li x m
GRC0825	Exploration drilling	Kaampakrom N	42	78	36.0	120	1.23	GRC0825: 36m at 1.23% Li ₂ O from 42m	44.28
GDD0102A	Metallurgical Drilling	Kaampakrom W	73.3	95.5	22.2	150.3	1.62	GDD0102A: 22.2m at 1.62% Li ₂ O from 73.3m	35.96
GRC0837	Exploration Drilling	Grasscutter N	44	64	20.0	90	1.59	GRC0837: 20m at 1.6% Li ₂ O from 44m	31.86
GDD0103	Metallurgical Drilling	Grasscutter W	55.4	70.5	15.1	120.4	1.24	GDD0103: 15.1m at 1.24% Li ₂ O from 55.4m	18.72
GRC0842	Exploration Drilling	Grasscutter N	93	105	12.0	125	1.55	GRC0842: 12m at 1.55% Li ₂ O from 93m	18.59
GRC0839	Exploration Drilling	Grasscutter N	99	112	13.0	140	1.34	GRC0839: 13m at 1.35% Li ₂ O from 99m	17.46
GRC0850	Exploration Drilling	Grasscutter N	96	108	12.0	199	1.24	GRC0850: 12m at 1.24% Li ₂ O from 96m	14.83
GRC0341	IND re-entry	Anokyi	134	146	12	170	1.03	GRC0341: 12m at 1.03% Li ₂ O from 134m	12.35
GRC0844	Exploration Drilling	Grasscutter N	162	169	7.0	220	1.68	GRC0844: 7m at 1.69% Li ₂ O from 162m	11.79
GRC0872	EXPL	Kaampakrom	34	42	8.00	70.00	1.47	GRC0872: 8m at 1.48% Li ₂ O from 34m	11.77
GRC0843	Exploration Drilling	Grasscutter N	132	146	14.0	162	0.77	GRC0843: 14m at 0.77% Li ₂ O from 132m	10.73
GRC0848	Exploration Drilling	Grasscutter N	137	146	9.0	166	1.03	GRC0848: 9m at 1.03% Li ₂ O from 137m	9.26
GRC0856	Exploration Drilling	Assan	66	72	6.0	88	1.48	GRC0856: 6m at 1.49% Li ₂ O from 66m	8.90
GRC0465	IND re-entry	Anokyi	129	137	8.00	168.00	1.09	GRC0465: 8m at 1.1% Li ₂ O from 129m	8.75
GRC0853	Exploration Drilling	Assan	45	51	6.0	100	1.44	GRC0853: 6m at 1.44% Li ₂ O from 45m	8.64
GRC0854	Exploration Drilling	Assan	73	79	6.0	114	1.34	GRC0854: 6m at 1.34% Li ₂ O from 73m	8.01


Exploration drilling results fall outside the current 30.1Mt at 1.26% Li₂O Resource on newly defined pegmatites at the Kaampakrom North, Grasscutter North and Assan targets and demonstrates further resource scale potential at the Ewoyaa Project (refer **Figure 1**, **Figure 2** and **Figure 3**).

Exploration drilling results confirm near-surface mineralisation on newly defined pegmatites within trucking distance of the currently defined mine design. Furthermore, new drilling results demonstrate a further 3km strike extension of prospective lithium pegmatite vein swarms towards the north-east of the current project footprint (refer **Figure 1**).

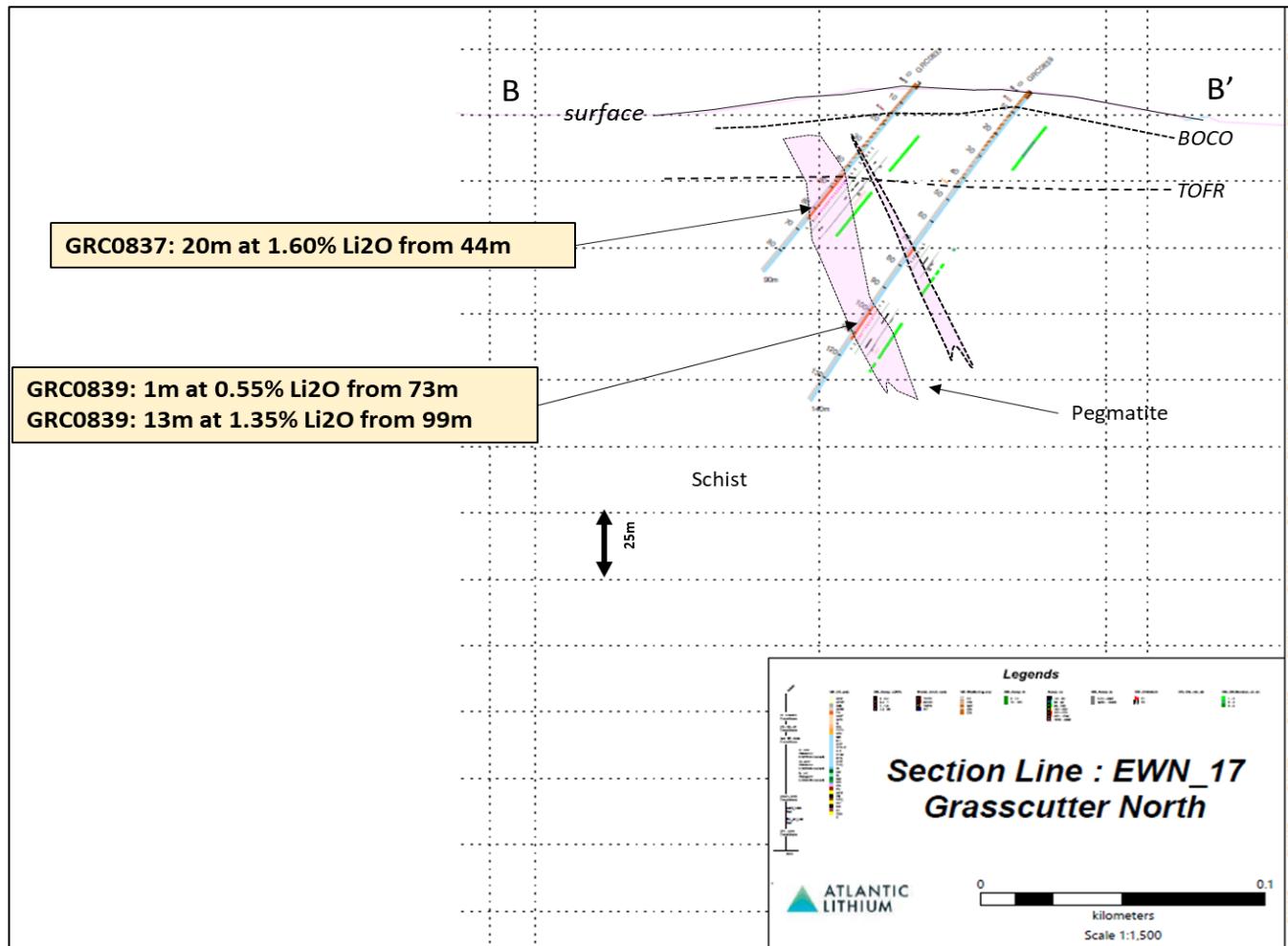

Sample preparation was completed by Intertek Ghana and assay by Intertek Perth with all reported results passing QA/QC protocols, providing confidence in reported results.

Figure 1: Location of reported assay results with highlight drill intersections.

Figure 2: Cross-section A-A' showing assay results received for GRC0825 and GRC0823 at the Kaampakrom North target.

Figure 3: Cross-section B-B' assay results received for GRC0837 and GRC0839 at the Grasscutter North target.

Competent Persons

Information in this report relating to the exploration results is based on data reviewed by Mr Lennard Kolff (MEcon. Geol., BSc. Hons ARSM), Chief Geologist of the Company. Mr Kolff is a Member of the Australian Institute of Geoscientists who has in excess of 20 years' experience in mineral exploration and is a Qualified Person under the AIM Rules. Mr Kolff consents to the inclusion of the information in the form and context in which it appears.

Information in this report relating to Mineral Resources was compiled by Shaun Searle, a Member of the Australian Institute of Geoscientists. Mr Searle has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Searle is a director of Ashmore. Ashmore and the Competent Person are independent of the Company and other than being paid fees for services in compiling this report, neither has any financial interest (direct or contingent) in the Company. Mr Searle consents to the inclusion in the report of the matters based upon the information in the form and context in which it appears.

The reported Ore Reserves have been compiled by Mr Harry Warries. Mr Warries is a Fellow of the Australasian Institute of Mining and Metallurgy and an employee of Mining Focus Consultants Pty Ltd. He has sufficient experience, relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking, to qualify as a Competent Person as defined in the 'Australasian Code for Reporting of Mineral Resources and Ore Reserves' of December 2012 ("JORC Code") as prepared by the Joint Ore Reserves Committee of the Australasian Institute of Mining and Metallurgy, the Australian Institute of Geoscientists and the Minerals Council of Australia. Mr Warries gives Atlantic Lithium Limited consent to use this reserve estimate in reports.

This announcement contains inside information for the purposes of Article 7 of the Market Abuse Regulation (EU) 596/2014 as it forms part of UK domestic law by virtue of the European Union (Withdrawal) Act 2018 ("MAR"), and is disclosed in accordance with the Company's obligations under Article 17 of MAR.

For any further information, please contact:

Atlantic Lithium Limited

Lennard Kolff (Interim CEO)

Amanda Harsas (Finance Director and Company Secretary)

www.atlanticlithium.com.au

atlantic@yellowjerseypr.com

Tel: +61 2 8072 0640

Yellow Jersey PR Limited

Henry Wilkinson

Charles Goodwin

Bessie Elliot

Tel: +44 (0)20 3004 9512

Notes to Editors:

About Atlantic Lithium

www.atlanticlithium.com.au

Atlantic Lithium (formerly "IronRidge Resources") is an AIM and ASX-listed lithium company advancing a portfolio of lithium projects in Ghana and Côte d'Ivoire through to production.

The Company's flagship project, the Ewoyaa Project in Ghana, is a significant lithium spodumene pegmatite discovery on track to become Ghana's first lithium-producing mine. The Company signed a funding agreement with Piedmont Lithium Inc. for US\$103m towards the development of the Ewoyaa Project. Based on the Pre-Feasibility Study, the Ewoyaa Project has indicated Life of Mine revenues exceeding US\$4.84bn, producing a spodumene concentrate via simple gravity only process flowsheet.

Atlantic Lithium holds 560km² & 774km² of tenure across Ghana and Côte d'Ivoire respectively, comprising significantly under-explored, highly prospective licenses.

Atlantic Lithium Limited

ACN 127 215 132

AIM: ALL, ASX: A11, OTC: ALLIF

Registered Address

Level 33, Australia Square, 264

George Street, Sydney NSW 2000

Contact

T: +61 2 8072 0640

E: info@atlanticlithium.com.au

W: www.atlanticlithium.com.au 7

Appendix 1 – New drill intersections reported in hole ID order, reported at a 0.4% Li₂O cut-off and maximum 4m of internal dilution.

Hole ID	Target	Deposit	From m	To m	Interval m	Hole depth m	Assay Li20%	Intersection	Comment	metal content Li x m
GRC0825	EXPL	Kaampakrom	42	78	36.0	120.0	1.23	GRC0825: 36m at 1.23% Li ₂ O from 42m		44.28
GDD0102A	MET	Kaampakrom W	73.3	95.5	22.2	150.3	1.62	GDD0102A: 22.2m at 1.62% Li ₂ O from 73.3m		35.96
GRC0837	EXPL	Grasscutter N	44	64	20.0	90.0	1.59	GRC0837: 20m at 1.6% Li ₂ O from 44m		31.86
GDD0103	MET	Grasscutter W	55.4	70.5	15.1	120.4	1.24	GDD0103: 15.1m at 1.24% Li ₂ O from 55.4m		18.72
GRC0842	EXPL	Grasscutter N	93	105	12.0	125.0	1.55	GRC0842: 12m at 1.55% Li ₂ O from 93m		18.59
GRC0839	EXPL	Grasscutter N	99	112	13.0	140.0	1.34	GRC0839: 13m at 1.35% Li ₂ O from 99m		17.46
GRC0850	EXPL	Grasscutter N	96	108	12.0	199.0	1.24	GRC0850: 12m at 1.24% Li ₂ O from 96m		14.83
GRC0341	IND re-entry	Anokyi	134	146	12	170.00	1.03	GRC0341: 12m at 1.03% Li ₂ O from 134m		12.35
GRC0844	EXPL	Grasscutter N	162	169	7.0	220.0	1.68	GRC0844: 7m at 1.69% Li ₂ O from 162m		11.79
GRC0872	EXPL	Kaampakrom	34	42	8.00	70.00	1.47	GRC0872: 8m at 1.48% Li ₂ O from 34m		11.77
GRC0843	EXPL	Grasscutter N	132	146	14.0	162.0	0.77	GRC0843: 14m at 0.77% Li ₂ O from 132m		10.73
GRC0848	EXPL	Grasscutter N	137	146	9.0	166.0	1.03	GRC0848: 9m at 1.03% Li ₂ O from 137m		9.26
GRC0856	EXPL	Assan	66	72	6.0	88.0	1.48	GRC0856: 6m at 1.49% Li ₂ O from 66m		8.90
GRC0465	IND re-entry	Anokyi	129	137	8.00	168.00	1.09	GRC0465: 8m at 1.1% Li ₂ O from 129m		8.75
GRC0853	EXPL	Assan	45	51	6.0	100.0	1.44	GRC0853: 6m at 1.44% Li ₂ O from 45m		8.64
GRC0854	EXPL	Assan	73	79	6.0	114.0	1.34	GRC0854: 6m at 1.34% Li ₂ O from 73m		8.01
GDD0100	MET	Ewoyaa	85.4	97.3	11.9	140.2	0.66	GDD0100: 11.9m at 0.66% Li ₂ O from 85.4m		7.85
GRC0828	EXPL	Grasscutter N	44	52	8.0	90.0	0.95	GRC0828: 8m at 0.95% Li ₂ O from 44m		7.60
GRC0843	EXPL	Grasscutter N	67	73	6.0	162.0	1.24	GRC0843: 6m at 1.24% Li ₂ O from 67m		7.41
GRC0855	EXPL	Assan	29	34	5.0	50.0	1.41	GRC0855: 5m at 1.42% Li ₂ O from 29m		7.06
GRC0867	IND	Ewoyaa	38	43	5.00	80.00	1.39	GRC0867: 5m at 1.39% Li ₂ O from 38m	weathered pegmatite	6.94
GRC0869	IND	Ewoyaa	69	73	4.00	89.00	1.70	GRC0869: 4m at 1.7% Li ₂ O from 69m		6.79
GRC0570	IND re-entry	Anokyi	224	228	4.00	250.00	1.65	GRC0570: 4m at 1.65% Li ₂ O from 224m		6.58
GDD0100	MET	Ewoyaa	26.3	33	6.7	140.2	0.94	GDD0100: 6.7m at 0.94% Li ₂ O from 26.3m		6.30
GRC0830	EXPL	Grasscutter N	86	92	6.0	128.0	1.04	GRC0830: 6m at 1.04% Li ₂ O from 86m		6.23
GRC0817	IND	Kaampakrom	57	63	6.0	110.0	1.00	GRC0817: 6m at 1.01% Li ₂ O from 57m		6.01
GRC0824	IND	Kaampakrom	62	67	5.0	110.0	1.17	GRC0824: 5m at 1.17% Li ₂ O from 62m		5.85
GRC0866	IND	Ewoyaa	62	66	4.00	82.00	1.40	GRC0866: 4m at 1.4% Li ₂ O from 62m		5.59

GRC0840	IND	Ewoyaa	60	63	3.0	90.0	1.73	GRC0840: 3mat 1.73% Li ₂ O from 60m		5.18
GDD0100	MET	Ewoyaa	36.8	44	7.2	140.2	0.62	GDD0100: 7.2m at 0.62% Li ₂ O from 36.8m		4.46
GRC0882	EXPL	Kaampakrom	98	102	4.00	125.00	1.04	GRC0882: 4mat 1.04% Li ₂ O from 98m		4.16
GRC0874	EXPL	Kaampakrom	82	86	4.00	102.00	1.00	GRC0874: 4mat 1% Li ₂ O from 82m		3.99
GRC0875	EXPL	Kaampakrom	54	57	3.00	74.00	1.28	GRC0875: 3mat 1.29% Li ₂ O from 54m		3.85
GRC0870	IND	Ewoyaa	75	78	3.00	200.00	1.26	GRC0870: 3mat 1.26% Li ₂ O from 75m		3.77
GRC0863	IND	Ewoyaa	74	76	2.00	110.00	1.62	GRC0863: 2mat 1.62% Li ₂ O from 74m		3.23
GRC0822	IND	Kaampakrom	28	34	6.0	120.0	0.48	GRC0822: 6mat 0.48% Li ₂ O from 28m		2.88
GRC0852	IND	Ewoyaa	253	258	5.0	310.0	0.53	GRC0852: 5mat 0.54% Li ₂ O from 253m		2.67
GRC0823	IND	Kaampakrom	79	83	4.0	107.0	0.66	GRC0823: 4mat 0.67% Li ₂ O from 79m		2.65
GRC0862	IND	Ewoyaa	40	42	2.00	80.00	0.89	GRC0862: 2mat 0.89% Li ₂ O from 40m	weathered pegmatite	1.77
GRC0852	IND	Ewoyaa	282	284	2.0	310.0	0.78	GRC0852: 2mat 0.78% Li ₂ O from 282m		1.55
GDD0103	MET	Ewoyaa	74.2	75.5	1.3	120.4	1.02	GDD0103: 1.3m at 1.03% Li ₂ O from 74.2m		1.33
GRC0850	IND	Ewoyaa	192	194	2.0	199.0	0.63	GRC0850: 2mat 0.63% Li ₂ O from 192m		1.26
GRC0880	EXPL	Kaampakrom	69	71	2.00	100.00	0.54	GRC0880: 2mat 0.54% Li ₂ O from 69m		1.08
GRC0882	EXPL	Kaampakrom	104	106	2.00	125.00	0.51	GRC0882: 2mat 0.51% Li ₂ O from 104m		1.02
GRC0852	IND	Ewoyaa	272	273	1.0	310.0	0.95	GRC0852: 1mat 0.95% Li ₂ O from 272m		0.95
GRC0843	EXPL	Grasscutter N	113	114	1.0	162.0	0.61	GRC0843: 1mat 0.61% Li ₂ O from 113m		0.61
GRC0848	EXPL	Grasscutter N	45	46	1.0	166.0	0.59	GRC0848: 1mat 0.59% Li ₂ O from 45m		0.59
GDD0103	MET	Ewoyaa	96.4	97.7	1.3	120.4	0.43	GDD0103: 1.3m at 0.44% Li ₂ O from 96.4m		0.56
GRC0838	Piezo	Ewoyaa	73	74	1.0	140.0	0.55	GRC0839: 1mat 0.55% Li ₂ O from 73m		0.55
GRC0882	EXPL	Kaampakrom	108	109	1.00	125.00	0.55	GRC0882: 1mat 0.55% Li ₂ O from 108m		0.55
GDD0099	GeoTech	Ewoyaa	74	75	1.0	160.1	0.41	GDD0099: 1m at 0.41% Li ₂ O from 74m		0.41
GDD0100	MET	Ewoyaa	72.6	73	0.4	140.2	1.20	GDD0100: 0.41mat 1.2% Li ₂ O from 72.6m		
GDD0101	GeoTech	Ewoyaa	0	160	160.0	160.1		no significant intersections		
GRC0811	Piezo	Kaampakrom	0	100	100.0	100.0		no significant intersections		
GRC0812	Piezo	Kaampakrom	0	100	100.0	100.0		no significant intersections		
GRC0813	Piezo	Kaampakrom	0	100	100.0	100.0		no significant intersections		
GRC0814A	Piezo	Anfeo	0	100	100.0	100.0		no significant intersections		
GRC0815	Piezo	Anfeo	0	100	100.0	110.0		no significant intersections		
GRC0816	IND	Kaampakrom	27	35	8.0	80.0		no significant intersections	weathered pegmatite	

GRC0818	Piezo	Kaampakrom	0	100	100.0	100.0		no significant intersections		
GRC0819	IND	Kaampakrom	0	80.00	80.0	80.0		no significant intersections		
GRC0820	Piezo	Kaampakrom	0	100.00	100.0	100.0		no significant intersections		
GRC0821	IND	Kaampakrom	0	90.00	90.0	90.0		no significant intersections		
GRC0826	IND	Kaampakrom	0	120	120.0	120.0		no significant intersections		
GRC0827	IND	Kaampakrom	12	14	2.0	86.0		no significant intersections	weathered pegmatite	
GRC0827	IND	Kaampakrom	18	21	3.0	86.0		no significant intersections	weathered pegmatite	
GRC0827	IND	Kaampakrom	39	40	1.0	86.0		no significant intersections	weathered pegmatite	
GRC0827	IND	Kaampakrom	58	60	2.0	86.0		no significant intersections		
GRC0827	IND	Kaampakrom	69	70	1.0	86.0		no significant intersections		
GRC0829	IND	Kaampakrom	30	32	2.0	140.0		no significant intersections		
GRC0829	IND	Kaampakrom	95	96	1.0	140.0		no significant intersections		
GRC0831	IND	Kaampakrom	0	100	100.0	100.0		no significant intersections		
GRC0832	EXPL	Grasscutter N	12	16	4.0	90.0		no significant intersections	weathered pegmatite	
GRC0833	EXPL	Grasscutter N	50	53	3.0	170.0		no significant intersections		
GRC0833	EXPL	Grasscutter N	55	58	3.0	170.0		no significant intersections		
GRC0833	EXPL	Grasscutter N	115	119	4.0	170.0		no significant intersections		
GRC0833	EXPL	Grasscutter N	146	150	4.0	170.0		no significant intersections		
GRC0834	IND	Kaampakrom	0	100.00	100.0	100.0		no significant intersections		
GRC0835	EXPL	Kaampakrom	0	63.00	63.0	63.0		no significant intersections		
GRC0836	EXPL	Kaampakrom	0	60.00	60.0	60.0		no significant intersections		
GRC0838	Piezo	Ewoyaa	0	4	4.0	114.0		no significant intersections	weathered pegmatite	
GRC0838	Piezo	Ewoyaa	8	10	2.0	114.0		no significant intersections	weathered pegmatite	
GRC0838	Piezo	Ewoyaa	20	21	1.0	114.0		no significant intersections	weathered pegmatite	
GRC0838	Piezo	Ewoyaa	30	58	28.0	114.0		no significant intersections		
GRC0838	Piezo	Ewoyaa	82	84	2.0	114.0		no significant intersections		
GRC0841	Piezo	Abonko	0	100	100.0	100.0		no significant intersections		
GRC0845	EXPL	Krofu	0	110	110.0	110.0		no significant intersections		
GRC0846	EXPL	Grasscutter N	0	100	100.0	100.0		no significant intersections		
GRC0847	EXPL	Krofu	0	250	250.0	250.0		no significant intersections		
GRC0849	EXPL	Grasscutter N	0	130	130.0	130.0		no significant intersections		

GRC0851	EXPL	Krofu	0	180	180.0	180.0		no significant intersections		
GRC0857	IND	Ewoyaa	69	71	2.00	104.00		no significant intersections		
GRC0857	IND	Ewoyaa	74	75	1.00	104.00		no significant intersections		
GRC0857	IND	Ewoyaa	77	79	2.00	104.00		no significant intersections		
GRC0857	IND	Ewoyaa	87	88	1.00	104.00		no significant intersections		
GRC0858	EXPL	Kaampakrom	15	16	1.00	140.00		no significant intersections	weathered pegmatite	
GRC0858	EXPL	Kaampakrom	30	33	3.00	140.00		no significant intersections	weathered pegmatite	
GRC0859	IND	Ewoyaa	0	110	110.00	110.00		no significant intersections	No pegmatite intersected	
GRC0860	IND	Ewoyaa	53	54	1.00	80.00		no significant intersections	weathered pegmatite	
GRC0860	IND	Ewoyaa	71	72	1.00	80.00		no significant intersections		
GRC0861	EXPL	Krofu	28	31	3.00	200.00		no significant intersections	weathered pegmatite	
GRC0864	IND	Ewoyaa	29	34	5.00	80.00		no significant intersections	weathered pegmatite	
GRC0865	EXPL	Krofu	0	100	100.00	100.00		no significant intersections	No pegmatite intersected	
GRC0868	IND	Ewoyaa	169	174	5.00	189.00		no significant intersections		
GRC0871	IND	Ewoyaa	0	120	120.00	120.00		no significant intersections	No pegmatite intersected	
GRC0873	IND	Ewoyaa	0	110	110.00	110.00		no significant intersections	No pegmatite intersected	
GRC0876	EXPL	Kaampakrom	34	42	8.00	62.00		no significant intersections	weathered pegmatite	
GRC0877	EXPL	Kaampakrom	72	75	3.00	90.00		no significant intersections		
GRC0878	EXPL	Kaampakrom	105	106	1.00	140.00		no significant intersections		
GRC0879	EXPL	Kaampakrom	29	33	4.00	90.00		no significant intersections		
GRC0879	EXPL	Kaampakrom	40	42	2.00	90.00		no significant intersections		
GRC0881	EXPL	Kaampakrom	46	49	3.00	70.00		no significant intersections		
GRC0881	EXPL	Kaampakrom	51	54	3.00	70.00		no significant intersections		
GRC0883	EXPL	Kaampakrom	2	3	1.00	74.00		no significant intersections	weathered pegmatite	
GRC0883	EXPL	Kaampakrom	6	9	3.00	74.00		no significant intersections	weathered pegmatite	
GRC0883	EXPL	Kaampakrom	17	19	2.00	74.00		no significant intersections	weathered pegmatite	
GRC0883	EXPL	Kaampakrom	38	39	1.00	74.00		no significant intersections	weathered pegmatite	
GRC0883	EXPL	Kaampakrom	41	44	3.00	74.00		no significant intersections	weathered pegmatite	
GRC0884	EXPL	Kaampakrom	77	80	3.00	95.00		no significant intersections		
GRC0885	EXPL	Kaampakrom	0	3	3.00	90.00		no significant intersections	weathered pegmatite	
GRC0886A	EXPL	Kaampakrom	56	57	1.00	80.00		no significant intersections	weathered pegmatite	

GRC0886A	EXPL	Kaampakrom	60	63	3.00	80.00		no significant intersections	weathered pegmatite	
GRC0887	EXPL	Kaampakrom	83	87	4.00	102.00		no significant intersections		
GRC0888	EXPL	Kaampakrom	0	80	80.00	80.00		no significant intersections	No pegmatite intersected	

Appendix 2 – Newly reported drill collar locations (MET = Metallurgy, IND = Indicated, EXPL = Exploration, Piezo = Piezometer)

Hole_ID	Target	Deposit	Hole Depth m	Eastings	Northings	Elevation m	Dip	Azimuth
GDD0099	Geotech	Ewoyaa	160.1	715441	579109	24	-50	305
GDD0100	MET	Ewoyaa	141.01	715578	580221	31	-50	270
GDD0101	Geotech	Ewoyaa	161.01	715711	579049	29	-50	305
GDD0102A	MET	Kaampakrom W	151.01	715094	581188	64	-50	150
GDD0103	MET	Ewoyaa	121.01	715993	580099	38	-51	210
GRC0341	IND re-entry	Anokyi	170	716480	578713	53	-50	180
GRC0465	IND re-entry	Anokyi	168	716400	578717	31	-51	181.79
GRC0470	IND re-entry	Anokyi	150	716320	578787	24	-51	179.97
GRC0811	Piezo	Kaampakrom	100	716542	581717	12	-89	0
GRC0812	Piezo	Kaampakrom	100	716190	580380	21	-87	0
GRC0813	Piezo	Kaampakrom	100	714969	579649	21	-89	0
GRC0814A	Piezo	Anfeo	100	714053	577694	20	-89	0
GRC0815	Piezo	Anfeo	110	713748	578257	27	-90	0
GRC0816	EXPL	Kaampakrom	80	715447	581460	28	-51	330
GRC0817	EXPL	Kaampakrom	110	715467	581430	29	-52	330
GRC0818	Piezo	Kaampakrom	100	715873	581021	18	-87	0
GRC0819	EXPL	Kaampakrom	80	715316	581442	48	-52	330
GRC0820	Piezo	Kaampakrom	100	717958	581308	7	-88	0
GRC0821	EXPL	Kaampakrom	90	715754	581635	42	-51	90
GRC0822	EXPL	Kaampakrom	120	715629	581541	31	-51	330
GRC0823	EXPL	Kaampakrom	107	715750	581593	51	-50	90
GRC0824	EXPL	Kaampakrom	110	715648	581507	37	-51	330
GRC0825	EXPL	Kaampakrom	120	715713	581593	52	-51	90
GRC0826	EXPL	Kaampakrom	120	715596	581684	23	-51	330
GRC0827	EXPL	Kaampakrom	86	715852	581557	33	-51	90
GRC0828	IND	Grasscutter N	90	716336	580453	29	-48	210
GRC0829	EXPL	Kaampakrom	140	715814	581552	30	-50	90
GRC0830	IND	Grasscutter N	128	716354	580485	26	-52	210
GRC0831	EXPL	Kaampakrom	100	715738	581515	50	-51	90

GRC0832	IND	Grasscutter N	90	716303	580482	21	-51	210
GRC0833	IND	Grasscutter N	170	716326	580514	21	-50	210
GRC0834	EXPL	Kaampakrom	100	715838	581473	58	-51	90
GRC0835	EXPL	Kaampakrom	63	715831	581838	20	-51	180
GRC0836	EXPL	Kaampakrom	60	715911	581820	30	-51	180
GRC0837	IND	Grasscutter N	90	716370	580430	37	-51	210
GRC0838	Piezo	Ewoyaa	114	713688	579469	39	-90	0
GRC0839	IND	Grasscutter N	140	716387	580465	34	-51	210
GRC0840	IND	Ewoyaa	90	716400	580412	34	-51	210
GRC0841	Piezo	Abonko	100	717866	579565	8	-89	0
GRC0842	IND	Grasscutter N	125	716419	580446	34	-51	210
GRC0843	IND	Grasscutter N	162	716440	580480	26	-52	210
GRC0844	IND	Grasscutter N	220	716459	580517	22	-52	210
GRC0845	EXPL	Krofu	110	713860	581554	52	-51	330
GRC0846	IND	Grasscutter N	100	716436	580391	29	-51	210
GRC0847	EXPL	Krofu	250	713929	581835	46	-52	330
GRC0848	IND	Grasscutter N	166	716475	580458	25	-50	210
GRC0849	IND	Grasscutter N	130	716457	580429	27	-51	210
GRC0850	IND	Grasscutter N	199	716492	580494	27	-52	210
GRC0851	EXPL	Krofu	180	713878	581520	45	-50	330
GRC0852	IND	Ewoyaa	310	715801	579075	47	-52	305
GRC0853	EXPL	Assan	100	717357	583158	14	-51	340
GRC0854	EXPL	Assan	114	717370	583127	34	-50	340
GRC0855	EXPL	Assan	50	717428	583191	12	-51	340
GRC0856	EXPL	Assan	88	717441	583154	33	-51	340
GRC0857	IND	Ewoyaa	104	717083	580225	35	-51	180
GRC0858	EXPL	Krampakrom	140	715672	581594	44	-51	90
GRC0859	IND	Ewoyaa	110	717081	580264	40	-51	180
GRC0860	IND	Ewoyaa	80	717001	580212	48	-51	180
GRC0861	EXPL	Krofu	200	713811	581640	56	-50	150
GRC0862	IND	Ewoyaa	80	717057	580469	33	-51	230
GRC0863	IND	Ewoyaa	110	717088	580500	40	-51	230
GRC0864	IND	Ewoyaa	80	717098	580401	20	-52	230
GRC0865	EXPL	Krofu	100	713791	581674	49	-50	150
GRC0866	IND	Ewoyaa	82	717127	580430	20	-51	230
GRC0867	IND	Ewoyaa	80	717079	580439	25	-50	230
GRC0868	IND	Ewoyaa	189	716514	580457	30	-51	210
GRC0869	IND	Ewoyaa	89	717109	580465	30	-50	230
GRC0870	IND	Ewoyaa	200	716536	580491	35	-51	210
GRC0871	IND	Ewoyaa	120	716694	580237	58	-51	140
GRC0872	EXPL	Krampakrom	70	715520	581496	28	-49	330

GRC0873	IND	Ewoyaa	110	716493	580419	29	-51	210
GRC0874	EXPL	Krampakrom	102	715541	581462	37	-51	330
GRC0875	EXPL	Krampakrom	74	715417	581430	30	-51	330
GRC0876	EXPL	Krampakrom	62	715496	581301	48	-51	330
GRC0877	EXPL	Krampakrom	90	715513	581266	55	-52	330
GRC0878	EXPL	Krampakrom	140	715439	581395	30	-51	330
GRC0879	EXPL	Krampakrom	90	715559	581505	34	-51	330
GRC0880	EXPL	Krampakrom	100	715578	581475	42	-50	330
GRC0881	EXPL	Krampakrom	70	715587	581779	31	-51	150
GRC0882	EXPL	Krampakrom	125	715567	581817	36	-51	150
GRC0883	EXPL	Krampakrom	74	715551	581763	31	-50	150
GRC0884	EXPL	Krampakrom	95	715529	581793	38	-50	150
GRC0885	EXPL	Krampakrom	90	715757	581712	25	-51	90
GRC0886A	EXPL	Krampakrom	80	715429	581245	54	-51	330
GRC0887	EXPL	Krampakrom	102	715450	581212	44	-51	330
GRC0888	EXPL	Krampakrom	80	715403	581133	33	-51	330

'JORC Code 2012 Table 1' Section 1 Sampling Techniques and Data

The following extract from the JORC Code 2012 Table 1 is provided for compliance with the Code requirements for the reporting of Exploration Results.

Criteria	JORC Code explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"> <i>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i> <i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i> <i>Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling' was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</i> 	<ul style="list-style-type: none"> RC drill holes were routinely sampled at 1m intervals with a nominal 3-6kg sub-sample split off for assay using a rig-mounted cone splitter at 1m intervals. DD holes were quarter core sampled at 1m intervals or to geological contacts for geochemical analysis. For assaying, splits from all prospective ore zones (i.e., logged pegmatites +/- interburden) were sent for assay. Outside of these zones, the splits were composited to 4m using a portable riffle splitter. Holes without pegmatite were not assayed. Approximately 5% of all samples submitted were standards and coarse blanks. Blanks were typically inserted with the interpreted ore zones after the drilling was completed. Approximately 2.5% of samples submitted were duplicate samples collected after logging using a riffle splitter and sent to an umpire laboratory. This ensured zones of interest were duplicated and not missed during alternative routine splitting of the primary sample. Prior to the December 2018 - SGS Tarkwa was used for sample preparation (PRP100) and subsequently forwarded to SGS Johannesburg for analysis; and later SGS Vancouver for analysis (ICP90A). Post December 2018 to present – Intertek Tarkwa was used for sample preparation (SP02/SP12) and subsequently forwarded to Intertek Perth for analysis (FP6/MS/OES - 21 element combination Na₂O₂ fusion with combination OES/MS). ALS Laboratory in Brisbane was used for the Company's initial due diligence work programmes and was selected as the umpire laboratory since Phase 1. ALS conducts ME-ICP89, with a Sodium Peroxide Fusion. Detection limits for lithium are 0.01-10%. Sodium Peroxide fusion is considered a "total" assay technique for lithium. In addition, 22 additional elements assayed with Na₂O₂ fusion, and combination MS/ICP analysis.
Drilling techniques	<ul style="list-style-type: none"> <i>Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</i> 	<ul style="list-style-type: none"> Five phases of drilling were undertaken at the Project using RC and DD techniques. All the RC drilling used face sampling hammers. Phase 1 and 2 programmes used a 5.25-inch hammers while Phase 3 and 5 used a 5.75-inch hammer. All DD holes were completed using PQ and HQ core from surface (85mm and 63.5mm). All DD holes were drilled in conjunction with a Reflex ACT II tool; to provide an accurate determination of the bottom-of-hole orientation. All fresh core was orientated to allow for geological, structural and geotechnical logging by a Company geologist.
Drill sample recovery	<ul style="list-style-type: none"> <i>Method of recording and assessing core and chip sample recoveries and results assessed.</i> <i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i> <i>Whether a relationship exists between sample recovery and grade and whether sample bias may have</i> 	<ul style="list-style-type: none"> A semi-quantitative estimate of sample recovery was completed for the vast majority of drilling. This involved weighing both the bulk samples and splits and calculating theoretical recoveries using assumed densities. Where samples were not weighed, qualitative descriptions of the sample size were

Criteria	JORC Code explanation	Commentary
	<p><i>occurred due to preferential loss/gain of fine/coarse material.</i></p>	<p>recorded. Some sample loss was recorded in the collaring of the RC drill holes.</p> <ul style="list-style-type: none"> • DD recoveries were measured and recorded. Recoveries in excess of 95.8% have been achieved for the DD drilling programme. Drill sample recovery and quality is adequate for the drilling technique employed. • The DD twin programme has identified a positive grade bias for iron in the RC compared to the DD results.
Logging	<ul style="list-style-type: none"> • <i>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</i> • <i>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</i> • <i>The total length and percentage of the relevant intersections logged.</i> 	<ul style="list-style-type: none"> • All drill sample intervals were geologically logged by Company geologists. • Where appropriate, geological logging recorded the abundance of specific minerals, rock types and weathering using a standardised logging system that captured preliminary metallurgical domains. • All logging is qualitative, except for the systematic collection of magnetic susceptibility data which could be considered semi quantitative. • Strip logs have been generated for each drill hole to cross-check geochemical data with geological logging. • A small sample of washed RC drill material was retained in chip trays for future reference and validation of geological logging, and sample reject materials from the laboratory are stored at the Company's field office. • All drill holes have been logged and reviewed by Company technical staff. • The logging is of sufficient detail to support the current reporting of a Mineral Resource.
Sub-sampling techniques and sample preparation	<ul style="list-style-type: none"> • <i>If core, whether cut or sawn and whether quarter, half or all core taken.</i> • <i>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</i> • <i>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</i> • <i>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</i> • <i>Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.</i> • <i>Whether sample sizes are appropriate to the grain size of the material being sampled.</i> 	<ul style="list-style-type: none"> • RC samples were cone split at the drill rig. For interpreted waste zones the 1 or 2m rig splits were later composited using a riffle splitter into 4m composite samples. • DD core was cut with a core saw and selected half core samples dispatched to Nagrom Laboratory in Perth for preliminary metallurgical test work. • The other half of the core, including the bottom-of-hole orientation line, was retained for geological reference. • The remaining DD core was quarter cored for geochemical analysis. • Since December 2018, samples were submitted to Intertek Tarkwa (SP02/SP12) for sample preparation. Samples were weighed, dried and crushed to -2mm in a Boyd crusher with an 800-1,200g rotary split, producing a nominal 1,500g split crushed sample, which was subsequently pulverised in a LM2 ring mill. Samples were pulverised to a nominal 85% passing 75µm. All the preparation equipment was flushed with barren material prior to the commencement of the job. Coarse reject material was kept in the original bag. Lab sizing analysis was undertaken on a nominal 1:25 basis. Final pulverised samples (20g) were airfreighted to Intertek in Perth for assaying. • The pulps were submitted for analysis by Sodium peroxide fusion (Nickel crucibles) and Hydrochloric acid to dissolve the melt. Analysed by Inductively Coupled Plasma Mass Spectrometry (FP6MS) / Inductively Coupled Plasma Optical (Atomic) Emission Spectrometry (FP6/OE). The analytical suite consisted of Al, B, Ba, Be, Ca, Cs, Fe, K, Li, Mg, Mn, Nb, P, Rb, S, Si, Sn, Sr, Ta and Ti. • The vast majority of samples were drilled dry. Moisture content was logged qualitatively. All

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	<ul style="list-style-type: none"> <i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i> <i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i> <i>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</i> 	<p>intersections of the water table were recorded in the database.</p> <ul style="list-style-type: none"> Field sample duplicates were taken to evaluate whether samples were representative and understand repeatability, with good repeatability. Sample sizes and laboratory preparation techniques were appropriate and industry standard. Analysis for lithium and a suite of other elements for Phase 1 drilling was undertaken at SGS Johannesburg / Vancouver by ICP-OES after Sodium Peroxide Fusion. Detection limits for lithium (10ppm – 100,000ppm). Sodium Peroxide fusion is considered a “total” assay technique for lithium. Review of standards and blanks from the initial submission to Johannesburg identified failures (multiple standards reporting outside control limits). A decision was made to resubmit this batch and all subsequent batches to SGS Vancouver – a laboratory considered to have more experience with this method of analysis and sample type. Results of analyses for field sample duplicates are consistent with the style of mineralisation and considered to be representative. Internal laboratory QAQC checks are reported by the laboratory, including sizing analysis to monitor preparation and internal laboratory QA/QC. These were reviewed and retained in the company drill hole database. 155 samples were sent to an umpire laboratory (ALS) and assayed using equivalent techniques, with results demonstrating good repeatability. ALL's review of QAQC suggests the SGS Vancouver and Intertek Perth laboratories performed within acceptable limits. No geophysical methods or hand-held XRF units have been used for determination of grades in the Mineral Resource.
Verification of sampling and assaying	<ul style="list-style-type: none"> <i>The verification of significant intersections by either independent or alternative company personnel.</i> <i>The use of twinned holes.</i> <i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i> <i>Discuss any adjustment to assay data.</i> 	<ul style="list-style-type: none"> Significant intersections were visually field verified by company geologists and Shaun Searle of Ashmore during the 2019 site visit. Drill hole data was compiled and digitally captured by Company geologists in the field. Where hand-written information was recorded, all hardcopy records were kept and archived after digitising. Phase 1 and 2 drilling programmes were captured on paper or locked excel templates and migrated to an MS Access database and then into Dashed (industry standard drill hole database management software). The Phase 3 to 5 programmes were captured using LogChief which has inbuilt data validation protocols. All analytical results were transferred digitally and loaded into the database by a Dashed consultant. The data was audited, and any discrepancies checked by the Company personnel before being updated in the database. Twin DD holes were drilled to verify results of the RC drilling programmes. Results indicate that there is iron contamination in the RC drilling process. Reported drill hole intercepts were compiled by the Chief Geologist. Adjustments to the original assay data included converting Li ppm to Li₂O%.
Location of data points	<ul style="list-style-type: none"> <i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i> <i>Specification of the grid system used.</i> 	<p>The collar locations were surveyed in WGS84 Zone 30 North using DGPS survey equipment, which is accurate to 0.11mm in both horizontal and vertical directions. All holes were surveyed by qualified</p>

Criteria	JORC Code explanation	Commentary
	<ul style="list-style-type: none"> Quality and adequacy of topographic control. 	<p>surveyors. Once validated, the survey data was uploaded into Datashed.</p> <ul style="list-style-type: none"> RC drill holes were routinely down hole surveyed every 6m using a combination of EZ TRAC 1.5 (singleshot) and Reflex Gyroscopic tools. After the tenth drill hole, the survey method was changed to Reflex Gyro survey with 6m down hole data points measured during an end-of-hole survey. All Phase 2 and 3 drill holes were surveyed initially using the Reflex Gyro tool, but later using the more efficient Reflex SPRINT tool. Phase 4 and 5 drill holes were surveyed using a Reflex SPRINT tool. LiDAR survey Southern Mapping to produce rectified colour images and a digital terrain model (DTM) 32km², Aircraft C206 aircraft-mounted LiDAR Riegl Q780 Camera Hasselblad H5Dc with 50mm Fixfocus lens. Coordinate system: WGS84 UTM30N with accuracy to ± 0.04. The topographic survey and photo mosaic output from the survey is accurate to 20mm. Locational accuracy at collar and down the drill hole is considered appropriate for resource estimation purposes.
Data spacing and distribution	<ul style="list-style-type: none"> Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	<ul style="list-style-type: none"> The RC holes were initially drilled on 100m spaced sections and 50m hole spacings orientated at 30° or 330° with dips ranging from -50° to -60°. Planned hole orientations/dips were occasionally adjusted due to pad and/or access constraints. Hole spacing was reduced to predominantly 40m spaced sections and 40m hole spacings. Holes are generally angled perpendicular to interpreted mineralisation orientations at the Project. Samples were composited to 1m intervals prior to estimation.
Orientation of data in relation to geological structure	<ul style="list-style-type: none"> Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	<ul style="list-style-type: none"> The drill line and drill hole orientation are oriented as close as practicable to perpendicular to the orientation of the general mineralised orientation. Most of the drilling intersects the mineralisation at close to 90 degrees ensuring intersections are representative of true widths. It is possible that new geological interpretations and/or infill drilling requirements may result in changes to drill orientations on future programmes. No orientation based sampling bias has been identified in the data.
Sample security	<ul style="list-style-type: none"> The measures taken to ensure sample security. 	<ul style="list-style-type: none"> Samples were stored on site prior to road transportation by Company personnel to the SGS preparation laboratory. With the change of laboratory to Intertek, samples were picked up by the contractor and transported to the sample preparation facility in Tarkwa.
Audits or reviews	<ul style="list-style-type: none"> The results of any audits or reviews of sampling techniques and data. 	<ul style="list-style-type: none"> Prior to the drilling programme, a third-party Project review was completed by an independent consultant experienced with the style of mineralisation. In addition, Shaun Searle of Ashmore reviewed drilling and sampling procedures during the 2019 site visit and found that all procedures and practices conform to industry standards.

~end~