ASX Announcement & Media Release

Fast Facts ASX Code: EMR

Board & Management

Mick Evans, Executive Director Simon Lee AO, Non-Executive Director Ross Stanley, Non-Executive Director Billie Slott, Non-Executive Director Michael Bowen, Non-Executive Director Mark Clements, Company Secretary Bernie Cleary, Operations Manager Okvau Josh Redmond, Operations Manager DRGP Brett Dunnachie, Chief Corporate Officer Shanpon Campbell, Chief Einaprial Officer

Company Highlights

Team

- Highly credentialed gold project operational and in-house development

- Growth
 Significant exploration and resource growth potential in Cambodia:

 Okvau Gold Mine reserve expansion;
 Memot Project (100%) maiden open pit inferred resource of 8MT @ 1.84g/t Au for 470koz (Updated Resource (interim) expected 2nd half calendar 2024)
 1,428km² of prospective tenure
 Significant exploration and resource growth potential in Australia:
 Dingo Range Project located on the underexplored Dingo Range greenstone belt

- Focussed on a net positive impact on nearmine environmental and social values by targeting strict compliance with corporate governance, international guidelines (IFC PS's) and local laws by engaging and collaborating with all stakeholders.
 Commitment to carbon neutral operations in Cambodia

Registered Office

Emerald Accelerates Exploration in Australia and Cambodia

Results include 6m @ 349g/t Au from the Memot Gold Project

Highlights

Memot Gold Project, Cambodia (EMR 100%)

Resource extensional and infill program (Stage 2 - 50,000m)

- Highest result to date received from the ongoing resource drilling program, new results include:
 - 6m @ 348.76g/t Au from 125m including 1m @ 2,090.00g/t Au from 130m (DD24MMT243);
 - 31m @ 1.80g/t Au from 239m including 0.7m @ 21.80g/t Au from . 257.6m (DD24MMT168);
 - 2.5m @ 20.67g/t Au from 134.5m (DD24MMT200);
 - 1m @ 46.00g/t Au from 135m (DD24MMT188); and
 - 7m @ 6.13g/t Au from 277m including 1m @ 40.00g/t Au from 277m (DD24MMT243).
- New drilling results to be included in Emerald's updated resource estimation for Memot expected in the second half of calendar 2024.

Dingo Range Gold Project, Western Australia (EMR 100%)

Resource definition program (Boundary-Bungarra Prospects)

- Resource definition program continues to deliver significant gold mineralisation, new drilling results include:
 - 4m @ 22.77g/t Au from 67m including 1m @ 87.70g/t Au from 67m (RC24BGA034);
 - 6m @ 8.01g/t Au from 356m including 1m @ 44.55g/t Au from 361m (RCDD24BDY193);
 - 19m @ 2.17g/t Au from 137m including 1m @ 23.70g/t Au from 138m (RC24HUR020);
 - 2m @ 19.55g/t Au from 22m (RCDD24BDY201); and
 - 5m @ 7.32g/t Au from 203m including 1m @ 33.00g/t Au from 207m (DD24BDY170).
- New drilling results to be included in Emerald's maiden resource estimation expected in the second half of calendar 2024.

Regional exploration program (Dingo Range)

- Initial regional exploration program continued with a third new discovery at the Great Northern Prospect, new drilling results include:
 - 10m @ 2.02g/t Au from 86m (RC24GRN004);
 - 1m @ 18.10g/t Au from 65m (RC24GRN003); and
 - 3m @ 5.64g/t Au from 29m (RC24GRN036).
- Additional results received from the Freemans Find Prospect, new drilling results include:
 - 2m @ 15.09g/t Au from 15m (RC24FMF030); and
 - 6m @ 3.90g/t Au from 96m (RC24FMF024).

Okvau Gold Mine, Cambodia (EMR 100%)

Okvau Gold Mine – underground and open pit resource extensions

- Underground and open pit extensional drilling at the Okvau Gold Mine continues to deliver significant gold mineralisation:
 - 5m @ 15.85g/t Au from 383m including 2m @ 33.40g/t Au from 383m (RCDD23OKV497);
 - 3m @ 23.06g/t Au from 295m (RCDD23OKV497);
 - 2m @ 18.86g/t Au from 536m (RCDD230KV555);
 - 15m @ 2.43g/t Au from 337m (RCDD23OKV497); and
 - 17m @ 1.33g/t Au from 307m (RCDD23OKV497).
- New drilling results to be included in Emerald's updated underground resource estimation expected during the September 2024 quarter.

Dingo Range Gold Project, Western Australia (EMR 100%)

The Dingo Range Gold Project consists of 37 exploration licences (including 5 applications) and 4 mining licences covering the majority of the Dingo Range greenstone belt with more than 800km² of tenure (refer Figure 1) and has the potential to host multiple standalone deposits or satellite deposits to supply additional ore to a central milling location. It includes the gold mineralised prospects of Boundary, Neptune, Stirling, Hurleys and Bungarra extending over a 6.4km strike length.

Boundary-Bungarra Resource Drill Program

Drilling results to date (current and historical) continue to demonstrate the continuity of mineralisation at depth and along strike. One air core, two RC percussion drill rigs and one diamond drill rig are currently engaged on site, continuing resource and exploration drilling activities and investigating along strike extensions, as well as drilling other regional targets.

A further 97 collars (23,8534m) have been completed of both RC (21,617m) and diamond core drilling (2,237m) on resource extension at the Boundary-Bungarra Prospects. Assays for circa 5,000m of drilling remain pending. The current resource drilling program continues with the expectation of releasing Emerald's maiden resource in the second half of calendar 2024. 460 collars (86,134m) have been drilled since Emerald acquired a controlling interest in the Dingo Range Gold Project. Recently returned results from drilling programs at the Boundary-Bungarra Resource drill program (RC and diamond) include:

- 4m @ 22.77g/t Au from 67m including 1m @ 87.70g/t Au from 67m (RC24BGA034);
- 6m @ 8.01g/t Au from 356m including 1m @ 44.55g/t Au from 361m (RCDD24BDY193);
- 19m @ 2.17g/t Au from 137m including 1m @ 23.70g/t Au from 138m (RC24HUR020);
- 2m @ 19.55g/t Au from 22m (RCDD24BDY201);
- 5m @ 7.32g/t Au from 203m including 1m @ 33.00g/t Au from 207m (DD24BDY170);
- 11m @ 3.39g/t Au from 160m including 1m @ 27.20g/t Au from 165m (RC23HUR014);
- 1.6m @ 17.7g/t Au from 250.8m (RCDD24BDY193);
- 8m @ 3.38g/t Au from 70m (RC24BDY164);
- 4m @ 6.71g/t Au from 69m (RCDD24BDY201);
- 22m @ 0.94g/t Au from 350m (RCDD23BDY061); and
- 5.15m @ 3.93g/t Au from 323.85m (RCDD24BDY202).

Refer to Appendix One.

Results from drilling to date continue to delineate mineralised high-grade structures. Historical drilling had only tested to ~110m vertical depth (average) with the drilling completed by the Company to date infilling and extending a significant portion of the mineralisation at Boundary, Stirling, Neptune and Hurleys Prospects to ~200-250m vertical.

The mineralisation remains open at depth and along strike throughout a significant portion of the five prospects (refer Figures 3 and 5).

Figure 2 | Boundary, Stirling and Neptune Drill collars with recent significant results in black (refer Appendix One) and previously announced (in blue) (Plan view)

Figure 3 | Boundary, Stirling and Neptune Gram metre plot (oblique Long section)

800

200

Figure 4 | Hurleys and Bungarra Drill collars with recent significant results in black (refer Appendix One) and previously announced (in blue) (Plan view)

Figure 5 | Hurleys and Bungarra Gram metre plot with recent significant drill results in black (refer Appendix One)

6.4 km strike length

Boundary-Bungarra Historic Significant Intersections

The current resource drill program is designed to test the strike and down dip extension of historic significant intersections. These previous drill programs include 84,028m (80,684m RC and 3,344m diamond) completed since 2014 and 45,583m of drilling completed by various previous tenement holders (34,695m RC, 4,587m diamond, 432m AC and 5,869m RAB). Significant intersections over the Boundary-Bungarra Prospects to date include:

Boundary:

- 5m @ 60.25g/t Au from 171m (WDDH8);
- 45m @ 6.07g/t Au from 73m (BDRC058);
- 27m @ 9.34g/t Au from 153m (BDRC035);
- 53m @ 3.44g/t Au from 66m (WRC17) (EOH);
- 47m @ 3.42g/t Au from 93m (BDRD0025);
- 30m @ 5.16g/t Au from 151m (WDDH10);
- 19m @ 7.89g/t Au from 58m (BRC1002);
- 8m @ 17.14g/t Au from 38m (BDRC060);
- 40m @ 3.17g/t Au from 55m (BDRD0022);
- 27m @ 4.53g/t Au from 62m (BDRC014);
- 9m @ 13.55g/t Au from 42m (WDDH1);
- 30m @ 3.82g/t Au from 179m (BDRD0043);
- 9m @ 12.55g/t Au from 42m (WRC23);
- 27m @ 4.07g/t Au from 62m (BDRD0094);
- 23m @ 4.16g/t Au from 73m (BDRC061);
- 24m @ 3.88g/t Au from 20m (DRP176) (EOH);
- 49m @ 1.89g/t Au from 74m (BDRD0061);
- 45m @ 2.01g/t Au from 62m (BDRD0010).

Stirling:

- 26m @ 5.83g/t Au from 33m (STRD0016);
- 38m @ 2.62 g/t Au from 16m (SRC7);
- 31m @ 2.75g/t Au from 35m (STRD0008);
- 27m @ 2.30g/t Au from 59m (STRD0007);
- 27m @ 2.25g/t Au from 31m (STRD0019).

Hurleys:

- 12m @ 3.30g/t Au from 13m (HRRD0020);
- 12m @ 2.77g/t Au from 47m (HRRD0050);
- 3m @ 9.00g/t Au from 62m (HRRD0062);
- 9m @ 2.27g/t Au from 64m (HRRD0032).

Bungarra:

- 14m @ 31.46g/t Au from 33m (LAVRD0126);
- 19m @ 13.41g/t Au from 32m (DRP495);
- 17m @ 13.28g/t Au from 49m (LAVRD0132);
- 3m @ 67.37g/t Au from 30m (BFRC15);
- 5m @ 39.41g/t Au from 31m (LAVRD0133);
- 9m @ 17.02g/t Au from 33m (BFRC13);
- 6m @ 23.26g/t Au from 89m (LAVRD0054);
- 9m @ 15.45g/t Au from 39m (LAVRD0142);
- 14m @ 9.74g/t Au from 30m (LAVGW0003);
- 9m @ 14.58g/t Au from 75m (LAVRD0054);
- 6m @ 19.28g/t Au from 53m (LAVRD0135);
- 8m @ 12.38g/t Au from 48m (LAVRD0054);
- 6m @ 16.16g/t Au from 59m (LAVRD0156);
- 4m @ 23.78g/t Au from 49m (LAVGW0002).

Neptune:

Refer ASX announcements 30 October 2023, 4 July 2023, 28 April 2023, 31 January 2023, 7 October 2022, 5 July 2022 and 31 January 2023.

- 26m @ 6.95g/t Au from 40m (NPRD0039);
- 16m @ 10.10g/t Au from 63m (NPRD0026);
- 25m @ 5.24g/t Au from 0m (NPGC0053);
- 17m @ 7.44g/t Au from 29m (NPRD0007);
- 33m @ 3.82g/t Au from 37m (NPMD1019);
- 40m @ 2.98g/t Au from 14m (NPGC0025);
- 22m @ 4.87g/t Au from 17m (NPRD0056);
- 15m @ 6.60g/t Au from 67m (NPMD1007);
- 3m @ 29.85g/t Au from 45m (NPMD1026);
- 6m @ 14.24g/t Au from 37m (NPGC0018);
- 9m @ 9.44g/t Au from 82m (NPRD0078);
- 9m @ 9.36g/t Au from 7m (NPGC0045).

Dingo Range Gold Project Regional Exploration

The initial regional RC drilling program has resulted in a third new discovery, the Great Northern Prospect, located 3km North West of the Boundary-Neptune prospects (refer Figure 6). The Great Northern Prospect follows on from the recently discovered Freemans Find and Banjawarn Prospects.

Great Northern Prospect

The Great Northern Prospect reconnaissance drill program consisted of 34 collars for 4,901m and was drilled on 100m and 200m spaced drill traverses and designed to test aeromagnetic and geochemical targets, and historic RAB anomalous drill results (refer Figure 10). The mineralisation is associated with intrusive-related quartz veining, proximal to a granodiorite intrusion into basalt. Emerging interpretation shows multiple ENE-dipping mineralised structures running along the margin of a NNW striking granodiorite. The mineralisation has an interpreted strike length of 1km and is open both along strike and at depth (refer Figure 11).

Significant results from Great Northern Prospect include:

- 10m @ 2.02g/t Au from 86m (RC24GRN004);
- 1m @ 18.10g/t Au from 65m (RC24GRN003);
- 3m @ 5.64g/t Au from 29m (RC24GRN036);
- 1m @ 14.10g/t Au from 126m (RC24GRN024);
- 8m @ 1.63g/t Au from 61m (RC24GRN011);
- 2m @ 5.93g/t Au from 135m (RC24GRN024);
- 1m @ 10.80g/t Au from 80m (RC24GRN035); and
- 8m @ 1.24g/t Au from 91m (RC24GRN037).

Freeman's Find

As previously announced the Freeman's Find program included 30 collars for a total of 3,054m. Significant results include:

- 5m @ 20.61g/t Au from 33m including 1m @ 101g/t Au from 36m (RC24FMF001);
- 21m @ 3.98g/t Au from 26m including 1m @ 49.90g/t Au from 29m (RC24FMF009);
- 1m @ 43.2g/t Au from 3m (RC24FMF013); and
- 14m @ 1.06g/t Au from 49m (RC24BNJ012).

Refer ASX announcement 18 March 2024 and 18 April 2024.

A further 1,691 pending results have recently been returned (since last exploration update) from the Freemans Find Program (refer Figures 7,8 and 9). Significant results include:

- 2m @ 15.09g/t Au from 15m (RC24FMF030);
- 6m @ 3.90g/t Au from 96m (RC24FMF024); and
- 2m @ 6.88g/t Au from 24m (RC24FMF028).

Refer to Appendix One.

The high-grade intersection 2m @ 15.09g/t Au from 15m (RC24FMF030), is of particular significance as it was a single hole drilled adjacent to historical workings, located 1km NW along strike from previously announced Freeman's Find results (refer Figure 7). The Freeman's Find structural corridor is interpreted to be over 1.5 km in length and is untested both along strike and at depth. The Freeman's Find regional drill programs were designed to test aeromagnetic and geochemical targets, historical workings and historic RAB, VAC and RC anomalous drill results.

Figure 7 | Plan view of recent Freeman's Find Prospect drilling completed

Figure 8 | Section 1 Cross section from the northern edge of the Freeman's Find Prospect. All highlighted significant intersections refer Appendix One

Figure 9 | Section 2 Cross section from the northern edge of the Freeman's Find Prospect. All highlighted significant intersections refer Appendix One

Figure 10 | Plan view of recent Great Northern Prospect drilling completed (refer Appendix One)

Figure 11 | Section 1 Cross section from the Great Northern Prospect . All highlighted significant intersections refer Appendix One

Exploration Activities – Cambodian Gold Projects

Emerald's exploration tenements, which comprise of a combination of five (5) 100% owned granted licences, and a further three (3) subject to joint venture agreements (with EMR earning majority ownership), cover a combined area of 1,428km² in Cambodia.

Memot Project, Cambodia – Extensional and Infill Resource Program (EMR: 100%)

The Memot Stage 2 50,000m drill program continues with a total of 139 collars for 29,351m of drilling having been completed to date. The Stage 2 program is designed to infill and extend the previously reported gold mineralisation at Memot that remains open in all directions and at depth. To date, Stage 1 and Stage 2 have completed a total of 270 collars for 48,030m (19,155m RC and 28,875m diamond) with 101 collars for 20,949m completed since last time of reporting (refer Figures 14 and 15). Significant recent results received include:

- 6m @ 348.76g/t Au from 125m including 1m @ 2,090g/t Au from 130m (DD24MMT243)(refer Figure 13);
- 31m @ 1.80g/t Au from 239m including 0.7m @ 21.80g/t Au from 257.6m (DD24MMT168);
- 1m @ 92.00g/t Ag and 3.33% Cu from 209m (DD24MMT204);
- 2.5m @ 20.67g/t Au from 134.5m (DD24MMT200);
- 1m @ 46.00g/t Au from 135m (DD24MMT188);
- 7m @ 6.13g/t Au from 277m including 1m @ 40.00g/t Au from 277m (DD24MMT243);
- 2m @ 20.63g/t Au from 21m (RC24MMT197);
- 1m @ 33.60g/t Au from 162m (DD24MMT192);
- 2m @ 16.33g/t Au from 355m (RCDD24MMT151);
- 2m @ 13.62g/t Au from 54m (RC24MMT251);
- 9m @ 3.02g/t Au from 96m (DD24MMT208);
- 6m @ 4.07g/t Au from 1m (RC24MMT198);
- 1m @ 21.50g/t Au from 45m (DD24MMT168);
- 7m @ 3.04g/t Au from 138m (RCDD24MMT175);
- 1m @ 19.6g/t Au from 122m (RC24MMT191); and
- 1m @ 13.5g/t Au, 89g/t Ag, 0.74% Pb and 4.33% Zn from 282m (DD24MMT194).

Refer Appendix Three for all significant results.

Figure 13 | Core pictures from the high grade intercept DD24MMT243 from 130.80-140.00m. Mineralisation in picture includes gold, arsenopyrite, pyrrhotite, chalcopyrite, pyrite and sphalerite hosted within sheeted Quartz vein

Figure 13 | Continued

Both the Memot and Okvau Gold Projects are classified as IRGS, typically associated with intrusive igneous bodies that act as the source of hydrothermal fluids responsible for gold deposition. At Memot, gold precipitation appears to have occurred at different temperature and pressure conditions compared to that at the Okvau Gold deposit. This is inferred from the nature of the quartz sheeted veining and the textural evidence within the host rocks. Another distinguishing feature of the Memot deposit is the presence of multimetallic sulphide assemblages, indicating multiple hydrothermal fluid pulses. Each of the multiple stacked structures are discernible between drillholes and appear continuous between sections and down dip. Due to variable nature of the mineralisation interception of further pods of extremely high grade mineralisation is expected as the density of drilling continues to increase.

The mineralisation is associated with multiple high-grade, narrow, stacked quartz vein sets, dipping shallowly to the northeast (refer Figure 14) with current interpreted strike length of 650m (refer ASX announcement 28 July 2022). Previously announced significant intersections include:

- 5m @ 15.36g/t Au from 210m including 1m @ 67.4g/t Au from 214m (DD23MMT136);
- 1m @ 37.20 g/t Au from 33m (DD21MMT005);
- 1m @ 31.70g/t Au from 49m (DD21MMT010);
- 0.4m @ 17.70g/t Au from 190m (DD22MMT013);
- 3.54m @ 10.30g/t Au from 0m (ZK8-1);
- 0.3m @ 145g/t Au from 14.2m (ML3);
- 0.3m @ 96g/t Au from 12.7m (ML7);
- 0.3m @ 76.5g/t Au from 10.7m (ML6);
- 1m @ 31.4g/t Au from 132m, 0.52% Cu and 0.52 % Zn (RC22MMT073);
- 1m @ 21.30g/t Au from 69m and 1.06% Cu (RC22MMT039);
- 5.6m @ 4.85g/t Au and 0.67% Cu from 187m including 0.6m @ 31.60 g/t Au 6.04% Cu, 0.16% Pb and 0.25%
- Zn from 192m (DD22MMT080W);
- 2m @ 23.29g/t Au from 131m (DD23MMT090);
- 4m @ 13.49g/t from 63m including 2m @ 26.31g/t from 63m (RC24MMT158);
- 3m @ 13.95g/t from 72m including 1m @ 36.40g/t from 73m (RC24MMT159);
- 2m @ 12.49g/t from 146m including 1m @ 23.60g/t from 146m (RC24MMT155); and
- 1m @ 23.10g/t from 143m (RC24MMT157).

Refer ASX announcements 28 April 2023, 4 July 2023, 30 October 2023 and 28 April 2024.

An updated resource estimation for Memot is expected in the second half of calendar 2024.

Figure 14 | Memot artisanal workings with recent drill collars and significant intersections (purple) previously announced (black and blue) and historic (red)

Figure 15 | Long section of the Memot resource with significant intercepts from both Stage 1 (blue) and the current Stage 2 (red) drill programmes

Okvau Gold Mine, Cambodia (EMR: 100%)

During the March 2024 quarter, Emerald completed an initial drill program with the primary focus to infill and extend the current (August 2023) open pit and maiden underground resource mineralisation proximal to and beyond the reserve pit shell. The final assays from this program were returned in the June 2024 quarter. Significant results include:

- 5m @ 15.85g/t from 383m including 2m @ 33.40g/t from 383m (RCDD23OKV497);
- 3m @ 23.06g/t from 295m including 3m @ 23.06g/t from 295m (RCDD23OKV497);
- 9m @ 1.79g/t from 417m including 1m @ 11.00g/t from 418m (RCDD23OKV497);
- 15m @ 2.43g/t from 337m (RCDD23OKV497); and
- 17m @ 1.33g/t from 307m (RCDD23OKV497).

Since the August 2023 Okvau Resource update, Emerald has completed 41 drill collars, 22 of which were shallow RC for 3,669m, 19 of which were 3,849m of RC pre-collar and 8,650m of diamond core tails. The mineralisation is associated with massive sulphide pyrrhotite, arsenopyrite and pyrite stack vein sets hosted in both diorite and hornfels sedimentary lithologies.

The significant intercepts listed above are either outside the existing resource and likely to extend the known mineralisation or have been intercepted in areas that previous modelling has indicated to be mineralised, enhancing our confidence in the existing resource (refer Figures 16 and 17). An updated underground resource estimation is due in the September 2024 quarter.

This ASX release was authorised on behalf of the Emerald Board by: Morgan Hart Managing Director.

For further information please contact Emerald Resources NL

Morgan Hart Managing Director

About Emerald Resources NL

Overview

Emerald is a developer and explorer of gold projects. Emerald's Okvau Gold Mine, Cambodia was commissioned in June 2021 and in full production by September 2021. Emerald has now poured over 300kozs of gold from its operations.

Emerald has significant exploration and resource growth potential in Cambodia through its holdings in a number of other projects which are made up of a combination of granted mining licences (100% owned by Emerald) and interests in joint venture agreements. Together, Emerald's interests in its Cambodian Projects covers a combined area of 1,428km².

Emerald has significant exploration and resource growth potential in Australia with two highly prospective Western Australian gold projects comprising in excess of 1,200km² of tenure including the Dingo Range Gold Project which covers in excess of 800km² of the entire Dingo Range greenstone belt.

Emerald has a highly experienced management team, undoubtedly one of the best credentialed gold development teams in Australia with a proven history of developing projects successfully, quickly and cost effectively. They are a team of highly competent mining engineers and geologists who have overseen the successful development of gold projects in developing countries such as the Bonikro Gold Project in Cote d'Ivoire for Equigold NL and more recently, Regis Resources Ltd.

Table 1 | Okvau Mineral Resource Estimate (refer to announcement 31 August 2023)

		Okvau Gold Project - March 2023 Global Resource Estimate														
	Meas	ured Reso	ources _(i)	Indicated Resources ⁽ⁱⁱ⁾			Inferred Resources(ii)			Total Resources						
Resource	Tonnage	Grade	Contained	Tonnage	Grade	Contained	Tonnage	Grade	Contained Au	Tonnage	Grade	Contained				
Туре	(Mt)	(g/t Au)	Au (Koz)	(Mt)	(g/t Au)	Au (Koz)	(Mt)	(g/t Au)	Au (Koz)	(Mt)	(g/t Au)	Au (Koz)				
Open Pit	2.81	0.89	80	8.36	2.24	601	0.70	1.71	4	11.24	1.90	685				
Underground	_	-	_	0.6	6.20	120	0.91	6.35	185	1.510	6.29	305				
Total	2.81	0.89	80	6.96	2.50	721	0.98	6.01	189	12.750	2.42	990				

* tonnage is rounded to the nearest 10,000t, grade is rounded to the second decimal pint and ounces are rounded to the nearest 1,000oz

Table 2 | Okvau Ore Reserve Estimate (refer to announcement 31 August 2023)

	Okvau Gold Project - March 2023 Global Reserve Estimate												
Resource	Tonnage	Grade	Contained										
Туре	(Mt)	(g/t Au)	Au (Koz										
Proven	2.81	0.89	80										
Probable	9.14	2.10	618										
Total	11.95	1.82	698										

*tonnage is rounded to the nearest 10,000t, grade is rounded to the second decimal pint and ounces are rounded to the nearest 1,000oz

Table 3 | Maiden Memot Gold Project Open Pit Resource Estimate (refer to announcement 21 December 2023)

	Memot G	Nemot Gold Project Resource Estimate														
	Measured Resources*			Indicated Resources*			Inferred Resources*			Total Reso						
Au Lower	Tonnage	Grade	Contained	Tonnage	Grade	Contained	Tonnage	Grade	Contained	Tonnage	Grade	Contained				
Cut off	(Mt)	(g/t Au)	(Koz)	(Mt)	(g/t Au)	(Koz)	(Mt)	(g/t Au)	Au (Koz)	(Mt)	(g/t Au)	(Koz)				
0.9	-	-	-	-	-	-	8.0	1.84	470	8.0	1.84	470				

*tonnage is rounded to the nearest 100Kt, grade is rounded to the second decimal point and ounces are rounded to the nearest 10,000oz

Forward Looking Statement

This document contains certain forward looking statements. These forward-looking statements are not historical facts but rather are based on the Company's current expectations, estimates and projections about the industry in which Emerald Resources operates, and beliefs and assumptions regarding the Company's future performance. Words such as "anticipates", "expects", "intends", "plans", "believes", "seeks"' "estimates", "potential" and similar expressions are intended to identify forward-looking statements. These statements are not guarantees of future performance and are subject to known or unknown risks, uncertainties and other factors, some of which are beyond the control of the Company, are difficult to predict and could cause actual results to differ materially from those expressed or forecasted in the forward looking statements, which reflect the view of Emerald Resources only as of the date of this announcement. The forward looking statements made in this release relate only to events as of the date on which the statements are made. Emerald Resources will not undertake any obligation to release publicly any revisions or updates to these forward-looking statements to reflect events, circumstances or unanticipated events occurring after the date of this announcement except as required by law or by any appropriate regulatory authority. This document has been prepared in compliance with the current JORC Code 2012 Edition and the ASX listing Rules.

The Company believes that is has a reasonable basis for making the forward-looking statements in this announcement, including with respect to any production targets and financial estimates, based on the information contained in this announcement. Reference is made to ASX Announcements dated 1 May 2017 and 26 November 2019. All material assumptions underpinning the production target, or the forecast financial information continue to apply and have not materially changed. 100% of the production target referred to in this announcement is based on Probable Ore Reserves.

Emerald has a highly experienced management team, undoubtedly one of the best credentialed gold development teams in Australia with a proven history of developing projects successfully, quickly and cost effectively. They are a team of highly competent mining engineers and geologists who have overseen the successful development of gold projects in developing countries such as the Bonikro Gold Project in Cote d'Ivoire for Equigold NL and more recently, Regis Resources Ltd.

Competent Persons Statements

The information in this report that relates to Dingo Range Exploration and Drill Results (Appendix One) and Cambodian Recent Drilling (Appendix Three) is based on information compiled by Mr Keith King, who is an employee to the Company and who is a Member of The Australasian Institute of Mining & Metallurgy. Mr Keith King has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Keith King has reviewed the contents of this release and consents to the inclusion in this announcement of all technical statements based on his information in the form and context in which it appears.

Mr King has reviewed the contents of this news release and consents to the inclusion in this announcement of all technical statements based on his information in the form and context in which it appears.

No New Information

To the extent that announcement contains references to prior exploration results and Mineral Resource estimates, which have been cross referenced to previous market announcements made by the Company, unless explicitly stated, no new material information is contained. The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements and, in the case of estimates of Mineral Resources that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed.

Appendix One | New Drill Results from Recent Drilling at Boundary, Bungarra, Freeman's Find, Great Northern, Hurleys or Neptune Prospects (>2 gram metre Au)

Prospect	Hole Name	Easting	Northing	RL	Dip	Azi	End Depth (m)	From (m)	To (m)	Interval (m)	Gold g/t
Bungarra	RC24BGA034	348,523	6,968,098	500	84	-88	174	67	71	4	22.77
Bungarra	including							67	68	1	87.70
Boundary	RCDD24BDY193	345,447	6,971,863	496	271	-60	379	356	362	6	8.01
Boundary	including							361	362	1	44.55
Hurleys	RC24HUR020	348,465	6,967,427	500	273	-61	103	137	156 139	19	2.17 23.70
Hurleys Boundary	including RCDD24BDY201	345,308	6,971,751	496	261	-60	361	138 22	24	2	19.55
Boundary	DD24BDY170	345,433	6,971,140	501	319	-60	69	203	24	5	7.32
Boundary	including	545,455	0,571,140	501	515	-50	05	203	208	1	33.00
Hurleys	RC23HUR014	348,012	6,969,381	510	46	-59	120	160	171	11	3.39
Hurleys	including							165	166	1	27.20
Freeman's Find	RC24FMF030	344,374	6,972,835	486	272	-61	103	15	17	2	15.09
Boundary	RCDD24BDY193	345,445	6,971,860	495	271	-60	379	250.8	252.4	2	17.70
Boundary	RC24BDY164	345,580	6,971,866	497	272	-59	300	70	78	8	3.38
Boundary	RCDD24BDY201	345,303	6,971,746	495	261	-60	361	69	73	4	6.71
Freeman's Find	RC24FMF024	347,358	6,964,085	487	273	-61	109	96	102	6	3.90
Boundary	RCDD23BDY061	345,357	6,972,096	497	269	-59	443	350	372	22	0.94
Great Northern	RC24GRN004	343,179	6,975,400	486	245	-61	151	86	96	10	2.02
Boundary	RCDD24BDY202	345,408	6,971,749	496	264	-60	364	323.85	329	5	3.93
Boundary Groat Northorn	RCDD23BDY061 RC24GRN003	345,357	6,972,096	497	269 243	-59	443 151	320	336 66	16	1.19
Great Northern Great Northern	RC24GRN003 RC24GRN036	343,220 343,175	6,975,424 6,975,513	487 487	243	-61 -61	163	65 29	32	3	18.10 5.64
Boundary	RC24GRN036 RC24BDY211	343,175 348,232	6,968,519	487 506	243	-60	199	138	32 155	3	0.91
Neptune	DD24NPT104	345,546	6,971,106	506	229	-60	98	12.6	15.9	3	4.40
Freeman's Find	RC24FMF028	347,585	6,963,654	485	284	-60	115	24	26	2	6.88
Great Northern	RC24GRN024	343,373	6,975,142	485	242	-61	151	126	127	1	14.10
Hurleys	RC24HUR026	347,955	6,969,330	510	49	-59	270	210	216	6	2.31
Boundary	RC24BDY164	345,580	6,971,866	497	272	-59	300	21	35	14	0.95
Boundary	RC24BDY195	345,150	6,971,454	497	266	-62	91	150	151	1	12.80
Great Northern	RC24GRN011	343,195	6,975,526	487	247	-61	163	61	69	8	1.63
Boundary	RCDD24BDY172	345,337	6,971,845	495	265	-60	403	234	235	1	13.30
Hurleys	RCDD24HUR020	345,257	6,971,942	494	308	-90	102	51	54	3	4.29
Great Northern	RC24GRN024	343,373	6,975,142	485	242	-61	151	135	137	2	5.93
Boundary	RCDD24BDY193	345,445	6,971,860	495	271	-60	379	313	313.5	1	23.50
Boundary	DD24BDY170	345,432	6,971,141	501	319	-90	69	417	435	18	0.59
Great Northern	RC24GRN035	343,192	6,975,635	488	244	-71	187	80	81	1	10.80
Bungarra	RC24BGA023	348,512	6,968,086	504	234	-61	199	150	155	5	2.04
Freeman's Find	RC24FMF015	347,857	6,963,334	484	220	-60	85	60	75	15	0.68
Great Northern	RC24GRN037 RC24HUR022	343,133 348,158	6,975,486 6,969,319	487 509	243 48	-62 -61	79 156	91 87	99 93	8	1.24 1.59
Hurleys Boundary	DD24BDY170	345,432	6,971,141	509	319	-90	69	169	95 176	7	1.39
Freeman's Find	RC24FMF026	343,432	6,963,705	486	281	-60	127	97	110	15	0.59
Great Northern	RC24GRN018	343,307	6,975,475	487	239	-61	151	129	140	11	0.85
Boundary	RCDD24BDY193	345,445	6,971,860	495	271	-60	379	154.6	169	14	0.65
Neptune	DD24NPT104	345,546	6,971,106	506	220	-60	98	27.1	28.3	1	6.76
Boundary	RC24BDY202	345,460	6,971,756	496	268	-60	140	116	127	11	0.71
Freeman's Find	RC24FMF020	347,377	6,964,126	488	271	-61	109	33	36	3	2.71
Freeman's Find	RC24FMF028	347,585	6,963,654	485	284	-60	115	18	19	1	7.99
Great Northern	RC24GRN004	343,179	6,975,400	486	245	-61	151	119	126	7	1.13
Great Northern	RC24GRN013	343,283	6,975,573	487	251	-60	151	115	118	3	2.70
Hurleys	RC24HUR024	348,181	6,969,406	511	49	-60	114	60	64	4	2.10
Neptune	DD24NPT104	345,546	6,971,106	506	220	-60	98	6.6	7.5	1	7.36
Bungarra	RC24BGA022	348,579	6,968,168	503	229	-61	199	56	59	3	2.23
Great Northern	RC24GRN003	343,220	6,975,424	487	243	-61	151	96	103	7	1.05
Boundary	DDRE-BDRC081 RC24BDY210	345,243	6,972,087	493	268	-60	262	200	201	1	5.58
Boundary Freeman's Find	RC24BDY210 RC24FMF021	345,081 347,378	6,972,023 6,964,163	493 488	263 270	-60 -59	174 103	112 82	114 83	2	3.15 6.05
Great Northern	RC24FMF02T RC24GRN002	347,378 343,190	6,964,163	488	270	-59	103	82 13	83 16	3	6.05 1.91
Great Northern	RC24GRN002 RC24GRN012	343,190	6,975,552	487	247	-60	133	62	65	3	2.00
Great Northern	RC24GRN026	343,325	6,974,886	484	258	-60	151	39	42	3	1.98
Great Northern	RC24GRN026	343,325	6,974,886	484	258	-60	151	64	65	1	6.15
Great Northern	RC24GRN037	343,133	6,975,486	487	243	-62	79	20	31	11	0.56
Boundary	RCDD24BDY207	348,029	6,969,335	509	53	-60	156	147	148	1	5.52
Boundary	DD24BDY170	345,432	6,971,141	501	319	-90	69	443	450	7	0.72
Neptune	DD24NPT104	345,546	6,971,106	506	220	-60	98	52	53	1	5.25
Boundary	RC24BDY164	345,580	6,971,866	497	272	-59	300	89	96	7	0.76
Boundary	RC24BDY210	345,081	6,972,023	493	263	-60	174	119	122	3	1.68
Freeman's Find	RC24FMF027	347,598	6,963,699	486	282	-60	115	40	43	3	1.73
Great Northern	RC24GRN012	343,241	6,975,552	487	241	-61	133	156	158	2	2.34
Great Northern	RC24GRN024	343,373	6,975,142	485	242	-61	151	109	111	2	2.74
Hurleys	RC24HUR022	348,158	6,969,319	509	48	-61	156	98	102	4	1.20
Hurleys	RC24HUR022	348,158	6,969,319	509	48	-61	156	121	123	2	2.56
Hurleys	RC24HUR027	348,464	6,967,430	505	273	-61	103	138	141	3	1.82
Neptune	DD24NPT104	345,546	6,971,106	506	220	-60	98	39.2	41	2	2.09
Boundary Boundary	DDRE-BDRD0094	345,241	6,971,371	498	229	-61	253	209	210	1	3.57 1.77
-	RC24BDY183	345,111	6,971,974	493	265	-55	150	247	249	2	

Prospect	Hole Name	Easting	Northing	RL	Dip	Azi	End Depth (m)	From (m)	To (m)	Interval (m)	Gold g/t
Boundary	RC24BDY191	345,142	6,971,802	495	267	-60	180	138	144	6	0.65
Boundary	RC24BDY196	345,126	6,971,452	498	265	-61	97	22	24	2	1.91
Boundary	RC24BDY202	345,460	6,971,756	496	268	-60	140	206	207	1	4.06
Boundary	RC24BDY206	345,399	6,971,647	497	270	-60	300	162	168	6	0.59
Freeman's Find	RC24FMF018	347,341	6,964,002	487	273	-61	103	63	64	1	3.64
Freeman's Find	RC24FMF029	347,048	6,964,642	491	273	-61	97	53	58	5	0.74
Great Northern	RC24GRN003	343,220	6,975,424	487	243	-61	151	116	118	2	1.77
Great Northern	RC24GRN004	343,179	6,975,400	486	245	-61	151	142	143	1	4.45
Great Northern	RC24GRN012	343,241	6,975,552	487	241	-61	133	129	133	4	1.09
Great Northern	RC24GRN021	343,324	6,975,351	486	244	-61	151	79	80	1	4.30
Great Northern	RC24GRN027	343,410	6,974,936	484	254	-61	135	113	114	1	4.03
Great Northern	RC24GRN035	343,192	6,975,635	488	244	-71	187	119	125	6	0.61
Great Northern	RC24GRN036	343,175	6,975,513	487	243	-61	163	86	87	1	3.92
Hurleys	RC24HUR026	347,955	6,969,330	510	49	-59	270	96	99	3	1.24
Boundary	RCDD24BDY167	345,230	6,972,044	493	266	-61	303	298	304	6	0.60
Boundary	RCDD24BDY201	345,303	6,971,746	495	261	-60	361	34	35	1	3.73
Boundary	RCDD24BDY201	345,303	6,971,746	495	261	-60	361	354	360.4	6	0.55
Boundary	DD24BDY170	345,432	6,971,141	501	319	-90	69	373	374.5	2	2.10
Neptune	DD24NPT104	345,546	6,971,106	506	220	-60	98	43.3	45.1	2	1.84
Hurleys	RC23HUR014	348,012	6,969,381	510	46	-59	120	196	197	1	2.57
Boundary	RC24BDY164	345,580	6,971,866	497	272	-59	300	60	65	5	0.53
Boundary	RC24BDY167	345,512	6,971,906	497	265	-60	300	274	277	3	1.09
Boundary	RC24BDY179	345,342	6,971,498	498	263	-60	252	182	187	5	0.52
Boundary	RC24BDY202	345,460	6,971,756	496	268	-60	140	140	141	1	3.36
Freeman's Find	RC24FMF017	347,557	6,963,655	485	270	-61	85	29	31	2	1.61
Freeman's Find	RC24FMF017	347,557	6,963,655	485	270	-61	85	60	61	1	3.34
Freeman's Find	RC24FMF019	347,340	6,964,042	487	269	-61	103	90	91	1	3.32
Freeman's Find	RC24FMF021	347,378	6,964,163	488	270	-59	103	36	37	1	3.00
Freeman's Find	RC24FMF022	347,397	6,964,244	489	272	-60	109	14	19	5	0.70
Freeman's Find	RC24FMF024	347,358	6,964,085	487	273	-61	109	30	31	1	2.74
Freeman's Find	RC24FMF024	347,358	6,964,085	487	273	-61	109	68	73	5	0.55
Freeman's Find	RC24FMF025	347,556	6,963,766	486	284	-60	127	25	27	2	1.55
Freeman's Find	RC24FMF029	347,048	6,964,642	491	273	-61	97	14	15	1	2.52
Freeman's Find	RC24FMF029	347,048	6,964,642	491	273	-61	97	70	71	1	2.61
Great Northern	RC24GRN005	343,229	6,975,310	486	243	-60	151	70	71	1	3.21
Great Northern	RC24GRN006	343,274	6,975,338	486	239	-61	151	53	54	1	2.79
Great Northern	RC24GRN011	343,195	6,975,526	487	247	-61	163	55	55	1	2.61
Great Northern	RC24GRN013	343,283	6,975,573	487	251	-60	151	99	100	1	3.31
Great Northern	RC24GRN013	343,307	6,975,475	487	239	-61	151	122	123	1	2.89
Great Northern	RC24GRN022	343,366	6,975,378	486	255	-60	151	125	125	1	3.28
Great Northern	RC24GRN036	343,175	6,975,513	487	243	-61	163	75	78	3	1.03
Great Northern	RC24GRN036	343,175	6,975,513	487	243	-61	163	184	187	3	1.03
Great Northern	RC24GRN030	343,173	6,975,486	487	243	-61	79	77	79	2	1.12
Great Northern	RC24GRN037 RC24GRN037	343,133	6,975,486	487	243	-62	79	108	110	2	1.40
	RC24GRN037 RC24HUR024	-		511	49	-62	114	69	70		2.87
Hurleys Hurleys	RC24HUR026	348,181 347,955	6,969,406 6,969,330	510	49	-59	270	185	189	1	0.68
) -		1								4	
Boundary	RCDD24BDY193	345,445	6,971,860	495	271	-60	379	105	106	1	3.19
Boundary	DD24BDY170	345,432	6,971,141	501	319	-90	69	245	246	1	2.31
Boundary	DD24BDY170	345,432	6,971,141	501	319	-90	69	341	345	4	0.58
Neptune	DD24NPT104	345,546	6,971,106	506	220	-60	98	5	5.5	1	3.01
Neptune	DD24NPT104	345,546	6,971,106	506	220	-60	98	47	47.8	1	2.81
Boundary	DDRE-BDRD0094	345,241	6,971,371	498	229	-61	253	198	201	3	0.52
Boundary	RC24BDY164	345,580	6,971,866	497	272	-59	300	83	84	1	1.54
Boundary	RC24BDY198	345,102	6,971,450	499	266	-61	91	277	278	1	1.78
Boundary	RC24BDY202	345,460	6,971,756	496	268	-60	140	154	156	2	1.22
Boundary	RC24BDY202	345,460	6,971,756	496	268	-60	140	234	236	2	1.12
Boundary	RC24BDY205	345,309	6,971,645	496	265	-60	285	54	56	2	0.78
Boundary	RC24BDY205	345,309	6,971,645	496	265	-60	285	126	128	2	0.91
Boundary	RC24BDY205	345,309	6,971,645	496	265	-60	285	174	178	4	0.53
Bungarra	RC24BGA034	348,523	6,968,095	504	84	-88	174	129	130	1	1.50
Bungarra	RC24BGA034	348,523	6,968,095	504	84	-88	174	171	173	2	0.77
Bungarra	RC24BGA035	348,616	6,968,127	502	228	-60	204	66	67	1	1.63
Freeman's Find	RC24FMF018	347,341	6,964,002	487	273	-61	103	25	28	3	0.62
Freeman's Find	RC24FMF026	347,573	6,963,705	486	281	-60	127	82	83	1	1.77
Freeman's Find	RC24FMF027	347,598	6,963,699	486	282	-60	115	19	20	1	1.50
Freeman's Find	RC24FMF027	347,598	6,963,699	486	282	-60	115	91	92	1	1.51
Freeman's Find	RC24FMF027	347,598	6,963,699	486	282	-60	115	101	105	4	0.61
Great Northern	RC24GRN003	343,220	6,975,424	487	243	-61	151	25	26	1	1.56
Great Northern	RC24GRN003	343,220	6,975,424	487	243	-61	151	86	88	2	1.01
Great Northern	RC24GRN005	343,229	6,975,310	486	243	-60	151	76	79	3	0.61
Great Northern	RC24GRN006	343,274	6,975,338	486	239	-61	151	35	38	3	0.64
Great Northern	RC24GRN007	343,023	6,975,425	487	244	-61	151	18	21	3	0.56
Great Northern	RC24GRN012	343,241	6,975,552	487	241	-61	133	84	87	3	0.54
Great Northern	RC24GRN015	343,115	6,975,363	486	239	-61	157	31	33	2	1.15
Great Northern	RC24GRN017	343,264	6,975,451	487	243	-60	151	39	41	2	0.95
Great Northern	RC24GRN019	343,150	6,975,248	485	241	-61	151	116	117	1	2.33
Great Northern	RC24GRN025	343,456	6,975,190	485	242	-61	75	106	110	4	0.61
	RC24GRN029	343,593	6,975,035	485	240	-61	157	68	69	1	1.64
Great Northern						•	1				
Great Northern	RC24GRN033	343,684	6,974,861	485	241	-61	151	86	87	1	2.37

Prospect	Hole Name	Easting	Northing	RL	Dip	Azi	End Depth (m)	From (m)	To (m)	Interval (m)	Gold g/t
Great Northern	RC24GRN035	343,192	6,975,635	488	244	-71	187	197	198	1	1.54
Great Northern	RC24GRN037	343,133	6,975,486	487	243	-62	79	149	150	1	1.63
Hurleys	RC24HUR024	348,181	6,969,406	511	49	-60	114	54	55	1	2.47
Hurleys	RC24HUR026	347,955	6,969,330	510	49	-59	270	204	205	1	2.22
Boundary	RCDD23BDY061	345,357	6,972,096	497	269	-59	443	342.2	345	3	0.86
Boundary	RCDD23BDY061	345,357	6,972,096	497	269	-59	443	389	390.5	2	1.37
Boundary	RCDD24BDY172	345,337	6,971,845	495	265	-60	403	248	249	1	2.23
Boundary	RCDD24BDY193	345,445	6,971,860	495	271	-60	379	20	21	1	2.50
Boundary	RCDD24BDY201	345,303	6,971,746	495	261	-60	361	80	82	2	0.78
Hurleys	RCDD24HUR020	345,257	6,971,942	494	308	-90	102	61	62	1	2.20
Hurleys	RCDD24HUR020	345,257	6,971,942	494	308	-90	102	75	76	1	2.35

Appendix Two | JORC Code, 2012 Edition | 'Table 1' Report

Section 1 Sampling Techniques and Data from Recent Drilling Boundary, Bungarra, Freeman's Find, Great Northern, Hurleys or Neptune Prospects

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Standards are inserted at regular intervals in sample batcher to test laboratory performance. All reverse circulation (RC) drilling is used to collect both 4m composite and 1m samples in the precollar. The 4m composite are determined based on areas of known very lo or background mineralisation or geological assessment at the rig. The 4m program composites are taken from th excess bagged material off the cone splitter taken every 1r A spear sampling technique is then used to produce a 3-5k composite sample. The 1m samples are split with a cor splitter at the drill rig to produce a 3-5kg sub-sample. Thes 1m samples are split with a cor splitter at the drill rig to produce a 3-5kg sub-sample. The 1m samples are split with a cor splitter at the drill rig to produce a 3-5kg sub-sample. The 1m samples are split with a cor splitter at the drill rig to produce a 3-5kg sub-sample. Thes 1m samples are received to identify the zones or mineralisation. Diamond core was sampled using half-core where the cord is cut in half down the longitudinal axis and sample intervat were determined by the geologist based on lithologic contacts, with most of the sample intervals being 1 metre i length. In areas of no mineralised (negligible amounts or alteration/sulphides typically present with mineralisation) 2m composite was submitted. The drill program used SGS Laboratories, Kalgoorlie an Bureau Veritas Kalgoorlie for RC and diamond samples: SGS – samples crushed and milled to <75µm and assaye using fire assay (40g) with additional AAS.

Criteria	JORC Code explanation	Commentary
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 A Schramm 685 drill rig with a 5.5-inch hammer and a Schramm 450 with a 5.375-inch hammer is used for RC drilling. 5 3/8 hole were used to drill the RC holes. A UDR1000 rig is used to drill NQ2 diamond Core. All holes were downhole surveyed using a gyroscopic survey tool (a REFLEX GYRO SPRINT-IQ™). A typical downhole survey was taken at 10m depth to the end of hole. All readings showed that down hole deviations were within acceptable limits.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	RC drill sample recovery averaged better than 99%.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All RC chips and diamond core is routinely logged (qualitatively) by a geologist, to record details of regolith (oxidation), lithology, structure, mineralization and/or veining, and alteration. All logging and sampling data are captured into a database, with appropriate validation and security features.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Most samples are dry and there is no likelihood of compromised results due to moisture. This sample technique is industry standard and is deemed appropriate for the material. All RC samples were put through a fixed cone splitter at 1m intervals with the sample reduced to between a 2kg to 5kg sample. The drilling used SGS Laboratories, Kalgoorlie and Bureau Veritas, Kalgoorlie for RC samples: SGS- samples are dried at 105° Celsius, crushed and milled to 85% passing -75µm. Assay was 50g fire assay with AAS finish for gold. Bureau Veritas- samples are dried at 105° Celsius, crushed and milled to 90% passing -75µm. Assay was 40g fire assay with AAS finish for gold.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 All samples are sent to the accredited SGS Laboratories, Kalgoorlie 50g fire assay with AAS finish for gold or the accredited Bureau Veritas laboratory in Kalgoorlie for 40g fire assay with AAS finish for gold. These methods have a lower detection limit of 0.01ppm gold. Industry-standard QAQC protocols are routinely followed for all sample batches sent for assay, which includes the insertion of commercially available pulp CRMs at rate of 1 for every 20 field samples. Field duplicates were collected at the rig, directly from the cyclone at a rate of one in every 50 samples for the entire program. QAQC data are routinely checked before any associated assay results are reviewed for interpretation. All assay data, including internal and external QA/QC data and control charts of standard, replicate and duplicate assay results, are communicated electronically.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All field data associated with sampling, and all associated assay and analytical results, are archived in a relational database, with industry-standard verification protocols in place. The calculations of all significant intercepts (for drill holes) are routinely checked by senior management. Data verification and validation procedures undertaken included checks on collar position against design and site survey collar pick-ups by Licenced on site surveyors. Hole depths were cross-checked in the geology logs, down hole surveys, sample sheets and assay reports to ensure consistency. All down hole surveys were exposed to rigorous QAQC and drill traces were plotted in 3D for validation and assessment of global deviation trends.

Criteria	JORC Code explanation	Commentary
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The grid system used is MGA_94. The creation of the topographic surface is based on a site survey pick-up in March 2014 by GEMS (Glockner Engineering and Mining Services, licenced Australian surveyors) and again in July 2014, August 2015, August 2017, December 2023 and July 2024 of all drill holes and surface contour points in GDA_94. Collars drilled prior to 20 December 2023 have been picked up using Trimble RTK DGPS by Insight UAS authorised surveyors. Drillholes drilled after 20 December 2023 have been picked up using DGPS in future survey campaigns. It is the intention to use a licenced surveyor with DGPS equipment to pick up relevant collars prior to any resource calculation. All drill holes were downhole surveyed using a gyroscopic survey tool (a REFLEX GYRO SPRINT-IQ™) and are routinely undertaken at ~5m intervals for the drilling.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 This drill spacing is considered to be sufficient to establish geological and grade continuity appropriate for the declaration of estimates of resources. The drill program adopted a standard sample length of 1.0m.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drill holes are usually designed to intersect target structures with a "close-to-orthogonal" intercept. Most of the drill holes intersect the mineralised zones at sufficient angle for the risk of significant sampling orientation bias to be low.
Sample security	The measures taken to ensure sample security.	 All RC samples were sampled as single 1m calico samples, each with a unique sample number. These calicos were collected from the drill sites in allotments of 1 tonne bulka bags. These bulka bags were loaded by field staff and delivered to SGS Kalgoorlie or Bureau Veritas by road transport supplied by the relevant laboratory. Zones of waste a sampled as a composite sample using the spear sampling technique. If the composite returns an anomalous value, the individual 1m samples (collected and stored at the time of drilling) are submitted for analysis.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 All QAQC data are reviewed routinely, batch by batch, and on a quarterly basis to conduct trend analyses, etc. Any issues arising are dealt with immediately and problems resolved before results are interpreted and/or reported. Keith King completed his most recent site visit and lab audit of both the SGS Kalgoorlie and Bureau Veritas Kalgoorlie laboratories in September 2023.

Section 2 Reporting of Exploration Results from Boundary, Bungarra, Freeman's Find, Great Northern, Hurleys or Neptune Prospects

(Criteria listed in the preceding section also apply to this section)

Criteria	Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The prospects within the Dingo Range Gold Project are 100% held by Emerald Resources NL's wholly owned subsidiary, Emerald Resources (WA) Pty Ltd or by its wholly owned subsidiaries. The tenure is considered to be secure.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Historical drilling was conducted between 1989 – 2005 by companies Julia Mines NL, Eagle Mining NL, Deep Yellow NL and Korab Resources Ltd.
Geology	Deposit type, geological setting and style of mineralisation.	 Geology comprises a basalt country rock and BIF with intrusions of various composition and ages. All Boundary prospects are associated with an approximately 45 degree to subvertical dipping mineralised lode (or sheets) that have formed in association with the basalt/BIF contact and Orogenic hydrothermal mineralisation typical of the WA goldfields. Gold Mineralisation is as shallow as a few metres below surface, extends to some 300m below surface and is open at depth. The weathering profile displays a surface laterite, followed by clay/saprolite weathering predominately in association with the weathered basalt. Saprock is encountered earlier in association with weathered BIF. Global fresh rock is encountered at Neptune and hard saprock and fresh rock are encountered in more shallow horizons.

Criteria	Explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar; elevation or RL (Reduced Level – elevation above sea level in meters) of the drill hole collar; dip and azimuth of the hole; down hole length and interception depth; hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Details of significant drilling results are shown in Appendix One.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No high grade top cuts have been applied. The reported significant intersections in Appendix One are above 2 gram metre intersections and allow for up to 4m of internal dilution with a lower cut trigger values of greater than 0.5g/t.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 All reported intersections are down hole lengths. True widths are unknown and vary depending on the orientation of target structures.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Appropriate maps and sections are included in the body of this release.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All significant drilling results being intersections with a minimum 2 gram metre values are reported in Appendix One.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Surface geological mapping and detailed structural interpretation have helped inform the geological models.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Additional drilling programs are being planned across all exploration licences.

Project Name	Hole Name	Easting IND60	Northing IND60	RL	Azi	Dip	End Depth	From	То	Interval	Gold g/t	Silver	Copper	Lead	Zinc
							(m)	(m)	(m)	(m)	(g/t)	(g/t)	ppm	ppm	ppm
Okvau	RCDD23OKV497	694,574	1,396,611	125	313	-67	345	383	388	5.0	15.85	0.70	445.80	4.22	32.40
	including	694,574	1,396,611	125	313	-67	345	383	385	2.0	33.40	1.45	813.00	5.10	33.00
Okvau	RCDD23OKV497	694,574	1,396,611	125	313	-67	345	295	298	3.0	23.06	2.60	802.67	25.90	52.00
Okvau	RCDD23OKV555	694,294	1,396,529	115	330	-74	571	536	538	2.0	18.86	0.68	375.65	10.41	38.47
Okvau	RCDD23OKV497	694,574	1,396,611	125	313	-67	345	337	352	15.0	2.43	1.70	987.00	11.00	38.00
Okvau	RCDD23OKV497	694,574	1,396,611	125	313	-67	345	307	324	17.0	1.33	0.33	216.98	9.74	40.12
Okvau	RCDD23OKV497	694,574	1,396,611	125	313	-67	345	417	426	9.0	1.79	0.88	354.89	13.53	41.89
Okvau	RCDD23OKV497	694,574	1,396,611	125	313	-67	345	369	373	4.0	1.22	0.16	152.38	8.48	47.00
Okvau	RCDD23OKV497	694,574	1,396,611	125	313	-67	345	440	444	4.0	0.76	0.80	246.83	21.97	44.33
Okvau	RCDD23OKV497	694,574	1,396,611	125	313	-67	345	406	409	3.0	1.00	0.23	491.25	4.70	25.50
Okvau	RCDD23OKV497	694,574	1,396,611	125	313	-67	345	396	398	2.0	1.09	0.90	433.00	21.50	79.00
Okvau	RCDD23OKV497	694,574	1,396,611	125	313	-67	345	259	260	1.0	2.11	0.20	327.00	3.75	32.00
Okvau	RCDD23OKV555	694,294	1,396,529	115	330	-74	571	304	307	3.0	0.52	0.55	33.30	331.10	376.00
Okvau	RCDD23OKV555	694,294	1,396,529	115	330	-74	571	480	481	1.0	1.53	0.10	1275.00	5.50	41.00
Okvau	RCDD23OKV497	694,574	1,396,611	125	313	-67	345	383	388	5.0	15.85	0.70	445.80	4.22	32.40
	including	694,574	1,396,611	125	313	-67	345	383	385	2.0	33.40	1.45	813.00	5.10	33.00
Okvau	RCDD23OKV497	694,574	1,396,611	125	313	-67	345	295	298	3.0	23.06	2.60	802.67	25.90	52.00
Okvau	RCDD23OKV555	694,294	1,396,529	115	330	-74	571	536	538	2.0	18.86	0.68	375.65	10.41	38.47
Okvau	RCDD23OKV497	694,574	1,396,611	125	313	-67	345	337	352	15.0	2.43	1.70	987.00	11.00	38.00
Okvau	RCDD23OKV497	694,574	1,396,611	125	313	-67	345	307	324	17.0	1.33	0.33	216.98	9.74	40.12
Okvau	RCDD23OKV497	694,574	1,396,611	125	313	-67	345	417	426	9.0	1.79	0.88	354.89	13.53	41.89
Okvau	RCDD23OKV497	694,574	1,396,611	125	313	-67	345	369	373	4.0	1.22	0.16	152.38	8.48	47.00
Okvau	RCDD23OKV497	694,574	1,396,611	125	313	-67	345	440	444	4.0	0.76	0.80	246.83	21.97	44.33
Okvau	RCDD23OKV497	694,574	1,396,611	125	313	-67	345	406	409	3.0	1.00	0.23	491.25	4.70	25.50
Okvau	RCDD23OKV497	694,574	1,396,611	125	313	-67	345	396	398	2.0	1.09	0.90	433.00	21.50	79.00
Okvau	RCDD23OKV497	694,574	1,396,611	125	313	-67	345	259	260	1.0	2.11	0.20	327.00	3.75	32.00
Okvau	RCDD23OKV555	694,294	1,396,529	115	330	-74	571	304	307	3.0	0.52	0.55	33.30	331.10	376.00
Okvau	RCDD23OKV555	694,294	1,396,529	115	330	-74	571	480	481	1.0	1.53	0.10	1275.00	5.50	41.00

Appendix Three | New Significant Intercepts - Okvau and Memot Resource definition infill. Blank values for Ag, Cu, Pb and Zn indicate assays are still pending. (>2 gram metre Au or anomalous Ag, Cu, Pb or Zn values)

Project Name	Hole Name	Easting WGS84	Northing WGS84	RL	Azi	Dip	End Depth	From	То	Interval	Gold g/t	Silver	Copper	Lead	Zinc
							(m)	(m)	(m)	(m)	(g/t)	(g/t)	ppm	ppm	ppm
Memot	MMT	DD24MMT243	633,253	1,318,119	43	225	-60	216	125	131	6.0	348.76	-	-	-
including		DD24MMT243							130	131	1.0	2090.00	-	-	-
Memot	MMT	DD24MMT168	633,405	1,317,978	44	225	-77	301	239	270	31.0	1.80	2.39	527	52
including		DD24MMT168							257.6	258.3	0.7	21.80	34.60	3,700	1,080
Memot	MMT	DD24MMT200	633,547	1,317,771	46	225	-58	261	134.5	137	2.5	20.67	3.10	819	12
Memot	MMT	DD24MMT188	633,434	1,317,926	45	232	-64	18	135	136	1.0	46.00	1.30	420	3
Memot	MMT	DD24MMT243	633,253	1,318,119	43	225	-60	216	277	284	7.0	6.13	-	-	-
including		DD24MMT243							277	278	1.0	40.00	-	-	-
Memot	MMT	RC24MMT197	633,891	1,318,054	49	225	-73	199	21	23	2.0	20.63	3.55	568	33
Memot	MMT	DD24MMT192	633,483	1,317,851	46	220	-63	292	162	163	1.0	33.60	1.70	566	4
Memot	MMT	RCDD24MMT151	633,563	1,317,931	48	225	-60	306	355	357	2.0	16.33	8.40	2,751	26
Memot	MMT	RC24MMT251	633,821	1,318,042	48	225	-62	27	54	56	2.0	13.62	19.35	2,725	730
Memot	MMT	DD24MMT208	633,556	1,317,706	45	225	-61	345	96	105	9.0	3.02	1.61	150	495
Memot	MMT	RC24MMT198	633,888	1,318,054	49	45	-72	139	1	7	6.0	4.07	3.57	715	216
Memot	MMT	DD24MMT168	633,405	1,317,978	44	225	-77	301	45	46	1.0	21.50	1.30	97	1
Memot	MMT	RCDD24MMT175	633,489	1,317,778	47	225	-63	276	138	145	7.0	3.04	2.04	255	122
Memot	MMT	RC24MMT191	633,749	1,317,779	49	220	-67	24	122	123	1.0	19.60	20.30	2,570	284
Memot	MMT	DD24MMT188	633,434	1,317,926	45	232	-64	18	168	178	10.0	1.87	0.96	265	19
Memot	MMT	DD24MMT168	633,405	1,317,978	44	225	-77	301	59	60	1.0	18.60	2.40	79	18
Memot	MMT	DD24MMT200	633,547	1,317,771	46	225	-58	261	114	120	6.0	3.02	0.29	176	5
Memot	MMT	RCDD24MMT193	633,761	1,317,843	49	225	-55	381	159	173	14.0	1.30	1.06	241	34
Memot	MMT	DD24MMT209	633,274	1,317,939	43	225	-62	201	181	183	2.0	8.11	-	-	-
Memot	MMT	RCDD24MMT193	633,761	1,317,843	49	225	-55	381	186	192	6.0	2.61	1.99	508	85
Memot	MMT	DD24MMT188	633,434	1,317,926	45	232	-64	18	145	146	1.0	15.35	0.60	223	1
Memot	MMT	DD24MMT194	633,567	1,317,798	45	225	-66	297	124	134	10.0	1.46	2.32	403	143
Memot	MMT	RC24MMT179	633,436	1,318,220	43	225	-57	198	137	142	5.0	2.99	1.31	170	162
Memot	MMT	DD24MMT194	633,567	1,317,798	45	225	-66	297	282	283	1.0	13.50	89.00	4,330	7,390
Memot	MMT	RC24MMT181	633,460	1,318,101	45	225	-63	42	152	153	1.0	13.85	21.00	11,450	45
Memot	MMT	DD24MMT218	633,700	1,317,722	48	225	-63	384	167.4	169	1.6	8.13	-	-	-
Memot	MMT	DD24MMT188	633,434	1,317,926	45	232	-64	18	118	122	4.0	3.30	1.16	145	38
Memot	MMT	RCDD24MMT151	633,563	1,317,931	48	225	-60	306	250	259	9.0	1.42	3.76	679	138
Memot	MMT	RCDD24MMT151	633,563	1,317,931	48	225	-60	306	406	414	8.0	1.68	0.35	286	3
Memot	MMT	DD24MMT201	633,366	1,318,072	44	225	-77	223	55	56	1.0	11.60	5.40	573	54
Memot	MMT	DD24MMT200	633,547	1,317,771	46	225	-58	261	69	80	11.0	1.11	0.18	112	15
Memot	MMT	DD24MMT194	633,567	1,317,798	45	225	-66	297	184	186	2.0	6.22	2.90	686	19
Memot	MMT	RC24MMT190	633,745	1,317,779	49	220	-55	162	96	100	4.0	2.90	6.93	294	627
Memot	MMT	RCDD24MMT151	633,563	1,317,931	48	225	-60	306	229	237	8.0	1.49	0.63	235	11
Memot	MMT	DD24MMT194	633,567	1,317,798	45	225	-66	297	160	169	9.0	1.27	1.19	606	22
Memot	MMT	DD24MMT196	633,349	1,318,063	45	225	-67	198	82	84	2.0	5.47	2.75	661	48
Memot	MMT	DD24MMT168	633,405	1,317,978	44	225	-77	301	279	280	1.0	11.20	10.80	1,815	244
Memot	MMT	RCDD24MMT182	633,632	1,318,209	44	225	-60	384	139	140	1.0	9.64	32.40	3,760	927
Memot	MMT	RCDD24MMT042	633,716	1,317,857	49	225	-60	375	165	166	1.0	9.83	-	-	-
Memot	MMT	RCDD24MMT193	633,761	1,317,843	49	225	-55	381	178	180	2.0	5.12	9.80	2,010	57
Memot	MMT	DD24MMT206	633,402	1,317,762	44	225	-60	202	30	46	16.0	0.57	1.85	591	77
Memot	MMT	RCDD24MMT195	633,693	1,317,844	49	225	-60	393	157	162	5.0	1.72	1.32	250	8
Memot	MMT	DD24MMT168	633,405	1,317,978	44	225	-77	301	341	352	11.0	0.82	1.09	384	32
Memot	MMT	DD24MMT221	633,427	1,317,685	44	225	-60	204	268	271	3.0	2.70	-	-	-

Project Name	Hole Name	Easting WGS84	Northing WGS84	RL	Azi	Dip	End Depth	From	То	Interval	Gold g/t	Silver	Copper	Lead	Zinc
							(m)	(m)	(m)	(m)	(g/t)	(g/t)	ррт	ppm	ppm
Memot	MMT	DD24MMT206	633,402	1,317,762	44	225	-60	202	98	111	13.0	0.60	2.18	607	19
Memot	MMT	RCDD24MMT182	633,632	1,318,209	44	225	-60	384	304	305	1	7.79	9.10	4,410	15
Memot	MMT	DD24MMT243	633,253	1,318,119	43	225	-60	216	182	184	2	3.51	-	-	-
Memot	MMT	DD24MMT243	633,253	1,318,119	43	225	-60	216	4	14.1	10	0.69	-	-	-
Memot	MMT	RC24MMT249	633,718	1,318,367	42	225	-57	135	62	63	1	6.82	-	-	-
Memot	MMT	DD24MMT206	633,402	1,317,762	44	225	-60	202	83	84	1	6.91	2.70	224	23
Memot	MMT	DD24MMT188	633,434	1,317,926	45	232	-64	18	199	200	1	7.19	59.00	7,490	248
Memot	MMT	DD24MMT192	633,483	1,317,851	46	220	-63	292	118	119	1	6.92	6.50	842	201
Memot	MMT	RC24MMT228	633,880	1,317,536	48	225	-58	112	134	137	3	2.34	1.48	537	3
Memot	MMT	DD24MMT207	633,360	1,318,197	43	230	-63	304	58	59	1	6.17	-	-	-
Memot	MMT	DD24MMT206	633,402	1,317,762	44	225	-60	202	148	149	1	5.80	16.60	2,940	206
Memot	MMT	DD24MMT204	633,349	1,318,136	43	225	-63	238	292	293	1	6.12	0.40	148	5
Memot	MMT	DD24MMT204	633,349	1,318,136	43	225	-63	238	33	34	1	5.62	2.30	215	106
Memot	MMT	DD24MMT192	633,483	1,317,851	46	220	-63	292	108	111	3	2.05	0.73	248	16
Memot	MMT	DD24MMT194	633,567	1,317,798	45	225	-66	297	140	144	4	1.46	0.55	416	3
Memot	MMT	DD24MMT196	633,349	1,318,063	45	225	-67	198	152	157	5	1.19	4.02	774	58
Memot	MMT	DD24MMT168	633,405	1,317,978	44	225	-77	301	202	203	1	5.56	21.50	3,340	183
Memot	MMT	RCDD24MMT193	633,761	1,317,843	49	225	-55	381	126	131	5	1.17	8.26	644	412
Memot	MMT	RCDD24MMT042	633,716	1,317,857	49	225	-60	375	513	518	5	1.16	0.93	321	40
Memot	MMT	RCDD24MMT042	633,716	1,317,857	49	225	-60	375	628	630	2	3.13	3.25	254	127
Memot	MMT	DD24MMT243	633,253	1,318,119	43	225	-60	216	223	225	2	2.56	-	-	-
Memot	MMT	DD24MMT243	633,253	1,318,119	43	225	-60	216	59	69	10	0.53	-	-	-
Memot	MMT	RC24MMT260	633,570	1,317,898	48	225	-70	34	39	42	3	1.72	-	-	-
Memot	MMT	DD24MMT188	633,434	1,317,926	45	232	-64	18	161	163	2	2.44	2.08	422	2
Memot	MMT	RC24MMT237	633,914	1,317,925	48	225	-64	21	17	26	9	0.52	1.45	167	79
Memot	MMT	DD24MMT204	633,349	1,318,136	43	225	-63	238	195	196	1	4.88	5.10	200	293
Memot	MMT	DD24MMT192	633,483	1,317,851	46	220	-63	292	91	92	1	4.68	1.80	172	77
Memot	MMT	DD24MMT192	633,483	1,317,851	46	220	-63	292	132	137	5	0.90	0.95	456	13
Memot	MMT	DD24MMT203	633,522	1,317,884	44	225	-63	328	146	147	1	4.55	4.70	459	71
Memot	MMT	DD24MMT200	633,547	1,317,771	46	225	-58	261	174	179	5	0.99	0.82	202	39
Memot	MMT	DD24MMT200	633,547	1,317,771	46	225	-58	261	186	187	1	4.94	0.90	196	8
Memot	MMT	DD24MMT194	633,567	1,317,798	45	225	-66	297	27	29	2	2.58	3.90	746	100
Memot	MMT	DD24MMT194	633,567	1,317,798	45	225	-66	297	250	251	1	5.32	0.70	51	15
Memot	MMT	DD24MMT168	633,405	1,317,978	44	225	-77	301	196	197	1	5.37	0.80	381	13
Memot	MMT	RCDD24MMT193	633,761	1,317,843	49	225	-55	381	25	27	2	2.56	5.40	395	115
Memot	MMT	RCDD24MMT151	633,563	1,317,931	48	225	-60	306	277	278	1	4.66	1.50	981	4
Memot	MMT	RCDD24MMT169	633,648	1,318,151	45	225	-64	391	39	46	7	0.73	0.76	156	11
Memot	MMT	RC24MMT176	633,436	1,318,295	43	225	-57	204	29	30	1	5.27	2.50	547	31
Memot	MMT	RCDD24MMT175	633,489	1,317,778	47	225	-63	276	45	46	1	5.23	4.20	253	172
Memot	MMT	RCDD24MMT042	633,716	1,317,857	49	225	-60	375	587	592	5	0.94	4.18	1,098	11
Memot	MMT	DD24MMT243	633,253	1,318,119	43	225	-60	216	110	111	1	3.62	-	-	-
Memot	MMT	RCDD24MMT169	633,648	1,318,151	45	225	-64	391	136	141	5	0.72	-	-	-
Memot	MMT	RCDD24MMT169	633,648	1,318,151	45	225	-64	391	162.4	164	2	2.47	-	-	-
Memot	MMT	DD24MMT206	633,402	1,317,762	44	225	-60	202	248	252	4	1.04	-	-	-
Memot	MMT	RC24MMT241	633,899	1,317,990	49	225	-64	159	115	116	1	4.27	2.46	3	1
Memot	MMT	DD24MMT206	633,402	1,317,762	44	225	-60	202	120	128	8	0.51	1.02	281	37
Memot	MMT	DD24MMT204	633,349	1,318,136	43	225	-63	238	207	210	3	1.41	2.27	3,801	61

Project Name	Hole Name	Easting WGS84	Northing WGS84	RL	Azi	Dip	End Depth	From	То	Interval	Gold g/t	Silver	Copper	Lead	Zinc
							(m)	(m)	(m)	(m)	(g/t)	(g/t)	ppm	ppm	ррт
Memot	MMT	DD24MMT204	633,349	1,318,136	43	225	-63	238	106	107	1	4.25	4.80	161	343
Memot	MMT	RC24MMT224	633,834	1,317,652	48	45	-55	150	92	93	1	3.56	6.70	191	1,760
Memot	MMT	DD24MMT168	633,405	1,317,978	44	225	-77	301	27	32	5	0.85	1.03	65	31
Memot	MMT	DD24MMT201	633,366	1,318,072	44	225	-77	223	114	116	2	1.92	1.70	401	131
Memot	MMT	RCDD24MMT182	633,632	1,318,209	44	225	-60	384	240	241.4	1	2.72	12.89	1,633	81
Memot	MMT	RCDD24MMT182	633,632	1,318,209	44	225	-60	384	255	259	4	1.06	0.71	300	6
Memot	MMT	DD24MMT194	633,567	1,317,798	45	225	-66	297	82	83	1	4.20	1.10	168	34
Memot	MMT	DD24MMT194	633,567	1,317,798	45	225	-66	297	193	195	2	1.80	12.85	2,470	51
Memot	MMT	DD24MMT196	633,349	1,318,063	45	225	-67	198	47.9	52	4	0.96	4.09	745	58
Memot	MMT	DD24MMT168	633,405	1,317,978	44	225	-77	301	155	158	3	1.49	6.50	1,706	45
Memot	MMT	RCDD24MMT193	633,761	1,317,843	49	225	-55	381	45	46	1	4.05	7.90	574	871
Memot	MMT	RCDD24MMT151	633,563	1,317,931	48	225	-60	306	301	302	1	3.69	0.70	373	8
Memot	MMT	RC24MMT181	633,460	1,318,101	45	225	-63	42	68	69	1	4.15	0.10	104	1
Memot	MMT	RCDD24MMT177	633,404	1,318,391	43	225	-55	345	20	23	3	1.22	3.20	643	171
Memot	MMT	RCDD24MMT042	633,716	1,317,857	49	225	-60	375	490	492	2	1.88	0.13	118	2
Memot	MMT	DD24MMT243	633,253	1,318,119	43	225	-60	216	45	50	5	0.62	-	-	-
Memot	MMT	RCDD24MMT169	633,648	1,318,151	45	225	-64	391	211	212.2	1	2.12	-	-	-
Memot	MMT	DD24MMT209	633,274	1,317,939	43	225	-62	201	33	34	1	2.75	-	-	-
Memot	MMT	RC24MMT260	633,570	1,317,898	48	225	-70	34	18	21	3	1.08	-	-	-
Memot	MMT	DD24MMT207	633,360	1,318,197	43	230	-63	304	40	43	3	1.03	-	-	-
Memot	MMT	DD24MMT205	633,579	1,317,731	45	225	-68	321	116	121	5	0.62	1.32	120	64
Memot	MMT	DD24MMT205	633,579	1,317,731	45	225	-68	321	159	160	1	2.55	0.20	117	5
Memot	MMT	DD24MMT204	633,349	1,318,136	43	225	-63	238	145	149	4	0.76	0.19	99	5
Memot	MMT	DD24MMT192	633,483	1,317,851	46	220	-63	292	74	75	1	2.80	0.10	101	2
Memot	MMT	RCDD24MMT202	633,753	1,317,625	48	225	-84	309	145	146	1	3.43	20.20	283	-
Memot	MMT	DD24MMT201	633,366	1,318,072	44	225	-77	223	132	133	1	3.44	7.40	3,560	4
Memot	MMT	DD24MMT201	633,366	1,318,072	44	225	-77	223	167	168	1	2.84	4.50	320	167
Memot	MMT	DD24MMT201	633,366	1,318,072	44	225	-77	223	192	194	2	1.47	8.75	266	574
Memot	MMT	RCDD24MMT182	633,632	1,318,209	44	225	-60	384	76	77	1	3.27	1.10	236	8
Memot	MMT	RCDD24MMT182	633,632	1,318,209	44	225	-60	384	212	213	1	2.51	0.10	149	1
Memot	MMT	DD24MMT196	633,349	1,318,063	45	225	-67	198	192	194	2	1.41	1.50	714	16
Memot	MMT	DD24MMT196	633,349	1,318,063	45	225	-67	198	252	254	2	1.25	1.65	944	15
Memot	MMT	RC24MMT199	633,754	1,317,626	46	225	-84	86	3	7	4	0.85	1.30	617	204
Memot	MMT	DD24MMT168	633,405	1,317,978	44	225	-77	301	12.1	13.7	2	1.59	0.80	409	7
Memot	MMT	DD24MMT168	633,405	1,317,978	44	225	-77	301	178	180	2	1.47	1.83	500	9
Memot	MMT	DD24MMT168	633,405	1,317,978	44	225	-77	301	212	217	5	0.59	0.92	347	8
Memot	MMT	RC24MMT184	633,380	1,318,023	45	225	-58	70	108	109	1	2.98	11.30	1,210	44
Memot	MMT	RC24MMT176	633,436	1,318,295	43	225	-57	204	4	5	1	2.61	0.40	221	26
Memot	MMT	RC24MMT176	633,436	1,318,295	43	225	-57	204	12	13	1	2.52	0.40	305	3
Memot	MMT	RCDD24MMT178	633,434	1,318,148	43	225	-78	319	81	84	3	0.88	3.13	366	78
Memot	MMT	RCDD24MMT178	633,563	1,317,931	44	225	-78	306	150	152	2	1.34	4.20	1,133	58
Memot	MMT	DD24MMT221	633,427	1,317,685	40	225	-60	204	12	132	2	1.06			
	MMT	DD24MMT221 DD24MMT221								284	2		-	-	-
Memot			633,427	1,317,685	44	225	-60	204	283		1	1.58			-
Memot	MMT	DD24MMT243	633,253	1,318,119	43	225	-60	216	263	264		2.18	-	-	-
Memot	MMT	RCDD24MMT175	633,489	1,317,778	47	225	-63	276	197	198	1	2.43	-	-	-
Memot	MMT	RCDD24MMT177	633,404	1,318,391	43	225	-55	345	244	245	1	1.65	-	-	-
Memot	MMT	RCDD24MMT177	633,404	1,318,391	43	225	-55	345	324	326	2	0.81	-	-	-

Project Name	Hole Name	Easting WGS84	Northing WGS84	RL	Azi	Dip	End Depth	From	То	Interval	Gold g/t	Silver	Copper	Lead	Zinc
							(m)	(m)	(m)	(m)	(g/t)	(g/t)	ррт	ppm	ррт
Memot	MMT	RCDD24MMT177	633,404	1,318,391	43	225	-55	345	349	350	1	1.78	-	-	-
Memot	MMT	DD24MMT209	633,274	1,317,939	43	225	-62	201	106	107	1	2.48	-	-	-
Memot	MMT	DD24MMT209	633,274	1,317,939	43	225	-62	201	216	217	1	1.76	-	-	-
Memot	MMT	DD24MMT208	633,556	1,317,706	45	225	-61	345	84	87	3	0.59	0.05	134	3
Memot	MMT	RC24MMT244	633,950	1,317,966	49	225	-64	33	58	59	1	1.99	3.81	3	1
Memot	MMT	RC24MMT248	633,784	1,318,307	44	225	-67	162	104	108	4	0.53	0.28	167	15
Memot	MMT	DD24MMT206	633,402	1,317,762	44	225	-60	202	184	185	1	1.71	6.30	244	623
Memot	MMT	DD24MMT188	633,434	1,317,926	45	232	-64	18	190	191	1	1.93	0.30	169	5
Memot	MMT	DD24MMT188	633,434	1,317,926	45	232	-64	18	224	225	1	1.61	0.80	99	15
Memot	MMT	DD24MMT192	633,483	1,317,851	46	220	-63	292	55	56.2	1	1.36	25.30	3,250	798
Memot	MMT	DD24MMT204	633,349	1,318,136	43	225	-63	238	201	202	1	1.83	4.30	1,565	33
Memot	MMT	DD24MMT204	633,349	1,318,136	43	225	-63	238	265.9	266.6	1	2.94	4.30	997	91
Memot	MMT	DD24MMT204	633,349	1,318,136	43	225	-63	238	47	48	1	2.06	3.00	377	104
Memot	MMT	DD24MMT204	633,349	1,318,136	43	225	-63	238	57	58	1	1.94	0.60	117	162
Memot	MMT	DD24MMT204	633,349	1,318,136	43	225	-63	238	172	173	1	2.01	1.80	132	86
Memot	MMT	DD24MMT204	633,349	1,318,136	43	225	-63	238	189	190	1	1.74	5.60	576	230
Memot	MMT	DD24MMT192	633,483	1,317,851	46	220	-63	292	208	210	2	0.78	1.00	291	12
Memot	MMT	RC24MMT235	634,000	1,317,786	47	225	-55	162	114	115	1	1.74	3.10	410	135
Memot	MMT	RC24MMT236	633,862	1,317,873	48	225	-67	93	46	47	1	1.91	3.60	188	363
Memot	MMT	RC24MMT224	633,834	1,317,652	48	45	-55	150	99	100	1	1.62	4.10	191	215
Memot	MMT	DD24MMT203	633,522	1,317,884	44	225	-63	328	79	80	1	1.79	0.70	233	8
Memot	MMT	RCDD24MMT202	633,753	1,317,625	48	225	-84	309	175.5	176.5	1	1.74	7.40	379	609
Memot	MMT	DD24MMT201	633,366	1,318,072	44	225	-77	223	155	156	1	2.05	1.00	136	42
Memot	MMT	RCDD24MMT167	633,438	1,317,806	47	225	-57	270	154	156	2	1.10	5.50	302	143
Memot	MMT	DD24MMT194	633,567	1,317,798	45	225	-66	297	45	46	1	2.48	3.80	1,220	77
Memot	MMT	RCDD24MMT202	633,753	1,317,625	48	225	-84	309	37	38	1	1.54	1.00	58	236
Memot	MMT	DD24MMT168	633,405	1,317,978	44	225	-77	301	125	126	1	1.70	0.60	71	6
Memot	MMT	DD24MMT168	633,405	1,317,978	44	225	-77	301	168	171	3	0.61	0.70	217	19
Memot	MMT	RC24MMT190	633,745	1,317,779	49	220	-55	162	45	46	1	2.29	0.80	200	9
Memot	MMT	RC24MMT191	633,749	1,317,779	49	220	-67	24	83	84	1	1.78	0.70	300	11
Memot	MMT	RC24MMT198	633,888	1,318,054	49	45	-72	139	162	163	1	2.41	0.40	130	21
Memot	MMT	RCDD24MMT193	633,761	1,317,843	49	225	-55	381	74	75	1	1.66	1.50	187	36
Memot	MMT	RCDD24MMT193	633,761	1,317,843	49	225	-55	381	85	86	1	1.78	0.90	181	26
Memot	MMT	RC24MMT186	633,632	1,318,209	44	225	-60	132	28	29	1	2.42	1.80	153	77
Memot	MMT	RCDD24MMT151	633,563	1,317,931	48	225	-60	306	217	218	1	2.27	1.40	797	33
Memot	MMT	RC24MMT179	633,436	1,318,220	43	225	-57	198	185	187	2	1.09	3.15	671	30
Memot	MMT	RCDD24MMT175	633,489	1,317,778	47	225	-63	276	21	23	2	1.18	3.80	1,240	67
Memot	MMT	RCDD24MMT151	633,563	1,317,931	48	225	-60	306	163	166	3	0.52	0.55	306	5
Memot	MMT	RCDD24MMT151	633,563	1,317,931	48	225	-60	306	193	194	1	1.79	5.10	1,390	124
Memot	MMT	DD24MMT204	633,349	1,318,136	43	225	-63	238	209	210	1	0.66	92.00	33,300	83

Appendix Four | JORC Code, 2012 Edition | 'Table 1' Report Section 1 Sampling Techniques and Data from New Significant Intercepts on the Okvau and Memot Drill Programs

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3kg was pulverised to produce a 30g charge for fire assay). In other cases, more explanation may be required, such as where there is coarse gold that as inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Standards are inserted at regular intervals in sample batches to test laboratory performance. For the recent exploration drilling, reverse circulation (RC) drilling is used to collect both a 4m composite and 1m samples in the precollar. The 4m program composited are taken rever 1m. A spear sampling technique is then used to produce a 2-5kg composite sample. The 1m samples are split with a cone splitter taken every 1m. A spear sampling technique is then used to produce a 2-5kg sub-sample. These 1m samples are submitted after the results of the 4m composites are received to identify the zones of mineralisation. Diamond core was sampled using half-core where the core is cut in half down the longitudinal axis and sample intervals were determined by the geologist based on lithological contacts, with 80% of the sample intervals basing 1 metre in length. In areas of no mineralised (negligible amounts of alteration/sulphides typically present with mineralisation) a 2m composite was submitted. The Exploration drill samples preparation is carried out at a commercial off-site laboratory (ALS Phron Penh). Gold assays are conducted at ALS Vientiane, Laos utilising a 50gram subsample of 85% passing 75µm pulped sample using Fire Assay with AAS finish on and Aqua Regia digest of the lead collection button. Multielement assay is completed at ALS, Perth, Australia on a 1g pulp subsample digested by Aqua Regia and determined by ICP-AES or ICP-MS for lowest available detection for the respective element. Historical drilling results in this ASX release refer to historical K drilling samples were through a cyclone on a 1 metre basis. The specific sub-sampling equipment utilised is not known and therefore representivity is not known. Soil samples (approximately 1000g) are collected for mhand auger refusal depth in in-situ weathered bedrock (B/C horizon soil transition). The sample is served to collect a sample passing 2rm. Where transported material is not
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 A track mounted UDR650 rig is used to drill 5.5-inch RC precollar holes and a LF90 rig is used to drill NQ2 diamond Core. The "Okvau Close Spaced" drilling was completed using a A Schramm T450WS/BH mounted on tracked drill rig is used to drill 5.51-inch. Recent drilling used a REFLEX survey tool to survey hole deviation. A typical downhole survey was taken at 12m depth and then every 30m to the end of hole. Surveying of RC holes utilises 6m of stainless drill rod to negate the magnetic interference from the rod string and hammer assembly. All readings showed that down hole were within acceptable limits.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 All RC 1m samples and sub-samples (pre- and post-split) are weighed at the rig, to check that there is adequate sample material for assay. Any wet or damp samples are noted and that information is recorded in the database; samples are usually dry. The drilling results relate to historical sampling results. Drill recoveries are not known.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All RC chips and diamond core is routinely logged (qualitatively) by a geologist, to record details of regolith (oxidation), lithology, structure, mineralisation and/or veining, and alteration. In addition, the magnetic susceptibility of all samples is routinely measured. All logging and sampling data are captured into a database, with appropriate validation and security features. Standard field data are similarly recorded (qualitatively) routinely by a geologist for all soil sampling sites. Emerald cannot verify the detail and full scope of the historical logging from the available reports.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. The nature, quality and appropriateness of the 	 Most samples are dry and there is no likelihood of compromised results due to moisture. All samples, were prepared for assay at the NATA accredited ALS Cambodia sample preparation facility in Phnom Penh; and that facility has been inspected, at the request of the Company, numerous times and most recently by Mr Keith King in April 2022. Samples are dried for a minimum of 12 hours at 105°C. This sample technique is industry standard and is deemed appropriate for the material. The historical data available to Emerald is such that Emerald cannot reliably confirm that the historical RC samples were dry and free of free of significant contamination. Emerald cannot specifically confirm that the RC drilling results have not been compromised due to excessive moisture of contamination. The historical data available is such that Emerald cannot reliably confirm the specific subsampling techniques and sample preparation used to generate samples to be sent for assay. It is not known whether a subsample was retained as a geological record. No review of historic sampling practices has been completed nor was possible from the data available to Emerald for this announcement.
and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 All samples are sent to the NATA accredited ALS Laboratory in Vientiane, Laos, for single Aqua Regia digest with a 50g charge with an ICP-MS finish. Samples are sent to the similarly accredited ALS Lab in Brisbane, Australia and ALS Lab Perth, Australia, for multi-element ICP analysis, after partial extraction by aqua regia digest then via a combination of ICP-MS and ICP-AES. This method has a lower detection limit of 1ppm gold. If the Au result is greater than 100ppm Au then sample is reassayed by a 50g gravimetric analysis with a high upper detection limit. Industry-standard QAQC protocols are routinely followed for all sample batches sent for assay, which includes the insertion of commercially available pulp CRMs and pulp blanks into all batches - usually 1 of each for every 20 field samples. Additional blanks used are home-made from barren quarry basalt. QAQC data are routinely checked before any associated assay results are reviewed for interpretation, and any problems are investigated before results are released to the market - no issues were raised with the results reported here. All assay data, including internal and external QAQC data and control charts of standard, replicate and duplicate assay results, are communicated electronically. Drill samples for the historical results followed the above assaying methodology except the sample preparation occurred in the ALS Laboratory in Vientiane, Laos.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All field data associated with sampling, and all associated assay and analytical results, are archived in a relational database, with industry-standard verification protocols and security measures in place. The calculations of all significant intercepts (for drill holes) are routinely checked by senior management. All field data associated with drilling and sampling, and all associated assay and analytical results, are archived in a relational database, with industry-standard verification protocols and security measures in place. All field data associated with drilling and sampling, and all associated assay and analytical results, are archived in a relational database, with industry-standard verification protocols and security measures in place. Historical sampling and assay verification processes are unknown. No sample recording procedures are known for reported data from historic drilling.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Whilst, all sample locations are first surveyed with a hand-held GPS instrument (which generates relatively inaccurate RL values), not all samples were insitu. All locations are surveyed to IND60 or WGS84 as specified in Appendix Three. Drill hole collar locations are first surveyed with a hand-held GPS instrument (which generates relatively inaccurate RL values). The locations of all holes used in Mineral Resource estimates are verified or amended by survey using a differential GPS by and

Criteria	JORC Code explanation	Commentary
		 external contractor with excellent accuracy in all dimensions using a local base station reference). The newly reported collars of holes drilled have been picked up by a licenced surveyor with DGPS equipment. Down-hole surveys are routinely undertaken at 30m intervals for all types of drilling, using a single-shot or multi-shot REFLEX survey tool (operated by the driller and checked by the supervising geologist).
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 This drill spacing is considered to be sufficient to establish geological and grade continuity appropriate for the declaration of estimates of resources.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drill holes are usually designed to intersect target structures with a "close-to-orthogonal" intercept. Drilling has been done at various orientations. Most of the drill holes intersect the mineralised zones at sufficient angle for the risk of significant sampling orientation bias to be low. Soil sampling grids are of appropriate orientation to cover the observed mineralisation.
Sample security	The measures taken to ensure sample security.	 The chain of custody for all drill samples from the drill rig and soil/auger samples from the field to the ALS Sample Preparation facility in Phnom Penh is managed by Renaissance personnel. Drill samples are transported from the drill site to the Okvau exploration core farm, where they are logged and all samples are batched up for shipment to Phnom Penh. Sample submission forms are sent to the ALS Sample Prep facility in paper form (with the samples themselves) and also as an electronic copy. Delivered samples are reconciled with the batch submission form prior to the commencement of any sample preparation. ALS is responsible for shipping sample pulps from Phnom Penh to the analytical laboratories in Vientiane, Brisbane and Perth and all samples are tracked via their Global Enterprise Management System. All bulk residues are stored permanently at the ALS laboratory in Phnom Penh or at a company leased storage area in the Memot town. No information is available regarding sample security procedures for the historical drilling results reported.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 All QAQC data are reviewed routinely, batch by batch, and on a quarterly basis to conduct trend analyses, etc. Any issues arising are dealt with immediately and problems resolved before results are interpreted and/or reported. Comprehensive QAQC audits have been conducted on this project by Duncan Hackman (August 2009, February 2010 & November 2011), SRK (February 2013) and Nola Hackman (January 2014), Wolfe (July 2015). Mr Brett Gossage reviewed the data used in the Okvau Resource up to December 2016 and concluded that there are no concerns about data quality. Keith King completed his most recent site visit and lab audit of the ALS Phnom Penh and Vientiane facilities in October 2023. No review has been completed due to data availability for historical drilling. Due to the critical importance to production, the Okvau Mine site lab has regular internal audits completed. Including routine checks of selected assays being sent to external laboratories for umpire checks.

Section 2 Reporting of Exploration Results from New Significant Intercepts - Okvau and Memot Drill Programs (Criteria listed in the preceding section also apply to this section)

Criteria	Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Okvau and Memot licences are held (100%) in the name of Renaissance Minerals (Cambodia) Limited which is a wholly owned subsidiary of Emerald Resources NL (EMR). EMR are in a Joint Venture agreement on the Antrong North and South Licences where the Company and earn up to an 80% share. The tenure is considered to be secure.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Exploration has been completed by previous explorers; Oxiana and Oz Minerals including soil sampling, geophysical data collection and drilling.
Geology	 Deposit type, geological setting and style of mineralisation. 	 Gold occurrences within the licences is interpreted as either a "intrusion-related gold system" or "Porphyry" related mineralisation. Gold mineralization is hosted within quartz and/or sulphide veins and associated within or proximal distance to a Cretaceous age diorite.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar; elevation or RL (Reduced Level – elevation above sea level in meters) of the drill hole collar; dip and azimuth of the hole; down hole length and interception depth; hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Details of significant drilling in Appendix Three.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No high grade top cuts have been applied. The reported significant intersections in Appendix Three are above 2 gram metre Au intersections and allow for up to 4m of internal dilution with a lower cut trigger values of greater than 0.5g/t Au. Cu, Pb and Zn significant intersections allow for up to 4m of internal dilution with a lower cut trigger values of greater than 2,000ppm Cu, Pb or Zn.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	All reported intersections are down hole lengths. True widths are unknown and vary depending on the orientation of target structures.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Appropriate maps and sections are included in the body of this release.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All significant drilling results being intersections with a minimum 2 gram metre values are reported in Appendix Three.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 All mineralisation is associated with visible amounts of pyrrhotite, arsenopyrite, pyrite or chalcopyrite.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further drilling programs are being planned on additional nearby targets. Additional drilling programs are being planned across all exploration licences.

commercially sensitive.