

Cannindah Resources Limited

SIGNIFICANT GOLD DISCOVERY SOUTHERN EXTENSION AT MT CANNINDAH CONFIRMED IN HOLE 18 INCLUDING BONANZA GRADES UP TO 96.2g/t Au.

New Results: 104m @ 1.46 g/t Au, INCLUDING HIGH GRADE 20m @ 5.5g/t Au; BONANZA GRADES UP TO 96.2 g/t Au.

Highlights of the latest results:

UPDATED TOTAL AGGREGATE INTERVAL (103m to 378m):

275m @ 1.1g/t Au, 0.29% Cu,7.9g/t Ag.

274m-378m: 104m @ 1.46 g/t Au, 0.27 % Cu, 7.5 g/t Ag

Includes 18m @ 1.62 g/t Au, 269m-287m

14m @ 0.87 g/t Au (294m-308m) & 6m @ 1.52% Cu,0.22 g/t Au,22.7 g/t Ag, 1.84%CuEq%* (368m - 374m)

20m@5.5 g/t Au, 0.81 % Cu,23 g/t Ag (355-375m): Includes

3m@34.39 g/t Au,0.78% Cu, 4.8 g/t Ag (359m-362m)

With very high grade, highly sulphidic interval:

1m @ 96.16g/t Au,1.46% Cu, 123.2 g/t Ag, (359m-360m)

Very high grade gold section of semi-massive sulphide infill alongside contact of unusual argillised dyke cutting breccia. CAE hole# 18, 359.6m. Interval 359m-360m: 1m @ 96.2g/t Au ,1.46% Cu, 123 g/t Ag, 14.8% S, elevated Bi, Pb, Sb.

Downhole contact of argillised dyke with adjacent contact of semi-massive sulphide infill. CAE hole# 18, 361.2m. Interval 361m-362m: 1m @ 10.8 g/t Au, 0.88% Cu, 40 g/t Ag, 6.5% S.

*Copper Equivalent calculation is based on metal prices using 30 day average prices in USD for Q4 2021. Further details are provided in the calculation table at page 21 of the text and in the JORC Table 1 at p-56-57.

ASX Announcement

DATE: 03 April 2023

Fast Facts

Shares on Issue: 561,979,953

Market Cap (@\$0.18): \$101.16 M (As at 31/3/2023)

Board and Management

Tom Pickett - Executive Chairman

Dr Simon Beams - Non Executive Director

Geoff Missen - Non Executive Director

Michael Hansel - Non Executive Director

Garry Gill - Company Secretary

Company Highlights

- Exceptional exploration management
- Located within existing mining lease
- 100km from Gladstone Port
- Significant copper intercepts at flagship Mt Cannindah project over hundreds of metres
- New Gold discovery within current drill program at Mt Cannindah
- Expansion of current 5.5MT resource is the focus of the current program
- Large Gold portfolio with Piccadilly project 100km west of Townsville with existing mining lease and EPMs with large target areas yet to be drilled
- No debt

ASX RELEASE 03 April 2023 ASX Code: CAE

EXECUTIVE CHAIRMAN COMMENTS

"The further existence of high-grade gold within the Mt Cannindah breccia is a huge step forward in the extension of the mineralisation to the south-west. The area has been significantly under explored and we are providing excellent data to upgrade the knowledge and resource size from this zone. The huge intercept in this hole will hopefully be replicated in hole 19 which is currently underway so we can give our resource geologist enough data to really open up this south west area. Our team has worked very hard towards locating exactly what we have found over many months, and these results are a testament to their dedication to providing shareholders with excellent outcomes."

High copper section of sulphidic hydrothermal infill breccia CAE hole# 18 at 369.6m, Interval 369m-370m : 1m @ 2.99 % Cu ,0.33 g/t Au,33 g/t Ag , 6.77% S, translates to 1m @ 3.46% CuEq%.

Example of typical "porphyry-style" multi directional quartz sulphide vein stockwork and sheeted veins with median hairline veins of pyrite, with quartz -sericite alteration selvedges cutting a clast of sericite altered diorite.

CAE Hole # 18 ,288m : Interval 288m-289m 1m @ 0.37 g/t Au, 0.03% Cu, 1.4 g/t Ag.

See Fig for close up example.

Cannindah Resources Limited **ASX RELEASE**

03 April 2023

ASX Code: CAE

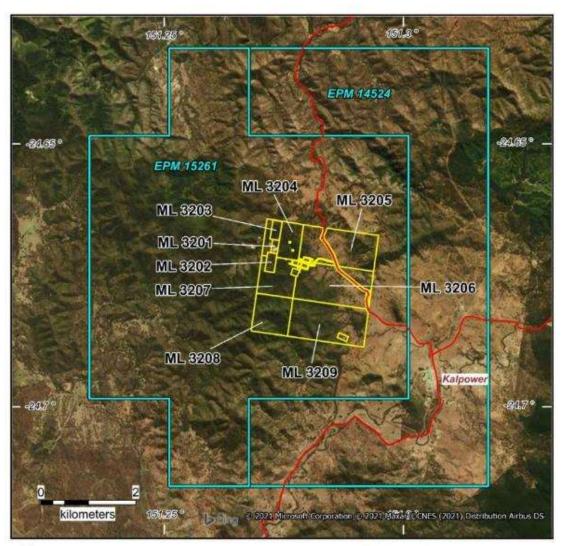


Fig 1. Location of Mt Cannindah Project in Central Queensland.

03 April 2023

ASX Code: CAE

Tenure

- EPM 14524 • 9 sub-blocks • ~ 28 sq km
- EPM 15261 • 14 sub-blocks • ~ 43.5 sq km
- MLs 3201-3209 (contiguous) • ~ 5.7 sq km

Total of 71.5 sq km of Exploration Permits & 5.7 sq km of Mining Leases

OWNERSHIP The Mt Cannindah Project is 100% owned by Cannindah Resources Limited

Mt Cannindah Projects

Mt Cannindah Mining Pty Ltd wholly owned subsidiary of



Fig 2. Mt Cannindah Project Tenure

Cannindah Resources Limited **ASX RELEASE**

03 April 2023

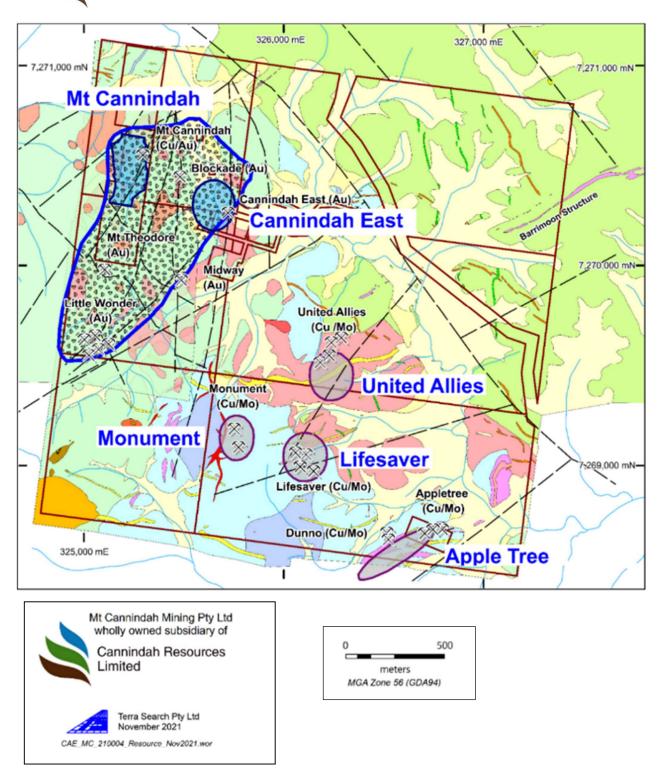


Fig 3. Mt Cannindah project Location of prospect areas and mineralised targets.

03 April 2023 ASX Code: CAE

TECHNICAL DETAILS & RESULTS OF TOP OF CAE HOLE 18 AT MT CANNINDAH

Cannindah Resources Limited ("Cannindah", "CAE") is pleased to announce the next set of completed assay results from the drilling program currently underway at Mt Cannindah, copper gold silver project south of Gladstone near Monto in central Queensland (Figs 1 to 3) pertaining to the bottom of hole 23CAEDD018. The latest results are from the next 200m down hole from the 0m to 274m reported in CAE ASX Announcement 23/3/2023. Hole 19 is currently being drilled and we are eagerly awaiting the assays from same.

As described previously, Hole 23CAEDD018 was collared to the south of the main drilled section of the Mt Cannindah mine area, targeting the extent and continuity of copper-gold - silver breccia and intrusive hosted mineralization that sub-parallel CAE hole # 13 intersected across section some 60m to the north west see Fig 4.

Hole # 13 (CAE ASX Announcement 30th September, 2022) reported the following:

- Drilled two extensive zones (approx. 100m downhole widths of 1% CuEq) within the primary zone of infill hydrothermal breccia.
 - (1) 36m to 140m : 104m @ 1.0% CuEq,(0.63% Cu, 0.41g/t Au, 14.1g/t Ag).
 - (2) 229m to 337m : 108m @ 1.01% CuEq,(0.57% Cu, 0.58g/t Au, 9.8g/t Ag.
- CAE Hole #13 also intersected some significant intervals of gold which are also prominent in other CAE drilling at Mt Cannindah (see ASX Announcement 21st March, 2023 and Fig 5).
 - (1) **Om to 24m**, **24m@ 2.11 g/t Au**, **10.9 g/t Ag**, **0.52 % Cu** a high grade oxidised gold zone from surface within gossanous hydrothermal infill breccia
 - (2) 314m to 329m : 15m @ 2.78g/t Au, which include 4m @ 6.50 g/t Au 9.8g/t Ag. The core of the system here is a prominent semi-massive sulphide infill zone, containing high grade gold with grades up to 22.98 g/t Au, 60.0 g/t Ag, with high Zn,Pb, elevated Bi.

Hole # 18 drills in a south south westerly direction (magnetic direction at collar of 206 degrees). On 23/3/2023 CAE reported on the first 274m at the top of hole # 18 : Hole # 18 was collared in flinty hornfels , which is cut by an extensive vein fracture network as the Hydrothermal Infill Breccia is approached downhole , crossing the contact at 138.6m . Copper and gold bearing sulphidic breccia occurs below 138m , cut by some bleached altered , argillized porphyry and thin post mineral andesite dykes. Results reported from the top of CAE Hole # 18 (ASX Announcement, March 23, 2023) are highly significant with the announcement of a high grade gold discovery (18m@6.3g/t Au) within polymetallic sulphidic breccia , which along with long intervals of significant copper mineralisation opens up the extension to the south at Mt Cannindah. Drilling highlights from the top 274m of hole # 18 include :

- An open ended copper and gold bearing sulphidic breccia, that at the time of reporting, extended 171m from 103m to 274m : with an aggregated intersection of 171m @ 0.89
 Au, 0.31% Cu, 8.1 g/t Ag ,(0.91 %CuEq). This interval includes :
- 67m @ 1.96 g/t Au (195m-262m) , which includes :

03 April 2023 ASX Code: CAE

- 41m @ 3.07 g/t Au, 0.34%Cu,14,4g/t Ag (2.32%CuEq) (221m-262m), with a high-grade zone of
- 18m @ 6.34 g/t Au, 0.18%Cu, 17.2g/t Ag(4.18CuEq) (244m-262m) up to 23.93 g/t Au, 61g/t Ag.
- The highest copper zone occurs 138m 159m which returned 21m @ 0.98%CuEq, 0.75% Cu,0.22 g/t Au,11.0g/t Ag

As discussed in previous CAE ASX announcements , as CAE extends drilling to the south west and south the large downhole widths of mineralized breccia intersected in CAE holes #13 and the top of hole #18 confirm the tremendous potential of the Mt Cannindah breccia . Previous, scattered, wide spaced, west to east, historic exploration drilling had only located patchy mineralised intersections to the south. CAE's drilling has outlined the general geometry and extended geological units such as breccias and mineralised structures and has discovered significant high-grade intercepts of copper, gold and silver. CAE's drilling strategy is to create a great opportunity to expand the Mt Cannindah resource, by discovering new mineralisation and understanding the geological units to the south and south west. CAE has progressed a long way along this path with the drilling of holes 13,18,19 and similar good results will hopefully continue with the drilling of subsequent holes.

CAE is pleased to announce new intersections of gold, copper, silver and associated discoveries of mineralised breccia and high grade gold bearing structures from the continuation of hole # 18 below 274m. As stated in the ASX Announcement of 23/3/2023 in addition to results from the deeper section of Hole # 18 reported here, CAE is drilling Hole # 19 at the time of reporting, which traverses between Hole #13 and # 18. Geological observations and logging to date of Hole # 19 indicate intersections over 10s of metres of sulphidic, chalcopyrite bearing hydrothermal breccia dominated by clasts of hornfels with some porphyry diorite. Processing and assaying of material from the bottom of hole 18 and also hole 19 is underway. Results are awaited and will be reported in due course.

The highlights and details of the combining the previously reported top 274m of CAE hole # 18 down to a depth of 463m are set out below. Table 1 lists the most significant aggregate intercepts received to date from the top and middle interval of Hole # 18 (0m to 463m). Table 2 summarizes hole geology. A full listing of results 0m to 463m of hole 18 is presented in Appendix 1 to this report. The remainder of hole 18 from 463m to final depth 627.6m is still to be reported.

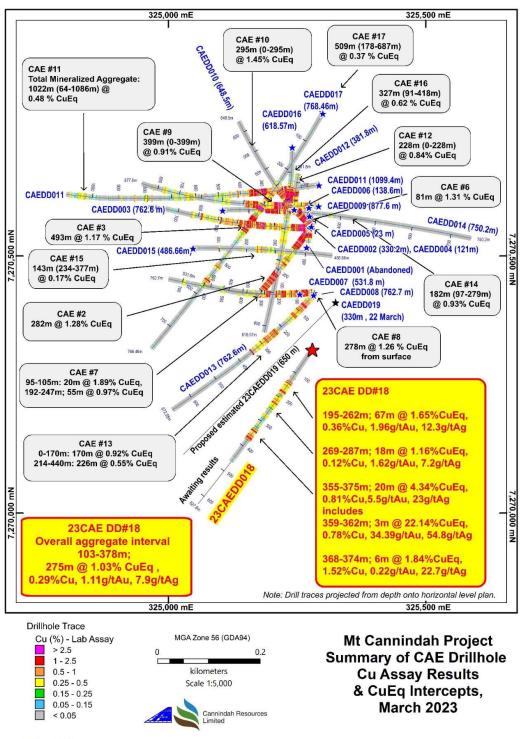
In Appendix 1 ,Table 1 , reports on a 1m basis all Cu,Au,Ag,S assays and chalcopyrite/pyrite visual estimates for 22CAEDD018 for those intervals 0m -463m containing significant mineralization . Lesser mineralized sections are grouped and summarized along geological unit lines.

03 April 2023

ASX Code: CAE

Table 1. Assay Highlights from Top to Middle Section Drillhole 23 CAEDD018. Include results update end March 2023.

Down Hole Mineralized Zones Hole 23CAEDD018 Update 0m to 463m	From	То	m	CuEq %	Cu %	Au g/t	Ag g/t	S %
Aggregate Interval (Cut off 0.15% CuEq, allow 15m waste)	103	378	275	1.03	0.29	1.11	7.9	4.33
Includes Higher copper zones of sulphidic breccia. (Cut off 0.5% CuEq, allow 5m waste)	138	159	21	0.98	0.75	0.22	11	3.52
Includes Higher copper zones of sulphidic breccia. (Cut off 0.5% CuEq, allow 5m waste)	170	187	17	0.63	0.4	0.23	10.9	1.7
Includes Higher Gold zones of sulphidic breccia. (Cut off 0.5% CuEq, allow 5m waste)	195	262	67	1.65	0.36	1.96	12.3	4.33
Includes Higher Gold zones sulphidic breccia. (Cut off 0.5% CuEq, allow 3m waste)	221	262	41	2.32	0.34	3.07	14.4	5.08
Includes high grade gold ,sulphide breccia. (Cut off 1.5% CuEq, allow 1m waste)	244	262	18	4.18	0.18	6.34	17.2	7.27
New Aggregate Interval to Report 3/4/2023. Below 274m (Cut off 0.15% CuEq, allow 15m waste)	274	378	104	1.22	0.27	1.46	7.5	6.4
Includes zones of sulphidic breccia , . (Cut off 0.5% CuEq, allow 5m waste)	269	287	18	1.16	0.12	1.62	7.2	5.25
Includes zones of sulphidic breccia ,. (Cut off 0.5% CuEq, allow 5m waste)	294	308	14	0.6	0.06	0.87	2.4	4.87
Includes zones of sulphidic breccia , . (Cut off 0.5% CuEq, allow 5m waste)	333	348	15	0.56	0.36	0.27	4.9	6.22
Includes high grade gold ,semi-massive sulphide & sulphide breccia (Cut off 0.5% CuEq, allow 5m waste)	355	375	20	4.34	0.81	5.5	23	9.98
Includes high grade gold ,semi-massive sulphide & sulphide brecci (Cut off 1.5% CuEq, allow 1m waste)	359	362	3	22.14	0.78	34.39	54.8	7.12
Includes Very High grade massive sulphide interval	359	360	1	58.57	1.46	96.16	123.2	14.75
Includes Higher copper zones of sulphidic breccia. (Cut off 1.5% CuEq, allow 1m waste)	368	374	6	1.84	1.52	0.22	22.7	9.7


Figs 4 to 6 present plans views of CAE Hole # 18 in relation to 2021-2023 CAE drillholes at Mt Cannindah, plotting respectively down hole traces of Cu,Au,Ag. The same data is plotted in Appendix 2 with CAE holes in relation to historical holes, for Cu,Au,Ag (Fig App2.1 to Fig App 2.3).

Figs 7 to 9 present cross section of down hole assays of CAE Hole # 18, plotting respectively traces of Cu,Au,Ag.

03 April 2023

ASX Code: CAE

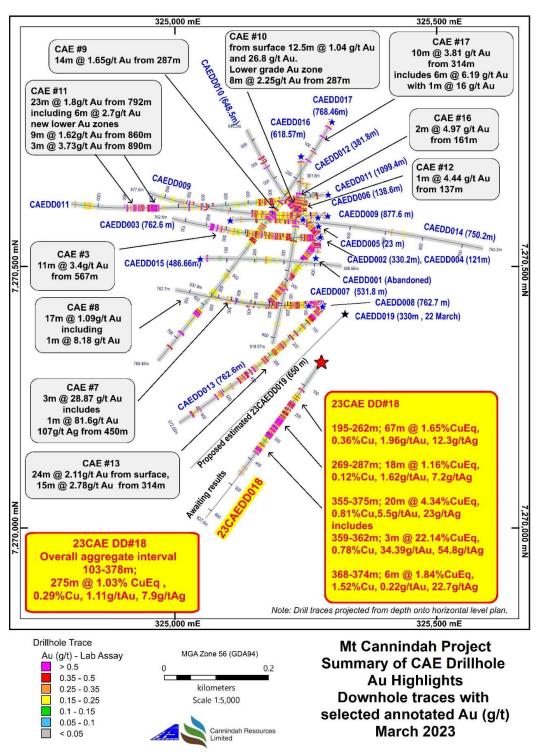

CAE_MC_230010

Fig 4. Plan view CAE Hole # 18 in relation to 2021-2023 CAE Drillholes Mt Cannindah. Downhole lab Cu plotted , CuEq intercepts annotated. Lab assays 0m-463m hole 18.

03 April 2023

ASX Code: CAE

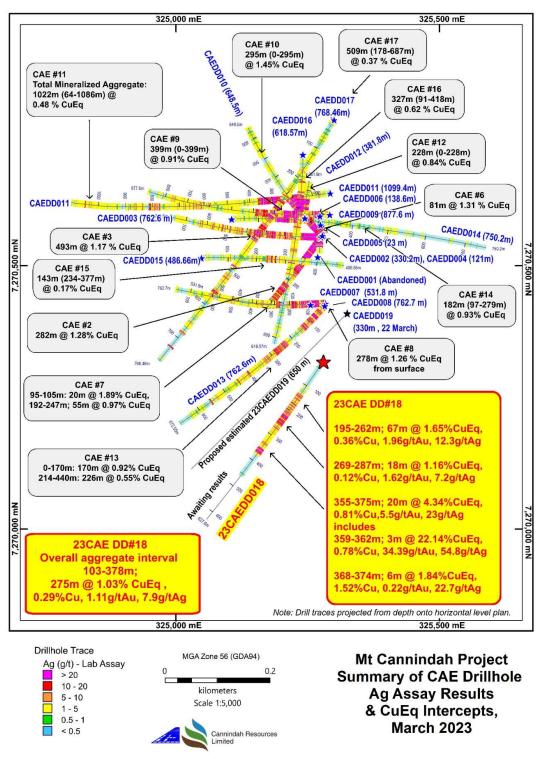

CAE_MC_230010

Fig 5. Plan view CAE Hole # 18 in relation to 2021-2023 CAE Drillholes Mt Cannindah. Downhole lab Au plotted ,.Gold results annotated for all holes. Lab assays 0m-463m hole 18.

03 April 2023

ASX Code: CAE

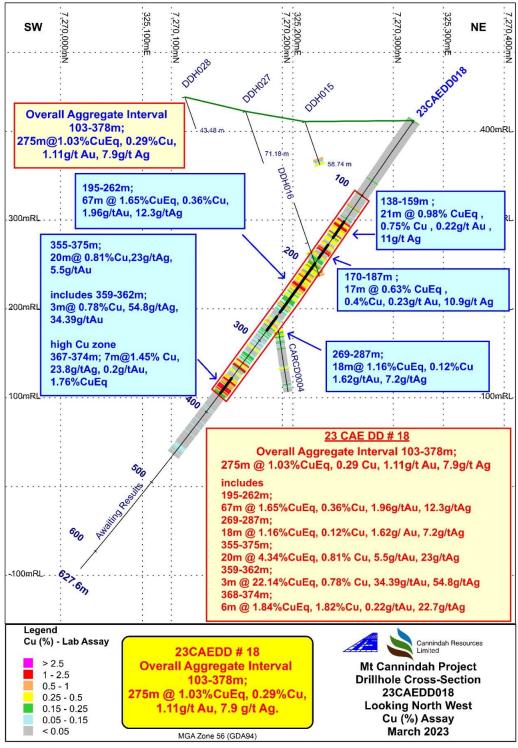

CAE_MC_230006

Fig 6. Plan view CAE Hole # 18 in relation to 2021-2023 CAE Drillholes Mt Cannindah. Downhole lab Ag plotted ,.CuEq% intervals annotated for all holes. Lab assays 0m-463m hole 18

03 April 2023

ASX Code: CAE

CAE_MC_230009

Fig 7. Cross section CAE Hole # 18 in relation to 2021-2023 CAE Drillholes and assayed historical holes at Mt Cannindah. Downhole lab Cu plotted , CuEq intercepts annotated. Lab assays 0m-463m hole 18

ASX Code: CAE

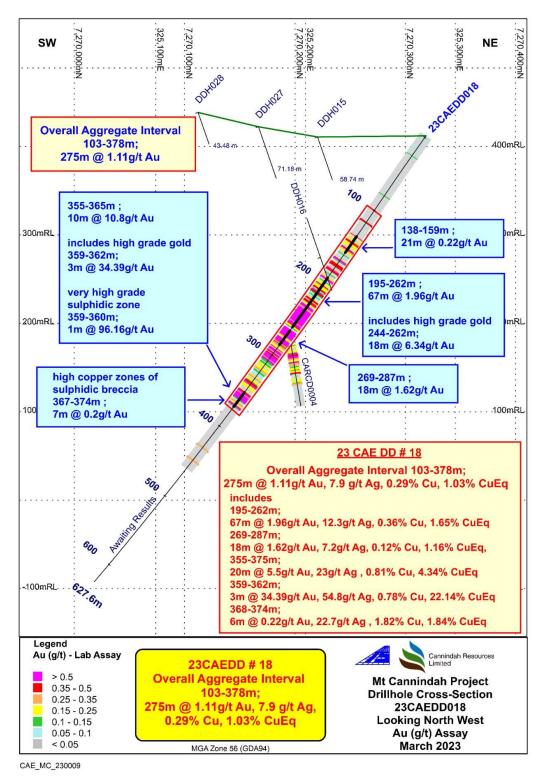
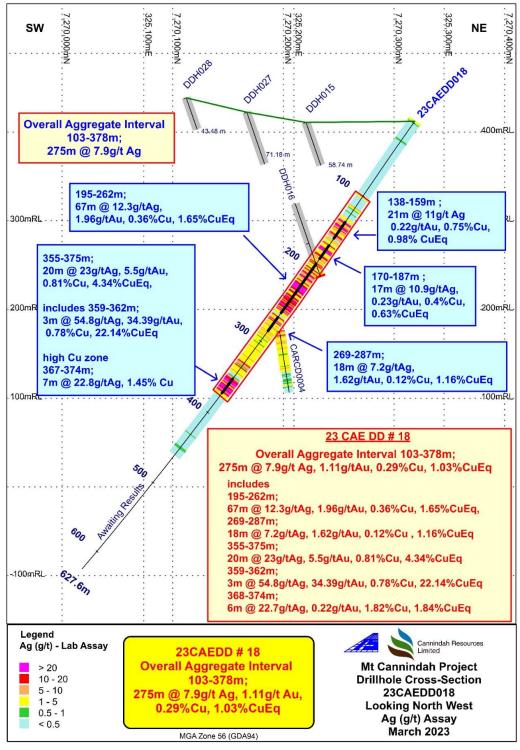



Fig 8. Cross section CAE Hole # 18 in relation to 2021-2023 CAE Drillholes and assayed historical holes at Mt Cannindah. Downhole lab Au plotted ; Au ,Cu & Ag tabulated for hole 18. Lab assays 0m-463m hole 18

03 April 2023

ASX Code: CAE

CAE_MC_230009

Fig 9. Cross section CAE Hole # 18 in relation to 2021-2023 CAE Drillholes and assayed historical holes at Mt Cannindah. Downhole lab Ag plotted , Au ,Cu & Ag tabulated for hole 18CuEq intercepts annotated.

03 April 2023

ASX Code: CAE

Summary geology for CAE hole 22CAEDD018 , colour coded according to geological unit is presented in Table 2 for the section 0m to 470m. Note full summary log for interval 0m to 274m appears in CAE ASX Announcement 24/3/2023.

From Depth (m)	To Depth (m)	Summary Geology Hole 22CAEDD018 (0m-469m)
0	138.5	Hornfelsed, fflinty siltstone interlayered with minor sandstonetone.Cut by vein fracture network . Sharp contact at 138.5m with infill hydrothermal breccia (HBX). Minor post nmineral andesire and blesched porphyry dykes.
138.5	260.2	Infill hydrothermal breccia (HBX). Angular clasts dominated by hornfels, strong sericite alteration abundant infill quartz-calcite-pyrite- chalcopyrite. Some hornfels extensively cut by multidirectional quartz- pyrite stockwork ("B veins"). Highly pyritic.Minor andesite dykes.
260.2	260.7	Light grey, argillised fault zone/fault breccia.
260.7	264.55	Grey yellow, fine grained, argillised andesite. No discernible sulphide.
264.55	359.3	Infill hydrothermal breccia (HBX, clasts PHY,HFL,DRT). Clasts extensively veined by multi-directional quartz pyrite stockwork. Generally highly pyritic infill of quartz calcite,pyrite ,chalcopyrite , 5% to >15% pyrite, 1%-3% chalcopyrite. Minor molybdenite veins.thin dykes
359.3	359.73	Semi massive pyrite chalcopyrite ,sphalerite,galena quartz sericite vein and shear infill.
359.27	361.24	Plagioclase phyrric trachyandesite.
361.24	366	Semi-massive pyrite and infill hydrothermal breccia.
366	380	Infill hydrothermal breccia (HBX, clasts PHY,HFL,DRT). Generally highly pyritic infill of quartz calcite,pyrite ,chalcopyrite , 5% to >15% pyrite, 1%-3% chalcopyrite.
380.00	397.13	Clast supported breccia, stocworked honfels clast,minor PHY.Pyrite infil 3%, close packed, minor quartz calcite infill.
397.13	398.9	Post Mineral andesite dyke
398.9	413.85	Hornfelsed, flinty siltstone.Prominent vein fracture network
413.85	414.55	Weakly altered diorite
414.55	415.65	Hornfelsed, flinty siltstone.Prominent vein fracture network
415.65	417.75	Post Mineral andesite dyke
417.75	458.25	Hornfelsed, flinty siltstone.Prominent vein fracture network. Some thin matrix supported breccia zones
458.25	459.4	Strongly porphyrytic, plagioclase "crowded"porphyry. Overall 2% pyrite.
459.40	469.72	Clast supported breccia, Sericite altered , close packed, HFL-DRT clasts, Pyrite infil 3%, trace chalcopyrite.

ASX RELEASE 03 April 2023

ASX Code: CAE

Hole # 18 was collared in flinty hornfels, which is cut by an extensive vein fracture network as the Hydrothermal Infill Breccia is approached downhole, crossing the contact at 138.6m. Copper and gold bearing sulphidic breccia occurs predominantly from 138m to 380m, cut by some bleached altered, argillized porphyry and thin post mineral andesite dykes. As shown in the CAE ASX Announcement 24th March, 2023, the general porphyry style mineralizing environment is illustrated by the common presence of quartz pyrite stockwork veins and fracture vein networks evident in some of the hornfels and porphyry clasts. This is well demonstrated in the drilled section of hole # 18 reported here, where a large stockworked veined clast shown in Fig 10 provides an excellent example.

Fig 10. Example of typical "porphyry-style" multi directional quartz sulphide vein stockwork and sheeted veins with median hairline veins of pyrite, with quartz -sericite alteration selvedges cutting a clast of sericite altered diorite .CAE Hole # 18,288m : Interval 288m-289m 1m @ 0.37 g/t Au, 0.03% Cu, 1.4 g/t Ag, 92 ppm Mo.

The main rock type present from 138m to 380m is Infill hydrothermal breccia cut by thin cross cutting post mineral andesite dykes and some pre and late mineral altered diorite, porphyrytic diorite and argillized indeterminate dykes interpreted as of possible trachyandesite composition. Clasts within the breccia are slab like, often sub-angular and aligned (Figs 11 -14)

Fig 11. Photo HQ Half core, Infill Hydrothermal breccia with alignment of slab like clasts of sericite altered, diorite, hornfels . Infill calcite,quartz,pyrite ,chalcopyrite. Hole # 18 ,334.5m : Interval 334m-335m 1m @ 1.32% Cu 0.19 g/t Au, , 14.4 g/t Ag, 6.3% S, 270 ppm Mo.

03 April 2023 ASX Code: CAE

Clasts within the breccia are predominantly hornfels, diorite and altered porphyry. Infill between clasts is generally highly pyritic, with quartz calcite,chalcopyrite . Minor molybdenite veins are occasionally observed. Alignment of clast indicates that hole 18 is drilling at an appropriate angle to the structural grain of the breccia at this location.

Fig 12. Photo HQ Half core, Infill Hydrothermal breccia with alignment of slab like clasts of sericite altered, diorite, hornfels. Infill calcite, quartz, pyrite , minor chalcopyrite. Hole # 18,326.4m : Interval 326m-327m : 1m @ 0.22% Cu 0.14 g/t Au, , 6 g/t Ag, 4.97% S, 128 ppm Mo

Fig 13 & 14. Photo HQ Half core, Hole #18 oriented in core oriented frame, hole drilling to south south west, view looking west north west. Fig 13. LHS Hole at 334.5m, Fig 14 .RHS Hole at 326.4m, Hole inclined at - 54 degrees toward 207 degrees mag. Alignment of slab like clasts oriented -75 dip towards 035 magnetic, strike 305 NW.

ASX RELEASE 03 April 2023

ASX Code: CAE

Structures noted in the section from 138m to 274m include steep argillized faults, infilled with quartz and semi-massive sulphide and argillized dykes cutting the breccia. The association of semi massive sulphide and argillized dykes of andesite, trachyandesite and possible latite composition are interpreted as being particularly relevant to the distribution of the gold zones with breccia and often strong sulphide development at the contacts These dykes often have a generally east west strike orientation, dipping north (see Figs 15 & 16).

Fig 15. LHS. Photo HQ Full core, Hole #18 oriented in core oriented frame, hole drilling to south south west, view looking east south east. LHS Hole at 298.38m. Hole inclined at -54 degrees toward 207 degrees mag.. Contact of infill hydrothermal breccia uphole and light coloured argillised andesite downhole. Contact striking 285 magnetic bearing, dipping -50 degrees to 015 (NNE) dip direction..

Fig 16. RHS. Photo HQ Full core, Hole #18 oriented in core oriented frame, hole drilling to south south west, view looking east south east. RHS Hole at 299.1m. Hole inclined at -54 degrees toward 207 degrees mag. Breccia at downhole contact of argillised andesite dyke as in Fig 15, Contact striking 280 magnetic bearing, dipping -50 degrees to 010 (NNE) dip direction..

A prominent zone of semi-massive sulphide around 359m is made up of pyrite, chalcopyrite, galena, with quartz sericite occurs either side of an argillised plagioclase phyrric dyke interpreted as being of probable trachyandesite composition. (See Figs 17 to 20)

03 April 2023 ASX Code: CAE

The sulphide rich sections are characterised by very high gold grades eg up to 96 g/t Au ,in the 1m interval containing the semi-sulphide at the up up-hole contact (Figs 17), and 10.7 g/t Au in the 1m interval containing the semi-sulphide at the down hole contact (Fig 18,19), along with very high sulphur (in the order of 15% S) These sulphidic intervals are also characterised by a range of associated metals such as copper(up to 1.5%), silver (up to 123 g/t), bismuth (up to 1436 ppm), lead (up to 1238ppm), antimony (up to 1140 ppm). Orientation of layering of sulphide indicates that hole 18 is drilling at an appropriate angle to obtain thickness and orientation information of sulphide lode ,associated alteration zones and related dyke contacts at this location (see Figs 17 to 19).

Fig 17. Photo HQ Half core, Hole #18 oriented in core oriented frame, hole drilling to south south west, view looking west north west. Hole at 359.5m, Hole inclined at -54 degrees toward 207 degrees mag. Very high grade gold section of semi-massive sulphide infill pyrite-chalcopyrite,galena,quartz,sericite vein/shear infill. Sulphide layering strikes east west (090 mag) with a sub vertical dip. CAE hole# 18, 359.6m. Interval 359m-360m : 1m @ 96.2g/t Au ,1.46% Cu, 123 g/t Ag, 14.8% S, elevated Bi,Pb,Sb.

03 April 2023

ASX Code: CAE

Fig 18. Photo HQ Full core, Hole #18 oriented in core oriented frame, hole drilling to south south west, view looking west north west. At 361m, hole inclined at -54 degrees toward 207 degrees mag. High grade gold section at top of core of semi-massive sulphide infill pyrite-chalcopyrite,galena,quartz,sericite vein/shear infill. Downhole contact with hydrothermal infill breccia, strikes 280 degrees magnetic, dipping -78 degrees to north (dip direction 010 magnetic). CAE hole# 18, 361.2m. Interval 361m-362m : 1m @ 10.8 g/t Au, 0.88% Cu,40 g/t Ag, 6.5% S..

Fig 19. Photo of close up of contact just uphole of Fig 18 between high grade gold bearing semi-massive suphide and argillised trachyandesite dyke. 361.2m

03 April 2023

ASX Code: CAE

COMPETENT PERSON STATEMENT

The information in this report that relates to exploration results is based on information compiled by Dr. Simon D. Beams, a full-time employee of Terra Search Pty Ltd, geological consultants employed by Cannindah Resources Limited to carry out geological evaluation of the mineralisation potential of their Mt Cannindah Project, Queensland, Australia. Dr Beams is also a non-Executive Director of Cannindah Resources Limited. Dr. Beams has BSc Honours and PhD degrees in geology; he is a Member of the Australasian Institute of Mining and Metallurgy (Member #107121) and a Member of the Australian Institute of Geoscientists (Member # 2689). Dr. Beams has sufficient relevant experience in respect to the style of mineralization, the type of deposit under consideration and the activity being undertaken to qualify as a Competent Person within the definition of the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves ("JORC Code).

Dr. Beams consents to the inclusion in the report of the matters based on this information in the form and context in which it appears

.Disclosure:

Dr Beams' employer Terra Search Pty Ltd and Dr Beams personally hold ordinary shares in Cannindah Resources Limited.

For further information, please contact:

Tom Pickett. Executive Chairman Ph: 61 7 55578791 Appendix 1 Table 1 Cu,Au,Ag,S assays , chalcopyrite, pyrite visual estimates CAE hole 18, -Appendix 2 JORC Table 1,Appendix 3 – JORC Table 2

Formula for Copper Equivalent calculations

Copper equivalent has been used to report the wider copper bearing intercepts that carry Au and Ag credits, with copper being dominant. eg have confidence that existing metallurgical processes would recover copper, gold and silver from Mt Cannindah.We have confidence that the Mt Cannindah ores are amenable to metallurgical treatments that result in equal recoveries. This confidence is reinforced by some preliminary metallurgical test work by previous holders, geological observations and our geochemical work which established a high correlation between Cu,Au,Ag.

The full equation for Copper Equivalent is:

CuEq/% = (Cu/% * 92.50 * CuRecovery + Au/ppm * 56.26 * AuRecovery + Ag/ppm * 0.74 * AgRecovery)/(92.5* CuRecovery)

When recoveries are equal this reduces to the simplified version: CuEq/% = (Cu/% * 92.50 + Au/ppm * 56.26 + Ag/ppm * 0.74)/92.5

We have applied a 30 day average prices in USD for Q4,2021, for Cu, Au , Ag , specifically copper @ USD\$9250/tonne, gold @ USD\$1750/oz and silver @ USD\$23/oz. This equates to USD\$92.50 per 1 wt %Cu in ore, USD\$56.26 per 1 ppm gold in ore, USD\$0.74 per 1 ppm silver in ore. We have conservatively used equal recoveries of 80% for copper, 80% for gold, 80% for Ag and applied to the CuEq calculation. CAE are planning Metallurgical test work to quantify these recoveries.

03 April 2023

ASX Code: CAE

Appendix 1 Cu,Au,Ag,S assays and chalcopyrite/pyrite visual estimates 22CAEDD018 0m to 463m (Table 1.) All assays are reported for those intervals containing significant mineralization . Lesser mineralized sections are grouped and summarized along geological unit lines. Lithology colour coded according to geological unit

23CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
DD018	0	1	0.24	0.05	1.8	0.02	0.0	0.5	Oxidised fractured, hornfels.
DD018	1	18	0.01	0.03	0.3	0.02	0.1	0.1	Oxidised fractured, hornfels.
DD018	18	27	0.01	0.02	0.3	0.96	1.5	0.0	fractured, hornfels.
DD018	27	28	0.05	0.15	0.6	1.04	2.0	0.1	fractured, hornfels.
DD018	28	29	0.04	0.05	0.3	2.14	4.0	0.1	fractured, hornfels.
DD018	29	30	0.02	0.02	0.3	2.09	4.0	0.1	fractured, hornfels.
DD018	30	39	0.01	0.01	0.3	1.54	3.0	0.0	fractured, hornfels.
DD018	39	40	0.01	0.00	0.3	0.64	1.0	0.0	Post Mineral andesite dyke
DD018	40	41	0.00	0.00	0.3	0.24	0.5	0.0	fractured, hornfels.
DD018	41	44	0.01	0.00	0.3	0.22	0.1	0.0	Post Mineral andesite dyke
DD018	44	52	0.01	0.01	0.3	1.02	1.8	0.0	Hornfels & tuff sandstone.
DD018	52	72	0.01	0.01	0.3	1.63	3.0	0.0	Hornfels & tuff sandstone.
DD018	72	82	0.03	0.01	0.3	2.07	4.0	0.1	Hornfels & tuff sandstone.
DD018	82	83	0.17	0.12	0.3	8.79	15.0	0.5	Hornfels & tuff sandstone.
DD018	83	101	0.01	0.01	0.3	2.10	4.0	0.0	Hornfels & tuff sandstone.
DD018	101	102	0.02	0.01	0.3	0.46	1.0	0.1	Bleached, sericite-chlorite altered porphyry.
DD018	102	103	0.08	0.02	0.8	0.29	0.4	0.2	Bleached, sericite-chlorite altered porphyry.
DD018	103	104	0.17	0.03	1.8	0.86	1.5	0.5	Bleached, sericite-chlorite altered porphyry.
DD018	104	105	0.13	0.03	1.2	1.77	3.0	0.4	Bleached, sericite-chlorite altered porphyry.
DD018	105	118	0.02	0.01	0.3	1.75	3.0	0.0	Hornfels with vein fracture network
DD018	118	119	0.07	0.03	0.7	4.00	7.0	0.2	Hornfels with vein fracture network
DD018	119	120	0.53	0.45	8.3	4.11	7.0	1.5	Hornfels with vein fracture network
DD018	120	121	0.18	0.06	2.5	7.58	15.0	0.5	Hornfels with vein fracture network
DD018	121	122	0.08	0.07	0.7	3.35	6.0	0.2	Hornfels with vein fracture network
DD018	122	126	0.02	0.02	0.3	2.10	4.0	0.1	Hornfels with vein fracture network

03 April 2023

23CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
DD018	126	127	0.01	0.01	0.9	3.44	6.0	0.0	Sericite-pyrite altered, bleached porphyry.
DD018	127	128	0.04	0.02	0.3	3.32	6.0	0.1	Sericite-pyrite altered, bleached porphyry.
								0.1	Hornfels with vein fracture network
DD018	128	134	0.03	0.02	0.3	2.58	5.0		Hornfels with vein fracture
DD018	134	135	0.20	0.04	1.5	1.78	3.0	0.5	network Hornfels with vein fracture
DD018	135	136	0.14	0.05	1.2	2.19	4.0	0.4	network Hornfels with vein fracture
DD018	136	137	0.05	0.01	0.3	1.97	4.0	0.1	network Hornfels with vein fracture
DD018	137	138	0.03	0.01	0.3	2.43	4.0	0.1	network
DD018	138	139	0.67	0.10	6.3	2.12	2.5	2.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	139	140	3.73	0.64	38.0	6.37	5.0	10.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	140	141	1.16	0.20	15.4	5.83	9.0	3.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	141	142	0.44	0.06	6.5	3.69	6.0	1.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	142	143	0.09	0.03	1.9	1.14	2.0	0.2	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	143	144	0.31	0.04	5.4	2.37	4.0	1.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	144	145	0.57	0.08	8.7	4.03	6.0	1.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	145	146	1.14	0.16	17.1	5.11	7.0	3.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite

03 April 2023

23CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
DD018	146	147	1.26	0.31	21.5	7.86	10.0	4.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	147	148	1.39	0.35	24.8	3.80	4.0	4.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	148	149	0.28	0.04	4.3	1.77	3.0	1.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	149	150	0.75	0.18	13.2	2.67	4.0	2.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	150	151	0.29	0.05	2.9	1.75	2.5	1.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	151	152	0.37	0.04	5.9	1.97	3.0	1.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	152	153	0.48	0.24	8.1	2.60	4.0	1.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	153	154	0.08	0.02	1.0	2.91	5.0	0.2	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	154	155	0.09	0.02	1.0	2.21	4.0	0.3	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	155	156	0.25	0.10	2.8	3.07	5.0	0.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	156	157	1.28	0.45	22.9	5.59	8.0	4.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	157	158	0.85	1.25	15.5	5.14	8.0	2.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	158	159	0.37	0.27	8.2	1.98	3.0	1.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite

03 April 2023

23CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
DD018	159	160	0.21	0.16	6.5	1.83	3.0	0.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	160	163	0.03	0.01	0.5	0.23	0.5	0.1	Post Mineral andesite dyke
DD018	163	164	0.34	0.14	7.2	1.93	3.0	1.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	164	165	0.13	0.03	3.6	1.08	2.0	0.4	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	165	166	0.35	0.07	7.5	1.48	2.0	1.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	166	170	0.06	0.01	2.1	0.26	0.5	0.1	Post Mineral andesite dyke
DD018	170	171	0.58	0.17	11.1	3.15	5.0	1.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	171	172	0.33	0.63	9.6	1.60	2.5	1.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	172	173	0.13	0.10	3.3	1.34	2.5	0.4	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	173	174	0.11	0.03	3.5	1.18	2.0	0.3	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	174	175	0.11	0.05	4.1	1.37	2.5	0.3	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	175	176	0.51	0.05	8.5	1.47	2.0	1.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	176	177	0.60	0.11	19.3	1.60	2.0	1.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	177	178	1.03	0.42	24.3	2.40	2.5	3.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite

03 April 2023

23CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
DD018	178	179	0.92	0.41	24.0	2.05	2.0	2.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	179	180	1.05	0.41	33.6	2.42	2.5	3.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	180	181	0.08	0.01	2.8	1.20	2.0	0.2	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	181	182	0.02	0.01	0.9	0.96	2.0	0.1	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	182	183	0.02	0.02	1.0	1.15	2.0	0.1	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	183	184	0.03	0.01	1.3	1.00	2.0	0.1	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	184	185	0.20	0.27	7.4	2.30	4.0	0.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	185	186	0.73	0.81	15.6	2.12	2.5	2.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	186	187	0.34	0.42	15.6	1.53	2.0	1.0	Strongly sericite-pyrite altered, bleached porphyry
DD018	187	188	0.02	0.08	3.2	0.73	1.5	0.1	Strongly sericite-pyrite altered, bleached porphyry
DD018	188	189	0.07	0.03	5.8	1.99	4.0	0.2	Strongly sericite-pyrite altered, bleached porphyry
DD018	189	190	0.24	0.03	9.0	1.01	1.5	0.5	Strongly sericite-pyrite altered, bleached porphyry
DD018	190	191	0.22	0.12	5.8	1.60	2.5	0.5	Strongly sericite-pyrite altered, bleached porphyry
DD018	191	192	0.16	0.03	3.9	2.05	4.0	0.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite

03 April 2023

23CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
DD018	192	193	0.17	0.03	5.5	1.40	2.5	0.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	193	194	0.11	0.01	3.2	1.34	2.5	0.3	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	194	195	0.19	0.06	5.5	1.63	2.5	0.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	195	196	0.56	0.18	18.1	2.88	4.0	1.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	196	197	0.18	0.33	6.5	2.50	4.0	0.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	197	198	0.21	0.52	13.7	2.27	4.0	0.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	198	199	0.19	0.10	4.6	2.44	4.0	0.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	199	200	0.19	0.04	3.4	1.87	3.0	0.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	200	201	0.33	0.12	7.0	2.09	3.0	1.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	201	202	0.19	0.10	4.5	1.53	2.5	0.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	202	203	0.04	0.02	1.6	1.78	3.0	0.1	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	203	204	0.90	0.24	12.5	2.31	2.5	2.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	204	205	0.27	0.08	5.1	2.73	5.0	1.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite

03 April 2023

23CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
DD018	205	206	0.07	0.05	2.3	1.59	3.0	0.2	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	206	207	0.33	0.39	11.4	3.55	6.0	1.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	207	208	0.10	0.32	5.8	2.94	5.0	0.3	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	208	209	0.20	0.17	7.2	3.05	5.0	0.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	209	210	0.09	0.18	4.2	2.37	4.0	0.3	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	210	211	0.93	0.20	14.9	4.57	7.0	2.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	211	212	0.88	0.38	24.3	5.34	8.0	2.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	212	213	0.43	0.09	7.5	3.78	6.0	1.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	213	214	0.39	0.12	9.0	3.82	6.0	1.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	214	215	0.52	0.09	8.2	4.61	8.0	1.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	215	216	0.52	0.79	11.9	4.55	8.0	1.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	216	217	1.48	0.40	30.4	6.84	10.0	4.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	217	218	0.35	0.13	7.4	3.68	6.0	1.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite

03 April 2023

23CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
DD018	218	219	0.28	0.06	5.4	2.63	4.0	1.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	219	220	0.12	0.07	2.9	1.99	3.0	0.3	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	220	221	0.32	0.12	6.1	3.66	6.0	1.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	221	222	0.56	0.08	10.1	2.41	3.0	1.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	222	223	0.31	0.09	4.9	2.73	5.0	1.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	223	224	0.12	0.03	2.9	1.33	2.5	0.3	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	224	225	0.52	0.07	10.2	3.75	6.0	1.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	225	226	0.61	0.18	11.0	3.31	5.0	2.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	226	227	1.41	0.47	23.1	7.32	10.0	4.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	227	228	1.64	0.47	34.0	4.99	6.0	5.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	228	229	1.29	0.23	20.0	4.10	5.0	4.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	229	230	0.97	0.63	36.1	4.83	7.0	3.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	230	231	0.69	0.45	25.5	4.30	7.0	2.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite

03 April 2023

23CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
DD018	231	232	0.01	0.01	0.3	0.08	0.1	0.0	Argillised Post Mineral andesite dyke,
									Argillised Post Mineral andesite
DD018	232	233	0.27	0.20	12.8	1.49	2.5	1.0	dyke, Some HBX Argillised Post Mineral andesite
DD018	233	234	0.01	0.01	0.3	0.05	0.1	0.0	dyke, Argillised Post Mineral andesite
DD018	234	235	0.01	0.01	0.3	0.20	0.3	0.0	dyke,
DD018	235	236	0.18	0.92	8.9	3.72	7.0	0.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	236	237	0.48	1.70	18.5	6.41	10.0	1.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	237	238	0.24	1.78	10.2	6.86	10.0	0.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	238	239	0.13	0.32	4.1	3.18	6.0	0.4	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	239	240	0.05	0.33	4.1	2.22	4.0	0.2	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	240	241	0.04	0.50	3.3	2.61	5.0	0.1	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	241	242	0.38	1.40	16.3	5.51	10.0	1.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	242	243	0.45	1.28	17.0	3.77	6.0	1.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	243	244	0.11	0.65	6.0	2.37	4.0	0.3	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	244	245	0.24	3.99	16.1	4.72	8.0	0.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite

03 April 2023

23CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
DD018	245	246	0.24	8.84	26.2	13.22	25.0	0.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	246	247	0.24	4.24	14.2	4.95	9.0	0.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	247	248	0.18	4.24	15.7	6.24	10.0	0.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	248	249	0.17	5.36	16.2	6.84	10.0	0.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	249	250	0.09	3.30	9.9	10.58	20.0	0.3	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	250	251	0.11	5.07	12.8	6.41	10.0	0.3	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	251	252	0.06	1.13	6.3	3.52	6.0	0.2	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	252	253	0.17	6.36	15.0	6.86	15.0	0.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	253	254	0.14	6.74	19.3	11.50	20.0	0.4	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	254	255	0.31	12.80	24.9	6.87	10.0	1.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	255	256	0.61	23.93	61.0	10.43	20.0	2.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	256	257	0.12	5.45	11.3	7.76	15.0	0.4	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	257	258	0.20	3.69	15.5	6.78	10.0	0.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite

03 April 2023

23CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
DD018	258	259	0.08	0.30	3.4	3.83	7.0	0.2	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	259	260	0.09	4.82	11.6	8.17	15.0	0.2	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	260	261	0.08	3.86	7.3	5.82	10.0	0.2	Light grey, argillised fault zone/fault breccia.
DD018	261	262	0.17	10.04	23.1	6.39	10.0	0.5	Argillised trachy andesite.
DD018	262	263	0.05	0.37	5.3	2.33	4.0	0.2	Argillised trachy andesite.
DD018	263	264	0.04	0.25	4.2	2.52	5.0	0.1	Argillised trachy andesite.
DD018	264	265	0.02	0.11	1.0	0.88	1.5	0.1	Argillised trachy andesite.
DD018	265	266	0.01	0.01	0.3	0.15	0.3	0.0	Hornfels hydrothermal breccia (HBX).
DD018	266	267	0.01	0.01	0.3	0.14	0.2	0.0	Hornfels hydrothermal breccia (HBX).
DD018	267	268	0.01	0.08	0.3	0.22	0.4	0.0	Hornfels hydrothermal breccia (HBX).
DD018	268	269	0.03	0.65	2.9	3.74	7.0	0.1	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	269	270	0.14	4.49	11.4	3.29	6.0	0.4	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	270	271	0.05	1.26	7.3	3.14	6.0	0.1	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	271	272	0.06	0.64	2.8	4.42	8.0	0.2	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	272	273	0.03	0.66	2.6	3.68	7.0	0.1	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	273	274	0.06	1.68	5.3	6.00	10.0	0.2	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	274	275	0.25	5.59	37.1	5.20	8	0.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite

03 April 2023

23CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
DD018	275	276	0.06	1.46	8.8	5.35	8	0.1	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	276	277	0.06	1.91	12.6	7.49	10	0.1	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	277	278	0.02	0.07	1.6	4.24	8	0.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite
DD018	278	279	0.07	0.25	2.8	8.34	10	0.1	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	279	280	0.55	0.22	9.4	8.20	10	1.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	280	281	0.09	0.03	2.2	3.15	5	0.1	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	281	282	0.30	0.61	4.3	5.08	8	1.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	282	283	0.06	5.06	7.6	5.70	8	0.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite
DD018	283	284	0.25	1.95	5.3	3.82	5	0.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	284	285	0.04	1.04	4.5	7.68	10	0.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite
DD018	285	286	0.04	1.44	1.8	4.52	8	0.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite
DD018	286	287	0.04	0.78	1.9	5.20	8	0.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite
DD018	287	288	0.03	0.18	1.2	6.03	8	0.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite

03 April 2023

23CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
DD018	288	289	0.03	0.37	1.4	5.64	8	0.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite
DD018	289	290	0.17	0.35	6.1	11.25	15	0.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	290	291	0.06	0.05	1.4	5.02	8	0.1	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	291	292	0.23	0.08	7.4	7.71	10	0.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	292	293	0.13	0.21	2.5	6.34	10	0.4	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	293	294	0.04	0.14	1.1	2.96	5	0.1	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	294	295	0.24	5.93	5.1	4.67	5	0.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	295	296	0.07	0.17	2.9	4.40	5	0.1	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	296	297	0.06	0.66	5.2	7.32	8	0.1	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018 DD018	297 298	298 299	0.03	0.93	4.5 0.8	3.22 1.89	5	0.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite Argillized andesite dyke

03 April 2023

23CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
DD018	299	300	0.03	0.15	0.8	1.65	2	0.0	infill hydrothermal breccia. HFL- DRT clasts,
DD018	300	301	0.07	0.48	3.0	8.93	10	0.1	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	301	302	0.03	0.80	2.0	8.46	10	0.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite
DD018	302	303	0.05	0.28	1.8	6.25	8	0.1	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	303	304	0.07	0.41	1.8	5.25	8	0.1	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	304	305	0.08	0.70	2.4	5.82	8	0.1	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	305	306	0.02	0.77	0.9	3.66	5	0.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite
DD018	306	307	0.02	0.03	0.3	2.28	3	0.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite
DD018	307	308	0.06	0.77	2.1	4.38	5	0.2	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	308	309	0.11	0.58	2.2	6.23	8	0.3	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	309	310	0.03	0.32	1.5	6.93	8	0.1	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite

03 April 2023

23CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
DD018	310	311	0.03	0.61	1.1	5.04	8	0.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite
DD018	311	312	0.06	0.11	2.3	5.65	8	0.2	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	312	313	0.03	0.11	1.4	5.50	8	0.1	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	313	313	0.32	0.09	5.3	6.46	8	1.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	314	315	0.05	0.11	1.5	3.87	5	0.1	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	315	316	0.03	0.12	1.7	7.25	10	0.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite
DD018	316	317	0.03	0.10	2.2	7.65	10	0.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite
DD018	317	318	0.04	0.15	1.6	6.12	8	0.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite
DD018	318	319	0.03	0.08	1.1	5.49	8	0.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite
DD018	319	320	0.04	0.03	0.9	2.76	5	0.1	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	320	321	0.06	0.03	1.3	2.76	5	0.2	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite

03 April 2023

23CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
DD018	321	322	0.06	0.15	1.7	6.97	8	0.2	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	321	322	0.16	0.06	2.8	4.00	5	0.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	323	323	0.24	0.18	4.2	7.78	10	0.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	323	325	0.24	0.25	4.7	8.59	10	0.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	325	326	0.11	0.09	2.9	4.92	8	0.3	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	326	327	0.22	0.14	6.0	4.97	8	0.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	327	328	0.07	0.10	2.9	4.63	8	0.1	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	328	329	0.07	0.09	3.6	4.84	8	0.1	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	329	330	0.16	0.05	4.0	2.20	3	0.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite

03 April 2023

23CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
DD018	330	331	0.11	0.05	2.3	2.77	3	0.3	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	331	332	0.08	0.06	1.5	2.18	3	0.1	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	332	333	0.08	0.04	1.6	2.54	3	0.1	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	333	334	0.55	0.06	6.2	3.71	5	1.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite , 1%-3% cpy
DD018	334	335	1.32	0.19	14.4	6.33	8	4.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite , 1%-3% cpy
DD018	335	336	0.66	0.30	8.9	7.71	10	2.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite , 1%-3% cpy
DD018	336	337	0.41	0.07	6.9	8.24	10	1.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite , 1%-3% cpy
DD018	337	338	0.05	0.02	0.6	3.76	5	0.2	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	338	339	0.05	0.07	0.9	3.44	5	0.1	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite

03 April 2023

23CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
DD018	339	340	0.56	0.19	7.4	9.56	10	1.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite , 1%-3% cpy
DD018	340	341	1.16	0.15	10.3	4.61	5	3.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite , 1%-3% cpy
DD018	341	342	0.16	0.07	1.7	2.28	3	0.4	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	342	343	0.04	0.47	1.8	10.47	15	0.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite
DD018	343	344	0.03	0.43	1.2	11.00	15	0.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite
DD018	344	345	0.02	0.65	1.5	7.22	10	0.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite
DD018	345	346	0.09	0.90	2.5	7.06	10	0.2	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	346	347	0.07	0.20	2.4	4.42	5	0.2	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	347	348	0.30	0.24	7.4	3.51	5	1.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	348	349	0.07	0.21	1.7	2.29	3	0.1	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	349	354	0.01	0.01	0.6	2.98	5	0.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite

03 April 2023

23CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
ZSCAE#			70	g/ ι	g/t			<u> </u>	
									Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite
DD018	354	355	0.15	0.24	5.4	3.91	5	0.4	,trace to 0.5% chalcopyrite
									Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite
DD018	355	356	0.40	0.36	9.9	11.85	15	1.0	,chalcopyrite , 1%-3% cpy
									Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite
DD018	356	357	0.51	1.14	20.0	19.42	20	1.5	,chalcopyrite , 1%-3% cpy
00010	257	250	0.45	0.55	10.7	0.00	15	4.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite
DD018	357	358	0.45	0.55	12.7	9.66	15	1.5	,chalcopyrite , 1%-3% cpy
									Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite
DD018	358	359	0.39	0.32	16.2	15.90	20	1.0	,chalcopyrite , 1%-3% cpy Semi-massive pyrite chalcopyrite
DD018	359	360	1.46	92.27	123.2	14.75	20	4.0	sphalerite galena infil in sericitic shear
DD018	360	361	0.01	0.15	0.3	0.12	0	0.0	Plagioclase phryyic trachyandesite
DD018	361	362	0.88	10.76	40.8	6.50	10	2.5	Semi-massive pyrite chalcopyrite sphalerite galena infil in sericitic shear, minor breccia
		502	0.00			0.00	10	2.0	Highly pyritic hydrothermal
DD018	362	363	0.20	0.84	7.9	5.67	8	0.5	Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
01010	302	303	0.20	0.84	7.9	5.07	ð	0.5	, nace to 0.5% chalcopyrite
DD018	363	364	0.53	1.25	16.7	6.80	10	1.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite , 1%-5% cpy

03 April 2023

23CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
DD018	364	365	0.18	0.61	9.6	3.91	5	0.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	365	366	0.05	0.15	8.0	10.81	15	0.1	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	366	367	0.50	0.08	14.2	8.69	10	1.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite , 1%-5% cpy
DD018	367	368	1.03	0.09	30.5	8.85	10	3.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite , 1%-5% cpy
DD018	368	369	1.52	0.12	24.2	9.45	15	4.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite , 1%-5% cpy
DD018	369	370	2.99	0.33	33.4	6.77	10	5.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite , 1%-5% cpy
DD018	370	371	1.06	0.11	16.5	5.70	8	3.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite , 1%-5% cpy
DD018	371	372	1.42	0.19	22.4	7.69	10	4.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite , 1%-5% cpy
DD018	372	373	0.43	0.06	6.8	3.57	5	1.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite , 1%-5% cpy

03 April 2023

23CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
DD018	373	374	1.71	0.50	32.9	25.04	20	5.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite , 1%-5% cpy
DD018	374	375	0.53	0.10	13.2	18.55	20	1.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite , 1%-5% cpy
DD018	375	376	0.25	0.09	8.7	19.22	25	0.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	376	377	0.18	0.03	3.9	11.95	15	0.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	377	378	0.22	0.03	2.7	5.47	8	0.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	378	379	0.08	0.03	2.9	10.61	15	0.1	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,trace to 0.5% chalcopyrite
DD018	379	395	0.01	0.01	0.3	2.99	5	0.0	Sericite altered, close packed clast supported breccia.,HFL clasts,pyritic
DD018	395	396	0.04	0.01	0.3	2.60	5	0.1	Sericite altered, close packed clast supported breccia.,HFL clasts,pyritic
DD018	396	397	0.05	0.01	0.3	3.52	5	0.1	Sericite altered, close packed clast supported breccia.,HFL clasts,pyritic Post Mineral andesite dyke
DD018	<u>397</u> 399	<u>399</u> 400	0.01	0.00	0.3	0.87	<u>1</u> 8	0.0	Sericite altered, close packed clast supported breccia.,HFL clasts,pyritic
DD018	400	400	0.03	0.02	0.3	1.79	2.5	0.2	Hornfels with vein fracture network

03 April 2023

23CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
DD018	413	414	0.03	0.00	0.3	1.23	1	0.1	Diorite
DD018	414	415	0.05	0.01	0.3	2.08	2	0.1	Hornfels with vein fracture network
DD018	415	418	0.01	0.01	0.3	1.06	1	0.0	Post Mineral andesite dyke
DD018	418	422	0.04	0.01	0.3	1.60	2.5	0.1	Hornfels with vein fracture network
DD018	422	425	0.03	0.01	0.3	1.50	2	0.0	Hornfelsed siltstone
DD018	425	426	0.01	0.00	0.3	1.03	1	0.0	Hornfelsed tuffaceous sandstone
	426	433	0.04	0.02	0.3	2.24	2.5	0.1	Hornfels with vein fracture network
DD018	433	434	0.04	0.32	0.8	3.05	5	0.1	Matrix supported sulphidic breccia
DD018	434	451	0.03	0.02	0.3	1.97	2.5	0.1	Hornfels with vein fracture network
DD018	451	452	0.06	0.29	0.7	2.86	5	0.1	Hornfels with vein fracture network
DD018	452	458	0.05	0.02	0.4	2.59	6	0.1	Hornfels with vein fracture network
DD018	458	459	0.05	0.01	0.3	2.30	3	0.1	Sericite altered crowded diorite porphyry.
DD018	450	463	0.04	0.01	0.3	2.08	3	0.0	Sericite altered, close packed clast supported breccia.,HFL clasts,pyritic

03 April 2023

ASX Code: CAE

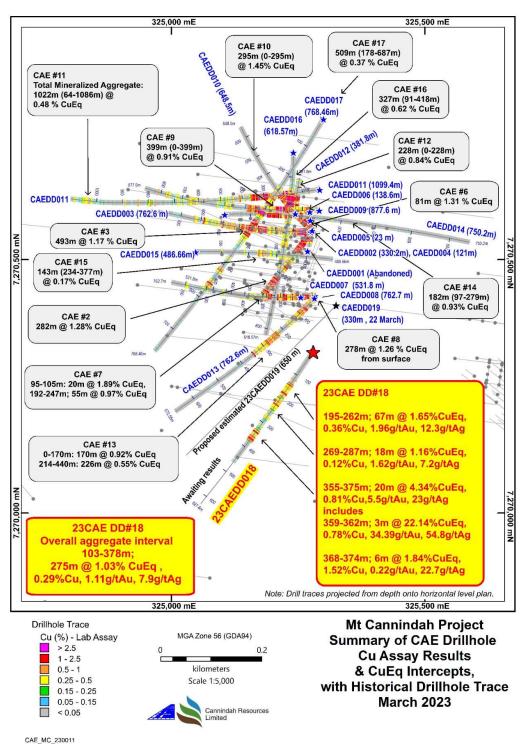
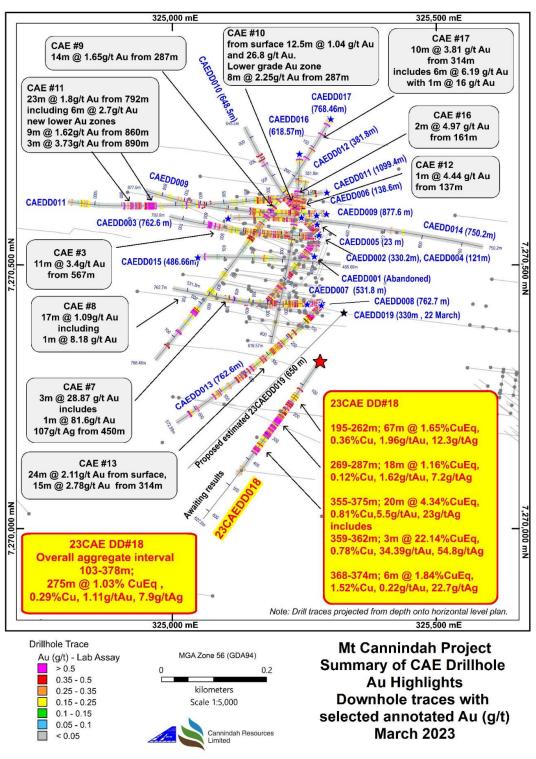



Fig App2.1 Plan view CAE Hole # 18 in relation to 2021-2023 CAE Drillholes and Historical holes at Mt Cannindah. Downhole lab Cu plotted , CuEq intercepts annotated. Lab assays 0m-463m hole 18.

03 April 2023

ASX Code: CAE

CAE_MC_230011

Fig App 2.2. Plan view CAE Hole # 18 in relation to 2021-2023 CAE Drillholes Mt Cannindah. Downhole lab Au plotted , Selected gold results annotated. Lab assays 0m-463m hole 18.

CAE_MC_230006

03 April 2023

ASX Code: CAE

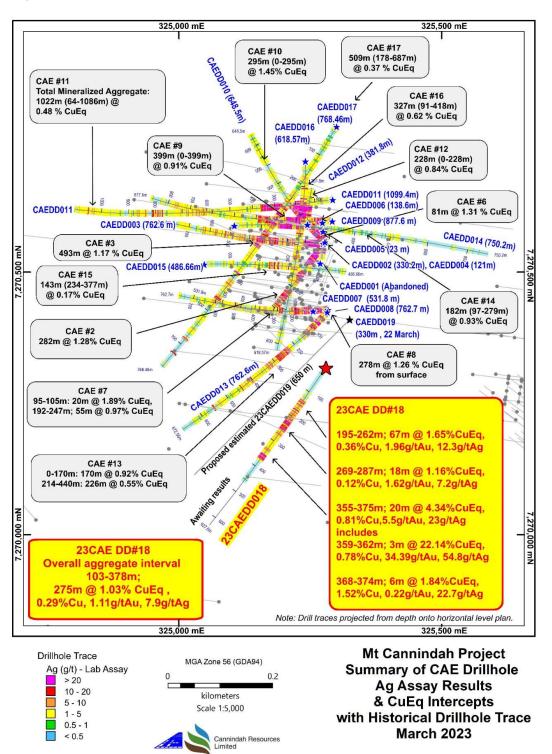


Fig App2.3. Plan view CAE Hole # 18 in relation to 2021-2023 CAE Drillholes Mt Cannindah. Downhole lab Ag plotted , CuEq intercepts annotated.. Lab assays 0m-463m hole 18

03 April 2023

ASX Code: CAE

Appendix 3: JORC Table 1. Section 1: Sampling Techniques and Data

Criteria	Explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.) These examples should not be taken as limiting the broad meaning of sampling.	. Sampling results are based on sawn half core samples of both PQ ,HQ and NQ diameter diamond drill core. An orientation line was marked along all core sections. One side of the core was consistently sent for analysis and the other side was consistently retained for archive purposes. The orientation line was consistently preserved.
	ensure sampling representivity and the appropriate calibration of any measurement tools or systems used.	
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Half core samples were sawn up on a diamond saw on a metre basis for HQ,NQ diameter core and a 0.5m basis for PQ diameter core. Samples were forwarded to commercial NATA standard laboratories for crushing, splitting and grinding ,Laboratory used in this instance is Intertek Genalysis , Townsville. Analytical sample size was in the order of 2.5kg to 3kg.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.)	Drill type is diamond core. Core diameter at top of hole is PQ, below 30m core diameter is HQ and NQ.Triple tube methodology was deployed for PQ & HQ, which resulted in excellent core recovery throughout the hole.Core was oriented, utilizing an Ace Orientaion equipment and rigorously supervised by on-site geologist.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Core recovery was recorded for all drill runs and documented in a Geotechnical log. The Triple Tube technology and procedure ensured core recoveries were excellent throughout the hole.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Triple tube methodology ensure excellent core recoveries. Core was marked up in metre lengths and reconciled with drillers core blocks. An orientation line was drawn on the core . Core sampling was undertaken by an experienced operator who ensured that half core was sawn up with one side consistently sent for analysis and the other side was consistently retained for archive purposes. The

03 April 2023

Criteria	Explanation	Commentary
		orientation line was consistently preserved.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Core recoveries were good. An unbiased, consistent half core section was submitted for the entire hole, on the basis of continuous 1m sampling. The entire half core section was crushed at the lab and then split, The representative subsample was then fine ground and a representative unbiased sample was extracted for further analysis.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies	Geological logging was carried out by well- trained/experienced geologist and data entered via a well-developed logging system designed to capture descriptive geology, coded geology and quantifiable geology. All logs were checked for consistency by the Principal Geologist. Data captured through Excel spread sheets and Explorer 3 Relational Data Base Management System. A geotechnical log was prepared.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel etc.) photography.	Logging was qualitative in nature. A detailed log was described on the basis of visual observations. A comprehensive Core photograph catalogue was completed with full core dry, full core wet and half core wet photos taken of all core.
	The total length and percentage of the relevant intersections logged.	The entire length of all drill holes has been geologically logged.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Half core samples were sawn up on a diamond saw on a metre basis for HQ, NQ diameter core and a 0.5m basis for PQ diameter core
	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	All sampling was of diamond core
	For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representativity of samples.	The above techniques are considered to be of a high quality, and appropriate for the nature of mineralisation anticipated. QA/QC protocols were instigated such that they conform to mineral industry standards and are compliant with the JORC code. Terra Search's input into the Quality Assurance (QA) process with respect to chemical analysis of mineral exploration diamond core samples includes the addition of both coarse blanks, Certified pulped Blanks, Certified and Internal matrix matched standards to each batch so that checks can be done after they are analysed. As part of the Quality Control (QC) process, Terra Search checks the resultant assay data against known or previously determined assays to determine the quality of the analysed batch of samples. An assessment is made on

03 April 2023

Criteria	Explanation	Commentary
		the data and a report on the quality of the data is compiled.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	The lab results are checked against visual estimations and PXRF sampling of sludge and coarse crush material.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	After crushing splitting and grinding at
		The total amount of economic metals tied up in sulphides and oxides such as Cu, Pb, Zn, Ag, As, Mo, Bi,S is captured by the 4 acid digest method ICP finish. This is regarded as a total digest method and is checked against QA-QC procedures which also employ these total techniques. Major elements which are present in silicates, such as K, Ca, Fe, Ti, Al, Mg are also digested by the 4 acid digest Total method. The techniques are considered to be entirely appropriate for the porphyry, skarn and vein style deposits in the area. The economically important elements in these deposits are contained in sulphides which is liberated by 4 acid digest, all gold is determined with a classic fire assay.
	For geophysical tools, spectrometers, handheld XRF instruments, etc. the parameters used in determining the analysis including instrument make and model, reading times, calibration factors applied and their derivation, etc.	Magnetic susceptibility measurements utilizing Exploranium KT10 instrument, zeroed between each measurement. No PXRF results are reported here. although PXRF analysis has been utilized to provide multi-element data for the prospect and will be reported separately. The lab pulps are considered more than appropriate samples for this purpose. PXRF Analysis is carried out in an air- conditioned controlled environment in Terra Search offices in Townsville. The instrument used was Terra Search's portable Niton XRF analyser (Niton 'trugeo' analytical mode) analysing for a suite of 40 major and minor elements. in. The PXRF equipment is set up on a bench and the sub-sample (loose powder in a thin clear plastic freezer bag) is placed in a

03 April 2023

Criteria	Explanation	Commentary
	Nature of quality control procedures	lead-lined stand. An internal detector autocalibrates the portable machine, and Terra Search standard practice is to instigate recalibration of the equipment every 2 to 3 hours. Readings are undertaken for 60 seconds on a circular area of approximately 1cm diameter. A higher number of measurements are taken from the centre of the circle and decreasing outwards. PXRF measures total concentration of particular elements in the sample. Reading of the X-Ray spectra is effected by interferences between different elements. The matrix of the sample eg iron content has to be taken into account when interpreting the spectra. The reliability and accuracy of the PXRF results are checked regularly by reference to known standards. There are some known interferences relevant to particular elements eg W & Au; Th & Bi, Fe & Co. Awareness of these interferences is taken into account when assessing the results.
	adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	by-batch basis, Terra Search has well established sampling protocols including blanks (both coarse & pulped), certified
		Terra Search quality control included determinations on certified OREAS samples and analyses on duplicate samples interspersed at regular intervals through the sample suite of both the commercial laboratory batchStandards were checked and found to be within acceptable tolerances. Laboratory assay results for these quality control samples are within 5% of accepted values.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Significant intersections were verified by Terra Search Pty Ltd, geological consultants who geologically supervised the drilling. Validation is checked by comparing assay results with logged mineralogy eg sulphide material in relation to copper and gold gradse.
	The use of twinned holes.	There has been little direct twinning of holes, the hole reported here pass close to earlier drill holes , assay results and geology and assay results are entirely consisted with previous results.
	Documentation of primary data, data entry procedures, data verifications, data storage (physical and electronic) protocols.	Data is collected by qualified geologists and experienced field assistants and

03 April 2023

Criteria	Explanation	Commentary
		Data is imported into database tables from the Excel spreadsheets with validation checks set on different fields. Data is then checked thoroughly by the Operations Geologist for errors. Accuracy of drilling data is then validated when imported into MapInfo.
		Location and analysis data are then collated into a single Excel spreadsheet. Data is stored on servers in the Consultants office and also with CAE. There have been regular backups and archival copies of the database made. Data is also stored at Terra Search's Townsville Office. Data is validated by long-standing procedures within Excel Spreadsheets and Explorer 3 data base and spatially validated within MapInfo GIS.
	Discuss any adjustment to assay data.	No adjustments are made to the Commercial lab assay data. Data is imported into the database in its original raw format.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Collar location information was originally collected with a Garmin 76 hand held GPS. X-Y accuracy is estimated at 3-5m, whereas height is +/- 10m.Coordinates have been reassessed with DGPS, Accuracy is sub 0.5m in X,Y,Z. Down hole surveys were conducted on all holes using a Reflex downhole digital camera . Surveys were generally taken every 30m downhole , dip, magnetic azimuth and magnetic field were recorded.
	Specification of the grid system used. Quality and adequacy of topographic	Coordinate system is UTM Zone 55 (MGA) and datum is GDA94 Pre-existing DTM is high quality and
Data spacing and distribution	control. Data spacing for reporting of Exploration Results.	available. At the Mt Cannindah mine area previous drilling program total over 100 deep diamond and Reverse Circulation percussion holes Almost all have been drilled in 25m to 50m spaced fences , from west to east, variously positioned over a strike length of 350m and a cross strike width of at least 500m Down hole sample spacing is in the order of 1m to 2m which is entirely appropriate for the style of the deposit and sampling procedures.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Previous resource estimates on Mt Cannindah include Golders 2008 for Queensland Ores and Helman & Schofield 2012 for Drummond Gold. Both these estimates utilised 25m to 50m fences of west to east drillholes, but expressed concerns regarding confidence in assay continuity both between 50m sections and

03 April 2023

Criteria	Explanation	Commentary
		between holes within the plane of the cross sections. The hole reported 23CAEDD018 has drilled to the south south west and is largely drilling in a direction and area where there is little previous drilling. CAE Hole # 13 is parallel in section but some 60m distance across section. Further drilling is necessary to enhance and fine tune the previous Mineral Resource. estimates at Mt Cannindah and lift the category from Inferred to Indicated and Measured and compliant with JORC 2012.
	Whether sample compositing has been applied.	No sample compositing has been applied, Almost all sampling is of 1m downhole samples of half core
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The main objective of hole 23CAEDD018 reported here was to drill to the south west. CAE hole #18 was drilled at the southern end of the prospect in an area of very little previous drilling and fragmented outcrop and subcrop. The overall geological interpretation at Mt Cannindah, built up from the CAE holes
		and historical drilling, is of a steeply west dipping, roughly north south oriented, tabular body of breccia, bounded on the east by hornfels and on the west by diorite and wedges of hornfels.
		CAE Hole #18 followed up on CAE Hole #13 as the second of CAE's holes to explore the southern & south western end of the Mt Cannindah breccia. CAE Holes # 13 & 18 drilled NNE to SSW,effectively at right angles to historical drilling at Mt Cannindah.
		The drill direction of CAE hole #18 is particularly appropriate for east-west striking structures and geological features. Follow up results from CAE holes #13 and also Hole #17 show that the east – west trending andesite dykes encountered in many holes are thin (mostly less than 5m true thickness) and,do not materially appear to stope out significant volumes of potential ore at Cannindah, Structural measurements on mineralised, often high grade veins and sulphidic zones have also been shown to be east-west and the southerly drill direction of CAE Hole #18 is entirely appropriate to test these structures
		Historical and CAE drill results show that there are several orientations of mineralized zones, breccia bodies and pre and post mineral dykes. The most

03 April 2023

Criteria	Explanation	Commentary
		common orientations are broadly east west, and north south . In this regard, geological consultants Terra Search have planned drill holes of various orientations to target the known range of orientations observed and measured in the mineralised structures and breccia bodies.
	If the relationship between drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The Infill breccia is massive textured , recent interpretation suggests the clasts may have an imbrication or preferred orientation, that is gently to moderately dipping to the east or south east. The overall orientation of the Mt Cannindah breccia sheet is steeply dipping to the west , although the bounding structures are uncertain. CAE Hole # 18 was drilled in a southerly direction, at right angles to the mostly east west holes at Mt Cannindah. One of the key aims of Hole # 18 was to determine the true thickness of mineralised east west structures. A further objective was to help determine grade continuity along the north east to south west trend within the breccia zone . No sampling bias is evident in the logging, or the presentation of results on drill cross and long sections. Steep structures are evident and with steep inclined holes these are cut at oblique angles. The breccia zone at Mt Cannindah is of sufficient width and depth that drillhole 23CAEDD018 provides valuable unbiased information concerning grade continuity of the breccia body. Observations of core reported here in Hole 18 show an alignment of breccia clasts that is broadly at a high angle to the drill hole, indicating the hole orientation is appropriate for the breccia location is appropriate for the breccia location is appropriate for the breccia location is appropriate for the breccia clasts that is broadly at a high angle to the drill hole, indicating the hole orientation and only in certain instances is it evident that vein orientations have introduced a sampling bias. These are well documented with oriented core. Historically, most holes at Mt Cannindah have been drilled from west to east . These can be severely hampered when encountering the similar parallel direction of east west post mineral andesite dykes and other structures. This situation was evident in CAE hole # 15 which drilled down an east west dyke for a lot of its length. This relationship did demonstrate that following the historical drill pattern at Mt Cannindah does not

03 April 2023

ASX Code: CAE

Criteria	Explanation	Commentary
		optimum results. Analysis of these geological relationships has led geological consultants Terra Search to design drill directions both 180 degrees and 90 degrees contrary to the historical direction. This drill pattern has produced outstanding results , leading to drill intersections of considerable grade and length. From preliminary investigation of the grade model It is anticipated that there is little overall evidence of any sampling bias in the CAE drilling at Mt Cannindah.
Sample security	The measures taken to ensure sample security.	Chain of custody was managed by Terra Search Pty Ltd. Core trays were freighted in sealed & strapped pallets from Monto were they were dispatched by Terra Search . The core was processed and sawn in Terra Search's Townsville facilities and half core samples were delivered by Terra Search to Intertek/Genalysis laboratory Townsville lab.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	There have been numerous independent reviews carried out on the Mt Cannindah project. reviewing sampling, data sets, geological controls, the most notable ones are Newcrest circa 1996; Coolgardie Gold1999; Queensland Ores 2008;Metallica ,2008; Drummond Gold, 2011; CAE 2014.

APPENDIX 2 – JORC Code Table 2

Section 2: Reporting of Exploration Results

Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national and environmental settings.	Exploration conducted on MLs 2301, 2302, 2303, 2304, 2307, 2308, 2309, EPM 14524, and EPM 15261. 100% owned by Cannindah Resources Pty Ltd. The MLs were acquired in 2002 by Queensland Ores Limited (QOL), a precursor company to Cannindah Resources Limited. QOL acquired the Cannindah Mining Leases from the previous owners, Newcrest and MIM, As part of the purchase arrangement a 1.5% net smelter return (NSR) royalty on any production is payable to MIM/Newcrest and will be shared 40% by MIM and 60% by Newcrest. An access agreement with the current landholders in in place.
	The security of the tenure held at the time of reporting along with any known	No impediments to operate are known.

Cannindah Resources Limited **ASX RELEASE**

03 April 2023

	impediments to obtaining a license to	
Exploration done by other parties	operate in the area. Acknowledgement and appraisal of exploration by other parties.	Previous exploration has been conducted by multiple companies. Data used for evaluating the Mt Cannindah project include : Drilling & geology, surface sampling by MIM (1970 onwards) drilling data Astrik (1987), Drill,Soil, IP & ground magnetics and geology data collected by Newcrest (1994-1996), rock chips collected by Dominion (1992),. Drilling data collected by Coolgardie Gold (1999), Queensland Ores (2008-2011), Planet Metals-Drummond Gold (2011-2013). Since 2014 Terra Search Pty Ltd, Townsville QLD has provided geological consultant support to Cannindah Resources.
Geology	Deposit type, geological setting and style of mineralisation.	Breccia and porphyry intrusive related Cu- Au-Ag-Mo, base metal skarns and shear hosted Au bearing quartz veins occur adjacent to a Cu-Mo porphyry.
Drill hole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: Easting and northing of the drill hole collar Elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar Dip and azimuth of the hole Down hole length and interception depth Hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	A major drill data base exists for the Mt Cannindah district amounting to over 400 holes. Selected Cu and Au down hole intervals of interest have been listed in CAE's ASX announcement, March,2021.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	The standard for reporting of high grade Cu zones in hole 22CAEDD018 reported here is an intersection grade of 0.5% Cu equivalent, allowing for 5m of internal waste The standard cut-off for reporting of total aggregate Cu mineralized zones is 0.15% CuEq% allowing for 15m of internal waste. No cut-offs have been routinely applied in reporting of the historical drill results .There has been no cutting of high grade analyses including gold Laboratory repeat analyses are determined for very high grade analyses of gold in particular and these are averaged. Repeat analyses to date of highly sulphidiic samples have not shown major nugget effects even with high grade gold values.

03 April 2023

Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations be shown in detail	The Cu-Au-Ag breccia style mineralisation at Mt Cannindah is developed over considerable downhole lengths. The breccia is generally mineralised, although copper grade and sulphide content is variable. In addition pre and post mineral dykes and intrusive bodies can mask the mineralisation .Down hole Cu-Au-Ag intercepts have been quoted both as a semi-continuous, aggregated down hole interval and also as tighter higher grade Cu-Au-Ag sections. In addition, historical results have been reported in the aggregated form displayed in the ASX Announcement for CAE , March,2021, many times previously. There are some zones of high grade which can influence the longer intercepts, All results are reported as down hole plotted 1m half core sampling intervals or tabulated with lower grade zones clearly noted. Aggregation of the longer intercepts at Mt Cannindah is advantageous for analysis and comparison of historical and recently collected drill data.
The assumptions used for any reporting of metal equivalent values should be clearly stated.	A copper equivalent has been used to report the wider copper bearing intercepts that carry Au and Ag credits with copper being dominant. Previous holders have undertaken preliminary metallurgical test work. We have confidence that existing metallurgical processes would recover copper, gold and silver from Mt Cannindah.
	We have confidence that the Mt Cannindah ores are amenable to metallurgical treatments that result in equal recoveries. This confidence is reinforced by some preliminary metallurgical test work by previous holders, geological observations and our geochemical work which established a high correlation between Cu,Au,Ag. In December, 2022, CAE initiated a Metallurgical testing program for Mt Cannindah breccia. This program is current being scoped and materially important results will be reported when available.
	The full equation for Copper Equivalent is:
	CuEq/% = (Cu/% * 92.50 * CuRecovery + Au/ppm * 56.26 * AuRecovery + Ag/ppm * 0.74 * AgRecovery)/(92.5* CuRecovery)
	When recoveries are equal this reduces to the simplified version:

03 April 2023

ASX Code: CAE

CuEq/% = (Cu/% * 92.50 + Au/ppm * 56.26 + Ag/ppm * 0.74)/ 92.5

We have applied a 30 day average prices in USD for Q4,2021, for Cu, Au , Ag , specifically copper @ USD\$9250/tonne, gold @ USD\$1750/oz and silver @ USD\$23/oz. This equates to USD\$92.50 per 1 wt %Cu in ore, USD\$56.26 per 1 ppm gold in ore, USD\$0.74 per 1 ppm silver in ore .As these prices are similar to current Q3-Q4,2022 averages, CAE has maintained these prices in order to allow consistent reporting from 2021 to 2022.

We have conservatively used equal recoveries of 80% for copper, 80% for gold , 80% for Ag and applied to the CuEq calculation.

Relationship between mineralisation widths and intercept lengths

The relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported

If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. down hole length, true width not known). 22CAEDD018 reported here is an angled hole, inclined 60 degrees to the south west (magnetic azimuth 205 degrees at the drill collar). The hole is collared on fractured oxidised hornfels.

As the breccia geometry is still to be established, the final attitude and thickness of the mineralisation is unknown at this stage.

. The Mt Cannindah Infill breccia is massive textured , recent interpretation suggests the clasts may have an imbrication or preferred orientation, that is relatively flat dipping to the east or south east.

The overall orientation of the Mt Cannindah breccia sheet is steeply dipping to the west, although the bounding structures are uncertain. The south westerly drill direction of hole #18 was considered important to determine whether mineralised breccia extended in that direction..

Previous resource estimations at Mt Cannindah model the breccia body as elongated NNE-SSW and at least 100m plus thick in an east west direction. Previous estimations indicate a potentially depth extension to 350m plus.. The breccia body geometry, as modelled at surface has the long axis oriented NNE-SSW. In this context, hole 22CAEDD018 drills to the south west of the mineralised envelope previously recognized at Mt Cannindah, . raking across the strike of the overall body

CAE Hole # 18 is drilling to the south south west and parallels CAE hole # 13 which intersected several breccia and dyke like bodies at high angles .Observations of

57

03 April 2023

		core reported here in Hole 18 show an alignment of breccia clasts that is broadly at a high angle to the drill hole, indicating the hole orientation is appropriate for the broadly east west oriented structures and geological units In this regard, the orientation of hole # 18 was entirely appropriate for the geometry and trends of the targeted bodies and structures.
		CAE drilling has shown that the longest axis of the Mt Cannindah breccia is plunging to great depths, and the upper and lower contacts, effectively the hanging and footwall contacts are still to be firmly established Further investigation is required to establish the geometry of the mineralised breccia body in the north, south and down plunges of the Mt Cannindah deposit.
Diagrams	Appropriate maps and sections (with scale) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Preliminary sections and plans of the drillhole 22CAEDD018 reported here, are included in this report. Geological data is still being assembled at the time of this report. An update of the geological model for Mt Cannindah is underway and will be released upon completion.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practised to avoid misleading reporting of Exploration Results.	The majority of 1m Cu,Au,Ag,S assays from the upper 0m to 463m section of hole 22CAEDD018 are listed with this report. In some instances. These have been reported as lithological and geochemical groups or sub-sets. Significant intercepts of Cu,Au,Ag are tabulated. All holes were sampled over their entire length, Reported intercepts have been aggregated where mineralization extends over significant down hole widths. This aggregation has allowed for the order of 15m of non mineralized late dykes or lower grade breccia sections.to be incorporated within the reported intersections. In general, a lower value of 0.15% CuEq has been utilized for the aggregated results. Wider aggregations have been reported for comparative purposes, in respect of reporting assaying of the mineralized sections which extend over the entire hole length. Aggregated intersections that contain zones of internal waste are clearly identified.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	The latest drill results from the Mt Cannindah project are reported here. The report concentrates on the Cu,Au, Ag results. Other data, although not material to this update will be collected and reported in due course.

		ASX RELEASE
Cannindah Resources		03 April 2023
Limited		ASX Code: CAE
Further work	The nature and scale of planned further work (e.g. test for lateral extensions or depth extensions or large-scale step-out drilling).	Drill targets are identified and further drilling is required. Hole 22CAEDD018 drills at the southern end of the prospect in a south westerly direction, similarly hole 18 drills sub parallel to CAE Hole # 13. Hole 13 was drilled in 2022. Drilling has recommenced at Mt Cannindah for the year 2023. CAE Hole # 18 is complete and the bottom section is awaiting assaying, Hole # 19 is underway and will be followed by a series of drillholes testing the extent of the Mt Cannindah breccia at the southern end. Further drilling is planned at Mt Cannindah Breccia.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Not yet determined, further work is being conducted.

APPENDIX 4– JORC Code Table 2

Section 3: Estimation and Reporting of Mineral Resources

Audits or Review	The results of audits and reviews of any ore resource Estimates.	There have been several resource estimations made over the various deposits at Mt Cannindah. These have been in the public domain for a number of years.
		The most recent resource statement by by Hellman & Schofield in 2011 is for Drummond Gold on the resource at Mt Cannindah itself. This was reported under the JORC 2004 code and has not been updated to comply with JORC 2012 on the basis that the information has not materially changed since it was last reported.