

## Thick High Grade Copper Gold Intersection of <u>71m @ 0.95% CuEq</u> in Hole 24 Extends Mineralisation at Mt Cannindah Beyond Resource

### Within A Larger Significant Zone of 274m @ 0.49% CuEq

#### **KEY HIGHLIGHTS:**

- First hole from the recently commenced drilling program at the Mt Cannindah Copper Gold Project has returned an outstanding intersection of:
  - <u>71m @ 0.95% CuEq\*</u> comprising 0.75% Cu, 0.2 g/t Au, 10.4 g/t Ag from 127m including 20m @ 1.1%Cu and 0.28g/t Au from 132m
- The intersection is within a significant larger mineralised zone of:
  - 274m @ 0.49% <u>CuEq</u> comprising 0.35% Cu, 0.14 g/t Au, 5.9 g/t Ag from 82m to 356m
- High grade gold was also intersected in parts of the hole
  - o 1m @ 31.07 g/t Au from 464m to 465m
  - o **1m @ 5.14 g/t Au**, 0.15% Cu, 18.3 g/t Ag, from 338m
- The intersection in hole 24 highlights the excellent continuity of the copper mineralisation at the Mt Cannindah deposit and extends mineralisation beyond the Resource also filling the data gap between the excellent results in holes 13 and 19 reported below.
- Diamond drilling continues at the Project with the third hole for 2025 completed yesterday and the fourth hole (hole 27) to commence shortly, assays are pending
- Drilling is now testing major IP anomalies proximal to the existing 14.5Mt @ 1.09 CuEq MRE

Cannindah Resources is pleased to announce an outstanding assay result from the first hole in its recently commenced drilling program to test extensions to the existing Mineral Resource as well as testing some significant IP anomalies adjacent to the Resource.

Hole CAE2024 intersected a significant <u>71m @ 0.95% CuEq</u> from 127m, within a very large and broad zone of **274m @ 0.49% CuEq.** The hole also returned some high grade gold including 1m @ 31.07 g/t Au from 464m

Cannindah Resources Managing Director Mr Tom Pickett said "These outstanding results further demonstrate the continuity of the high grade zone and support the clear upside potential of the Cannindah Mineral System given that only 15% of the total surface area of the system hosts the 158,000t Cu equivalent that currently makes up the 14.5Mt Cannindah Mineral Resource. Future work will continue to focus on the extensions and upside of the Cannindah breccia, the high grade gold zones, along with a reinterpretation of the many remaining prospects that comprise the remainder of the substantial Cannindah Mineral System. We are pleased to have now completed the third hole for this year. We look forward to moving the rig to start drilling towards the large exciting prospect known as the south west IP anomaly."



Cannindah Resources Ltd ABN 35 108 146 694 4D, Level 4, 16 Queensland Ave, Broadbeach QLD 4218 PO Box 8895, Gold Coast Mail Centre, QLD 9726 P: (07) 5557 8791 www.cannindah.com.au Contact

Tom Pickett Managing Director E:admin@cannindah.com.au



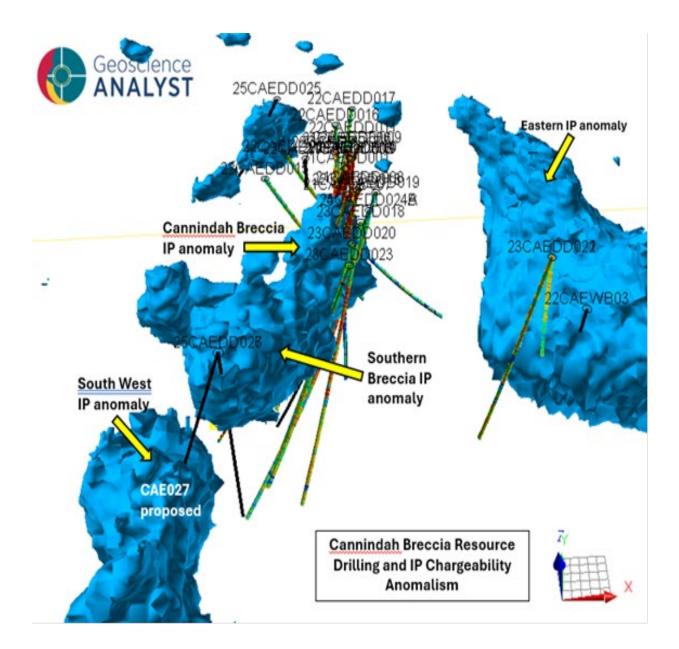


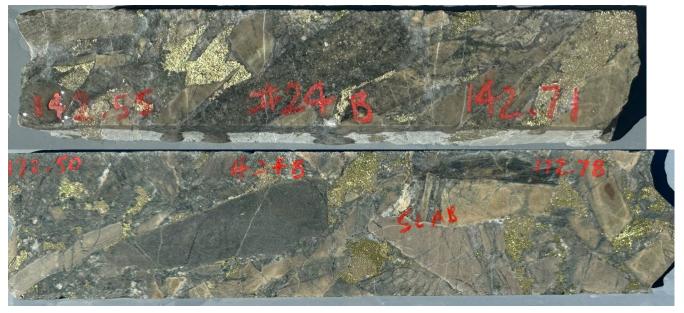


Figure 4. Cannindah Breccia IP Anomaly with resource drilling, southern breccia IP anomaly, and South West IP anomaly with proposed next hole referred to above.

These results demonstrate continuity of the breccia mineralisation and further indicate the potential development of shallow plunging higher grade zones or shoots internal to the enveloping Cu Au mineralised material. Furthermore the continual development of high grade gold results in most drill holes completed to date provides further encouragement. This hole extends beyond the known resource area and is outside the current resource block model from 278m, and potentially provides an increase in grade within the area of the resource that it has filled where there was a data gap between the excellent results of previous holes 13 and 19 reported on page 9 below.



High grade chalcopyrite infill in hornfels breccia. CAE Hole 24, 83m . 2m interval 82m-84m : 3.04% Cu, 0.23 g/t Au, 102.9 g/t Ag, 4.11% S (2m @ 4.0% CuEq).




Infill polymict hydrothermal breccia, dominated by clasts of hornfels with some altered porphyry, with chalcopyrite (golden), pyrite (brassy), white calcite, quartz. rock-flour infill. CAE Hole 24, 282.3m. 2m interval 281m-283m : 0.83% Cu, 0.18

#### g/t Au, 7.7 g/t Ag, 3.54% S. (2m @ 1.00% CuEq)

\* Copper Equivalent calculation is based on metal prices using 30 day average prices in USD for Q4 2021. Further details are provided in the calculation table at page 21 of the text and in the JORC Table 1 at p-45

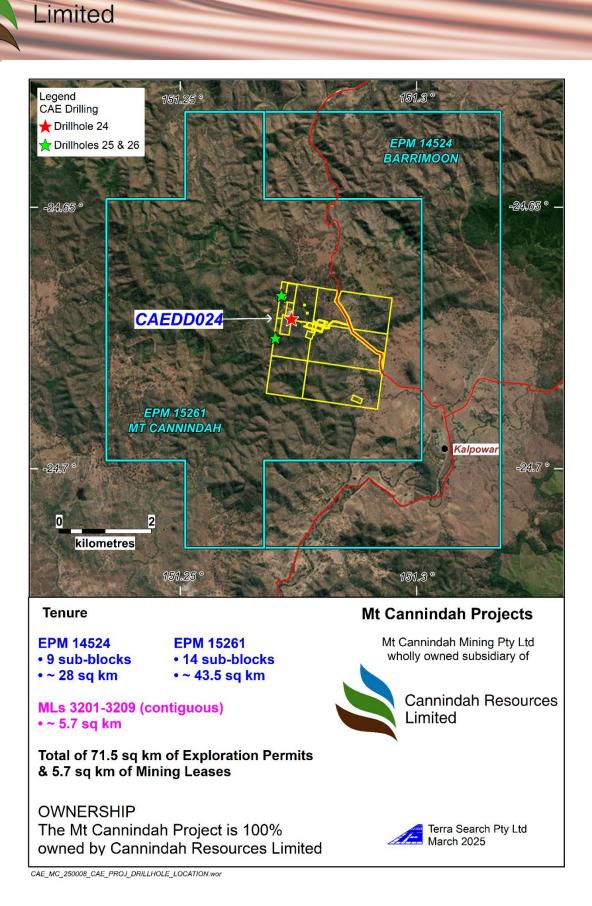
Infill polymict hydrothermal breccia ,dominated by hornfels clasts, with chalcopyrite (golden), pyrite (brassy), quartz infill., some altered porphyry. CAE Hole 24, 142.5m. 4m interval 141m-145m : 1.42% Cu, 0.49 g/t Au, 12.8 g/t Ag, 4.34% S. (4m @ 1.84% CuEq).



Infill polymict hydrothermal breccia ,dominated by hornfels clasts, with chalcopyrite (golden), pyrite (brassy), quartz calcite, rock-flour infill. CAE Hole 24, 172.5m. 8m interval 170m-178m : 0.98% Cu, 0.26 g/t Au, 11.2 g/t Ag, 4.25% S. (8m @ 1.23% CuEq).



Infill polymict hydrothermal breccia, hornfels & porphyry clasts, with chalcopyrite (golden), pyrite (brassy), quartz calcite, rock-flour infill. CAE Hole 24, 210.5m. 1m interval 210m-211m : 0.60% Cu, 0.20 g/t Au, 7.9 g/t Ag, 7.68% S. (1m @ 0.78% CuEq).




Infill polymict hydrothermal breccia ,dominated by hornfels clasts, with chalcopyrite (golden), pyrite (brassy), quartz calcite, rock-flour infill. CAE Hole 24, 215.5m.5m interval 212m-217m : 0.35% Cu, 0.07 g/t Au, 3.6 g/t Ag, 2.80% S. (5m @ 0.42% CuEq\*).

# **Mount Cannindah Project Location**



Fig 1. Location of Mt Cannindah Project in Central Queensland.



#### Fig 2. Mt Cannindah Project Tenure

Cannindah Resources

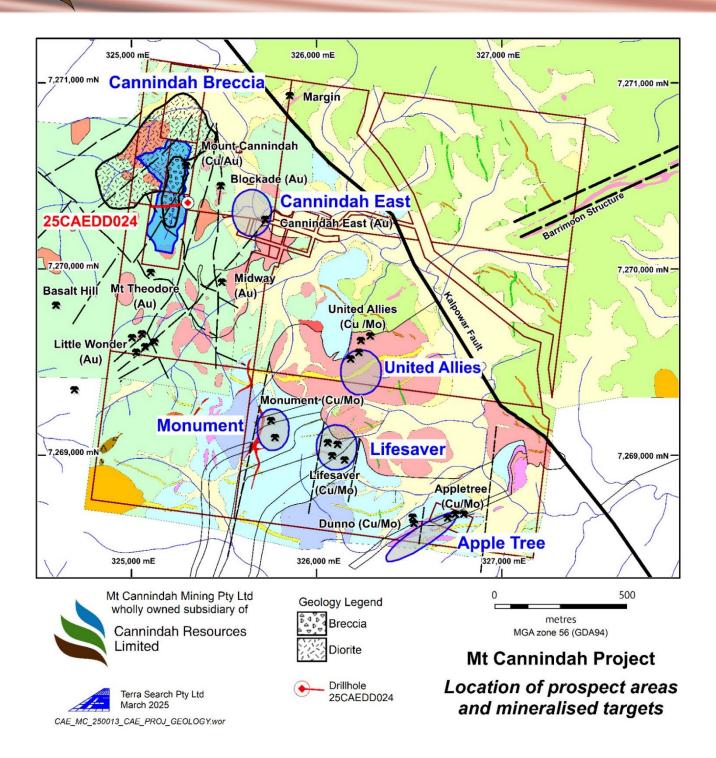



Fig 3. Mt Cannindah project Location of prospect areas , mineralised targets. Drill delineated boundaries of outcropping Cannindah Diorite and breccia, as well as projected outline of CAE's 2024 Mineral Resource Estimate : 14.5Mt @ 1.09% copper equivalent (0.72% Cu, 0.42 g/t Au, 13.7 g/t Ag) are shown for the Cannindah Breccia area.(see CAE ASX Announcement 3/7/2024)

Cannindah Resources Limited (ASX: CAE) is currently completing a diamond drilling program at the Mt Cannindah, copper gold silver project south of Gladstone near Monto in central Queensland (Figs 1 to 3).

On 3 July 2024 Cannindah Resources Limited announced a significant upgrade of the Mineral Resource Estimate (MRE) for the Mt Cannindah project. The MRE was prepared by independent resource specialists H&S Consultants The upgraded MRE for the Mt Cannindah Cu/Au deposit reported in the H&SC study is shown in the tables below:

| Category  | Mt   | Cu%  | Au gpt | Ag ppm | CuEq% | Density t/m3 |
|-----------|------|------|--------|--------|-------|--------------|
| Measured  | 7.1  | 0.77 | 0.41   | 15.4   | 1.15  | 2.77         |
| Indicated | 5.7  | 0.67 | 0.39   | 12.2   | 1.00  | 2.79         |
| Inferred  | 1.7  | 0.70 | 0.58   | 12.0   | 1.15  | 2.78         |
| Total     | 14.5 | 0.72 | 0.42   | 13.7   | 1.09  | 2.77         |

| Category  | Cu Kt | Au Kozs | Ag Mozs |  |  |
|-----------|-------|---------|---------|--|--|
| Measured  | 54.7  | 93.4    | 3.5     |  |  |
| Indicated | 38.1  | 71.9    | 2.2     |  |  |
| Inferred  | 11.9  | 32.0    | 0.7     |  |  |
| Total     | 104.8 | 197.3   | 6.4     |  |  |

(minor rounding errors)

Source: H&SC "Updated Mineral Resource Estimate for the Mt Cannindah Cu/Au/Ag Deposit SE Queensland" (June 2024) p9 Refer ASX Announcement 3 July 2024

The Cannindah Mineral System is defined as an ovate 2km by 2km area of coincident anomalous Cu Au Mo geochemistry within which numerous prospects identified to date include styles of mineralisation suggestive of porphyry Cu Au systems including skarns, stockworks and hydrothermal breccias. Previous exploration including IP, geological mapping and drilling further support the footprint and metal association of this system.

The Cannindah Breccia is a 600m strike by up to 100m wide, 350m deep steep westerly dipping hydrothermal breccia. Alteration is defined predominantly by sericite carbonate quartz and or chlorite. Minor sphalerite is also observed. High grade Au associated with later argillic altered intermediate dykes overprints the main breccia phase and has a strong Bi Sb Pb association. This geochemical and alteration signature is typically associated with and peripheral to porphyry intrusive centres.

Laboratory results in CAE hole # 24 confirm a significant zone of copper, gold and silver bearing hydrothermal breccia within a drilling gap between previously reported CAE hole # 13 (CAE ASX Announcement 30/9/2022) and CAE hole # 19 (CAE ASX Announcement 28/9/2023) referred to below.



CAE Hole # 24 intersected

- 274m @ 0.49% Copper Equivalent\* comprising 0.35% Cu, 0.14 g/t Au, 5.9 g/t Ag from 82m to 356m including
- 8m @ 1.24% CuEq comprising 0.94% Cu, 0.08 g/t Au, 31.4 g/t Ag from 82m to 90m,
- 71m @ 0.95% CuEq comprising 0.75% Cu, 0.2 g/t Au, 10.4 g/t Ag from 127m to 198m
- 1m @ 5.14 g/t Au, 0.15% Cu, 18.3 g/t Ag, from 338m to 339m
- 1m @ 31.07 g/t Au from 464m to 465m

**CAE Hole # 13** drilled south west (211° mag bearing) returned two significant Cu-Au-Ag intersections of :

- An upper breccia zone of 104m @ 1.0% CuEq 36m-140m (0.63% Cu, 0.41 g/t Au 14.1 g/t Ag)
- A lower breccia zone of 108m @ 1.01% CuEq 229m-337m (0.57% Cu, 0.58 g/t Au 9.8 g/t Ag)
- The lower zone includes 15m @ 2.78 g/t Au (314m to 329m).

**CAE Hole # 19** drilled south west (216° mag bearing), returned a wide intercept of hydrothermal infill breccia :

- 278m @ 0.62% CuEq 126m-404m (0.43% Cu, 0.22 g/t Au, 7.4 g/t Ag) including
- 108m @ 0.92% CuEq 158m-266m (0.67% Cu, 0.3 g/t Au, 9.5 g/t Ag)

The results reported in CAE Hole # 24 are comparable in length and tenor to the previously reported results in CAE Hole # 13 and CAE Hole # 19 importantly including the high grade zones. The results demonstrate mineralisation continuity and reinforce the concept of higher grade zones (ore shoots) internal to the lower grade material.

These intersections occur at the southern end of the Cannindah Breccia Mineral Resource Estimate (MRE) where there is a lower density of drilling compared to the northern section . CAE reported this MRE in CAE ASX Announcement 3/7/2024 containing an estimated 14.5Mt @ 1.09% copper equivalent (0.72% Cu, 0.42 g/t Au, 13.7 g/t Ag).

The collar of **CAE Hole # 24** reported here is respectively 75m and 50m to the south of the collars of CAE holes # 13 and 19, and is drilling more in a westerly direction at a magnetic bearing of 246°. and an inclination at the drill collar of -70 degrees. It occurs 50m north of the collar of CAE Hole #18. Fig 4 (Cu) ,Fig 5 (Au) , Fig 6 (Ag) are plan views showing the distribution of Cu, Au, Ag respectively in CAE Hole # 24 in relation to the other CAE holes in the Mt Cannindah Breccia area. Hole # 24 is targeting mineralised breccia in the 75m to 100m (downhole) gap between holes #13 & 19 and also probing outside of the resource area to the west for high grade gold zones that may extend to the north west from Hole # 18. CAE Hole # 24 is also targeting a gold zone extending to the south east from a high grade Au structure intersected in Hole # 7 ( 1m @ 81.6 g/t Au , 107 g/t Au 450m-451m – see ASX Announcement Feb 21,2022).

Fig 7 is a cross section showing simplified geology over the trace of Hole # 24 traverses. Figs 8 to 10 are cross sections which respectively plot downhole Cu, Au,Ag. Figs 11 to 14 illustrate aspects of the mineralised copper rich breccias. Appendix 1 is a summary geology log whilst Appendix 2 shows Cu,Au,Ag,S assays and chalcopyrite/pyrite visual estimates 0m-510.7m.

Similar geology is noted to other CAE holes in the area (eg Holes 13,18,19). CAE Hole #24 collared in flinty and fractured hornfels, which is cut by an extensive vein fracture network. Immediately uphole of the hydrothermal breccia, the hornfelsed siltstone becomes bleached with strong sericite alteration and heavily veined. Prominent sheeted veins of quartz ankerite pyrite chalcopyrite and molybdenite are noted in the interval 77m-81m – see Fig 11. In the zone 82 to 84m the hornfels starts to break up and become brecciated contains chunky chalcopyrite infill (Fig 12). From 83.86m, the lithology is clearly hydrothermal sulphidic infill breccia. This breccia is clast supported, dominated by angular blocks and fragments of hornfels, with some porphyry clasts , and prominent infill of calcite, quartz , pyrite and chalcopyrite. (illustrated in the core photos in this report showing infill breccia at 83m, 142.5m, 172.5m, 210.5m, 215.5m, 282.3m and located in the Core Orienting Frame in down hole , in-situ, position at 83.3m (Fig 12 ). Minor post mineral andesite dykes of various orientations cut the breccia.

In a similar fashion to the other CAE diamond holes in this area , hornfels clasts are often slab , shingle or splinter-like with their long axes aligned normal to the drill core axis (eg Fig in Core Oriented Frame). Even though the bounding footwall and hanging wall attitude of the Cannindah

Breccia has the broad geometry of a north north east trending, west dipping (100m plus wide) sheet, CAE holes drilled from the east, clearly show that they are drilling the long axis of the breccia body, with breccia matrix infill mineralization generally developed parallel to the alignment of the classt, ie. normal to the core axis. This is exemplified by structural measurements of aligned clasts in CAE Hole # 24, see Fig 13.

Alteration within the hornfels and breccia clasts is dominantly sericite from 77m to 232m, chlorite becomes more evident as both infill and as an alteration mineral effecting chloritized rock flour which is present 232m 337m. Higher copper grades are prominent in the carbonate -quartz-pyrite-chalcopyrite infill sections 83m-196m where sericite is the dominant alteration, chalcopyrite here is often in the 2%-3% range.

In the section 207m-299m ,where chlorite is more prominent , chalcopyrite, whilst still present is more often in the 0.5% to 1% range. Notwithstanding that breccia is present pretty well to the bottom of CAE Hole # 24, there is generally a lower clast to matrix ratio ie. less infill than upper sections. Although there are sections where pyrite is quite significant (3%-5%) , chalcopyrite is intermittently present throughout, but generally trace to only 0.1%. Sericite is the dominant alteration in the lower clast supported breccias, quartz and carbonate infill are also present but have dropped off compared to the upper copper rich breccia .

The breccia is cut by phenocryst rich, crowded porphyry which is interpreted to be of original diorite to monzonite/latite composition. These are strongly sericite altered and often have disseminated pyrite and chalcopyrite. They are interpreted to being very closely associated with the main copper bearing breccias as syn-mineralization intrusives.

Thin late mineral dykes cut the lower breccia sections, these are trachyandesite in composition and are often argillised . Sulphide content can build up to semi-massive levels either side of dykes and these have been associated with high grade gold . In the case of CAE Hole # 24 these high sulphide zones returned 1m @ 5.14 g/t Au from a sulphidic zone adjacent to a trachyandesite dyke 338m to 339m; (see Fig 14); 1m @ 31.07 g/t Au from an argillised zone 464m to 465m. Argillic alteration overprints earlier sericite alteration and is well developed within and adjacent to late dykes and fault zones associated with sulphide build up.Argillised sulphidic zones such as these were encountered in CAE Hole # 18 which returned 18m @ 6.34 g/t Au at 244m-262m and 20m @ 5.5 g/t Au 355m-375m. The trend of these high gold zones in CAE hole # 18 project into the general path of CAE Hole # 24. Tracking down these high gold zones will be a focus of future exploration in the Cannindah area.

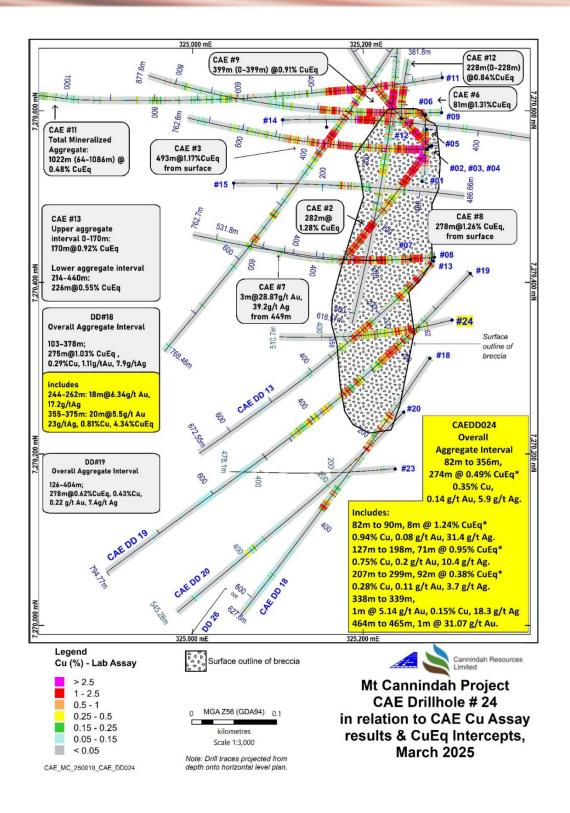



Fig 4. Plan view CAE Hole # 24 Mt Cannindah. Downhole lab Cu plotted, CuEq intercepts annotated for previous CAE holes.

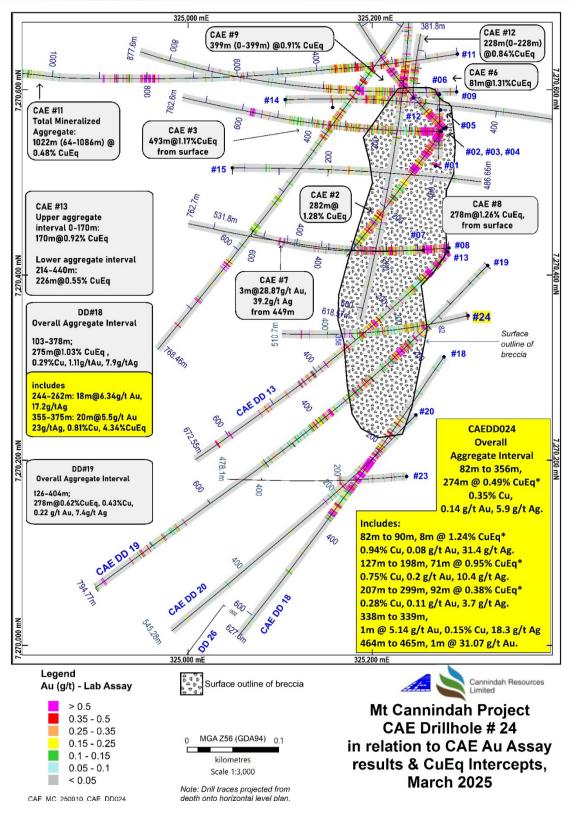



Fig 5. Plan view CAE Hole # 24 Mt Cannindah. Downhole lab Au plotted, CuEq intercepts annotated for previous CAE holes.

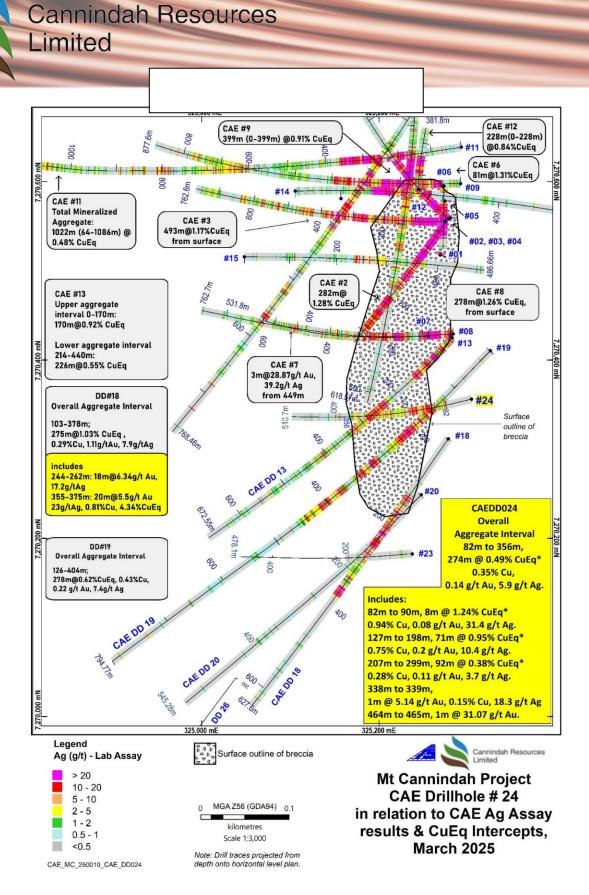



Fig 6. Plan view CAE Hole # 24 Mt Cannindah. Downhole lab Ag plotted, CuEq intercepts annotated for previous CAE holes.

# Cannindah Resources

## Limited

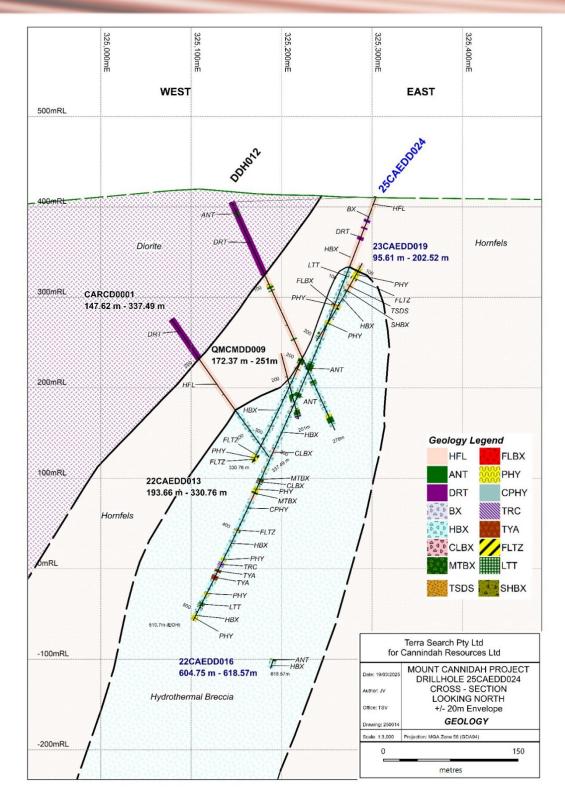



Fig 7. Cross section CAE Hole # 24 section line oriented east-west , looking north , showing simplified geology and ,extent of mineralised hydrothermal breccia. Note Breccia outlines also on Cross Sections for Cu, Au, Ag (Figs 8 to 10).

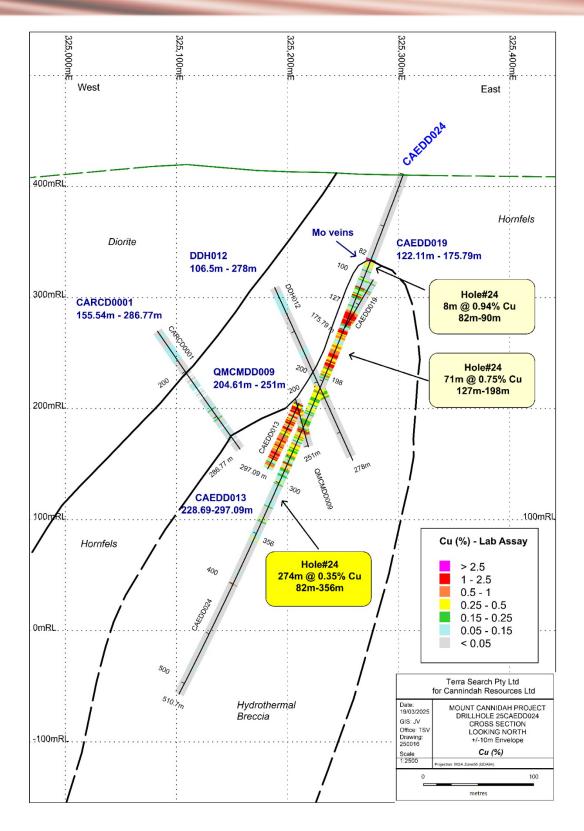



Fig 8. Cross section CAE Hole # 24 section line oriented east-west , looking north , showing downhole Cu results (% Cu) in relation to breccia outline .

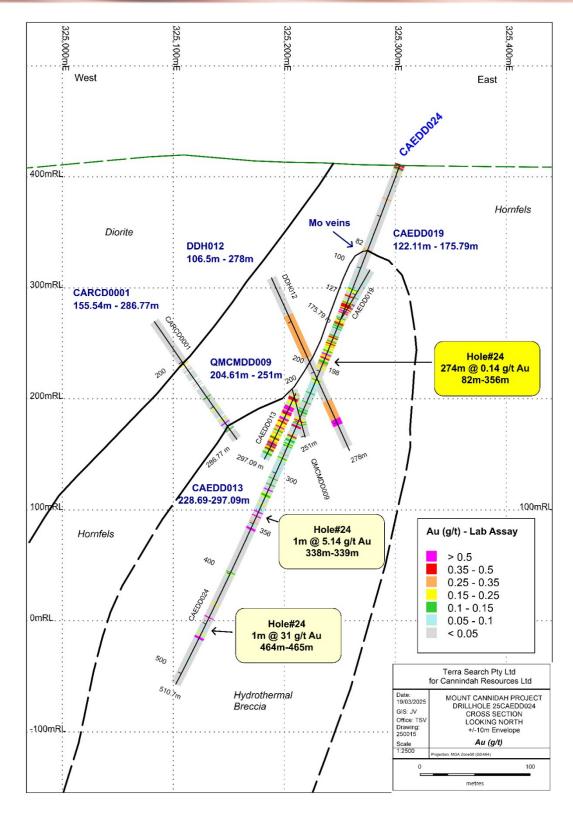



Fig 9. Cross section CAE Hole # 24 section line oriented east-west , looking north , showing downhole Au results (g/t Au) in relation to breccia outline .

# Cannindah Resources

Limited

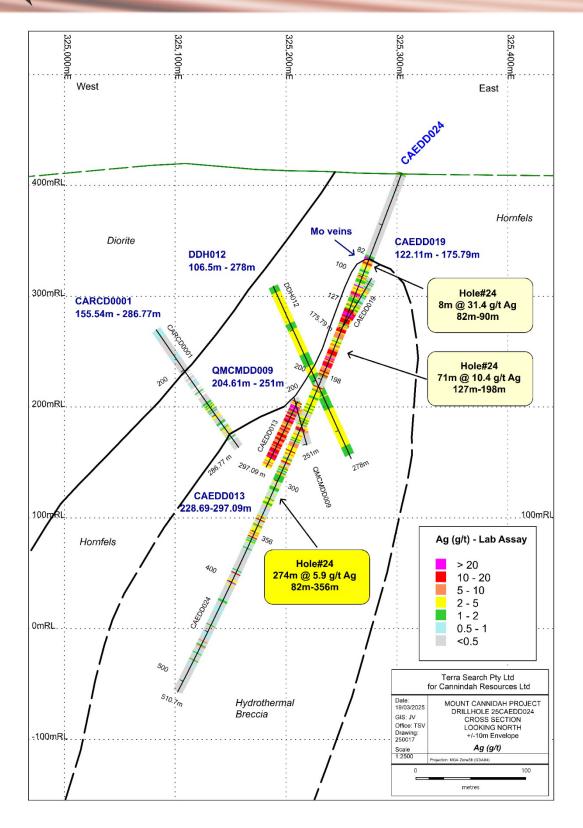



Fig 10. Cross section CAE Hole # 24 section line oriented east-west , looking north , showing downhole Ag results (g/t Ag) in relation to breccia outline .

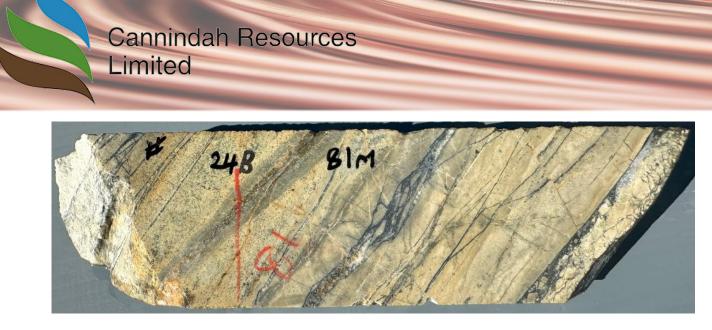



Fig 11. Photo Half HQ Core . Hole 25CAEDD024 at 81m - sericite altered and heavily veined hornfelsed siltstone with prominent sheeted veins of quartz-ankerite-pyrite-molybdenite -minor chalcopyrite. -1m interval 81m-82m : 666 ppm Mo, 0.11% Cu, 0.02 g/t Au, 1.3 g/t Ag, 0.5% S.



Fig 12. Photo full HQ core Hole #24, oriented in core oriented frame at 83.2m, hole drilling to west south west, view looking south east, hole at 83m inclined at -68 degrees toward 248 degrees mag: Chalcopyrite rich Hydrothermal Infill Breccia. Clasts dominated by yellow grey, sericite altered hornfels, with infill of chalcopyrite (golden), pyrite (brassy), minor calcite (white), quartz (glassy).

1m Interval 83m-84m grades 3.74%Cu, 0.16 g/t Au, 127.1 g/t Ag, 4.55% S (4.85% CuEq).



**Cannindah Resources** 

Fig 13. Photo full HQ core Hole #24,157.2m, oriented in core oriented frame, hole drilling to west south west, view looking south east, hole at 157m inclined at -68 degrees toward 251 degrees mag: Infill hydrothermal breccia, with slabby/shingle clasts aligned normal to direction of hole. Slab alignment averages dipping 45 degrees, striking 010 degrees mag, dip direction 100 degrees mag. Clasts dominated by light grey, sericite altered hornfels, with infill of carbonate (white), quartz (colourless), chlorite infill & altered rock flour (green), pyrite (brassy). 1m Interval 157m-158m grades 0.53%Cu, 0.13 g/t Au, 8 g/t Ag, 3.09% S.



Fig 14. Photo - full HQ core Hole #24, oriented in core oriented frame at 338.15m, hole drilling to west south west, view looking south east, hole at 338m inclined at -66 degrees toward 258 degrees mag: Contact between Hydrothermal Infill Breccia (uphole) and semi-massive sulphide and quartz vein at contact with argillised trachyandesite dyke (downhole. Contact/Vein is oriented dipping 55 degrees, striking 335degrees mag, dip direction 065 degrees mag (NE).

1m interval 338m-339m : 5.14 g/t Au,0.15% Cu, 18.3 g/t Ag, 2.44% S, pathfinder elements : 40 ppm Bi, 413 ppm Sb.

The information in this March 2025 report on CAE Hole # 24 that relates to exploration results is based on information compiled by Dr. Simon D. Beams, a full-time employee of Terra Search Pty Ltd, geological consultants employed by Cannindah Resources Limited to carry out geological evaluation of the mineralisation potential of their Mt Cannindah Project, Queensland, Australia. Dr. Beams has BSc Honours and PhD degrees in geology; he is a Member of the Australasian Institute of Mining and Metallurgy (Member #107121) and a Member of the Australian Institute of Geoscientists (Member # 2689). Dr. Beams has sufficient relevant experience in respect to the style of mineralization, the type of deposit under consideration and the activity being undertaken to qualify as a Competent Person within the definition of the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves ("JORC Code).

*Dr.* Beams consents to the inclusion in the report of the matters based on this information in the form and context in which it appears

Disclosure:

Dr Beams' employer Terra Search Pty Ltd and Dr Beams personally hold ordinary shares in Cannindah Resources Limited.

The data in this report that relates to Mineral Resource estimates for the Mt Cannindah copper/gold deposit is based on information evaluated by Mr Simon Tear who is a Member of The Australasian Institute of Mining and Metallurgy (MAusIMM) and who has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the "JORC Code"). Mr Tear is a Director of H&S Consultants Pty Limited and he consents to the inclusion in the report of the Mineral Resource in the form and context in which they appear.

#### For further information, please contact:

Tom Pickett.

Ph: 61 7 55578791

#### Formula for Copper Equivalent calculations

Copper equivalent has been used to report the wide copper-bearing intercepts that carry Au and Ag credits, with copper being mostly dominant. CAE. have confidence that existing metallurgical processes would recover copper, gold and silver from Mt Cannindah as exemplified by the test work carried out on the Cannindah Breccia samples in 2023 by Core Metallurgical Consultants (see CAE ASX Announcement 15/11/2023. CAE have confidence that the Mt Cannindah ores are amenable to metallurgical treatments that result in excellent recoveries.

#### The full equation for Copper equivalent is:

CuEq/% = (Cu/% \* 92.50 \* CuRecovery + Au/ppm \* 56.26 \* AuRecovery + Ag/ppm \* 0.74 \* AgRecovery)/(9.25 \* CuRecovery). When recoveries are equal, this reduces to the simplified version: <math>CuEq/% = (Cu/% \* 92.50 + Au/ppm \* 56.26 + Ag/ppm \* 0.74) 92.5

#### **Copper Equivalent Assumptions**

Refer table below

|                     | Copper                                                         | Gold    | Silver |  |  |  |  |  |  |  |
|---------------------|----------------------------------------------------------------|---------|--------|--|--|--|--|--|--|--|
|                     |                                                                |         |        |  |  |  |  |  |  |  |
| Metal Price US\$    | \$9,250                                                        | \$1,750 | \$23   |  |  |  |  |  |  |  |
|                     |                                                                |         |        |  |  |  |  |  |  |  |
| Recovery %          | 80                                                             | 80      | 80     |  |  |  |  |  |  |  |
|                     |                                                                |         |        |  |  |  |  |  |  |  |
|                     |                                                                |         |        |  |  |  |  |  |  |  |
|                     |                                                                |         |        |  |  |  |  |  |  |  |
| CUEg/% = (Cu/% * 9) | CuEg/% = (Cu/% * 92.50 + Au/ppm * 56.26 + Ag/ppm * 0.74)/ 92.5 |         |        |  |  |  |  |  |  |  |

### Appendix 1.. Summary Log of Drillhole 25CAEDD024 (<u>0</u>m-510.7m EOH)

| From<br>Depth<br>(m) | To Depth (m)                        | Summary Geology Hole 25CAEDD024                                                                                                                                                                                            |
|----------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      |                                     | Hole 25CAEDD024a superceded after grouting by<br>CAE hole 24b.                                                                                                                                                             |
| 0                    | 10.05                               | Fractured oxidised hornfels                                                                                                                                                                                                |
| 10.05                | 16.8                                | Fractured Partially oxidised & fresh hornfels, trace<br>pyrite. Very poor recovery, broken ground hole<br>abandoned.                                                                                                       |
| From<br>Depth<br>(m) | Summary Geology Hole<br>25CAEDD024a | Summary Geology Hole 25CAEDD024                                                                                                                                                                                            |
| 8.5                  | 11.5                                | Hole restarted after grouting, Fractured oxidised<br>hornfels,                                                                                                                                                             |
| 11.5                 | 77.0                                | Mainly fresh <u>bornfelsed</u> sittstone, with hairline pyrite<br>veins , sericite <u>selvedges</u> , 1%-3% pyrite. Cut by<br>some 2m to 4m dykes of <u>equigranular</u> diorite.                                          |
| 77.0                 | 81.95                               | Sericite altered & heavily veined <u>homfelsed</u><br>siltstone, <u>Rominent</u> sheeted veins-quartz ankerite<br>pyrite chalcopyrite & molybdenite. <u>Overall</u> 3% pyrite,<br>0,2-0,5% chalcopyrite, 0.1% molybdenite. |
| 81.95                | 83.86                               | Strongly sericite altered & heavily chalcoprite veined<br>brecciated homfelsed siltstone Chalcopyrite 5-10%.<br>3% pyrite.                                                                                                 |
| 83.86                | 126.0                               | Hydrothermal infill breccia, hornfels clast dominant,<br>5%-10% pyrite, 0.3%-0.5 <u>%</u> , occasionally 1%<br>chalcopyrite.                                                                                               |
| 126.0                | 130.9                               | Argillised Fault Zone, altered porphyry                                                                                                                                                                                    |
| 130.90               | 196.0                               | Hydrothermal infill breccia, sericite altered hornfels<br>clast dominant, calcite-quartz infill ,5%-10% pyrite, 1%-<br>3% chalcopyrite. Minor altered diorite <u>porphyry</u> ,and<br>fault/shear zones.                   |
| 196.0                | 206.28                              | Post Mineral andesite dyke, no discernible sulphide                                                                                                                                                                        |
| 206.28               | 232.0                               | Hydrothermal infill breccia, sericite <u>alterered</u> hornfels<br>clast dominant, calcite quartz chlorite infill, 5%-10%<br>pyrite, 0.5%-1% chalcopyrite.                                                                 |
| 232                  | 238                                 | Post Mineral andesite dyke, no discernible sulphide                                                                                                                                                                        |

| From<br>Depth<br>(m) | To Depth (m) | Summary Geology Hole 25CAEDD024                                                                                                                                                                 |
|----------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 238.00               | 324.0        | Hydrothermal infill breccia, sericite altered hornfels<br>clast dominant, calcite quartz chlorite infill, 5%-10%<br>pyrite, 0.5%-1%, up to 3% in places chalcopyrite,                           |
| 324.00               | 337          | Hydrothermal infill breccia, sericite altered hornfels<br>clast dominant, calcite quartz chlorite infill, 0.5%-2%<br>pyrite, trace chalcopyrite,                                                |
| 337                  | 340          | Argillized Trachyandesite/andesite, matrix supported<br>breccia, quartz sulphide vein                                                                                                           |
| 340                  | 353          | Clast supported breccia, matrix supported breccia<br>and sericite <u>altered_diorite</u> porphyry, 3% pyrite, trace<br>chalcopyrite                                                             |
| 353                  | 355          | Argillized matrix supported breccia                                                                                                                                                             |
| 355                  | 370          | Flinty biotite hornfels & clast supported breccia, 3%<br>pyrite, trace chalcopyrite                                                                                                             |
| 370                  | 373          | Crowded diorite porphyry, 2 % pyrite                                                                                                                                                            |
| 373                  | 398          | Hydrothermal Infill & Clast supported polymict,<br>breccia sericite altered, 2% to 5% pyrite, trace<br>chalcopyrite                                                                             |
| 398                  | 401          | Argillized Fault Zone & seicite altered hydrothermal infill<br>breccia                                                                                                                          |
| 401                  | 434          | Hydrothermal Infill & Clast supported <u>polymict</u> ,<br>breccia, sericite <u>altered quartz</u> , calcite infill,3% to 5%<br>pyrite, trace chalcopyrite                                      |
| 434                  | 436          | Relatively fresh latite porphyry, no sulphide                                                                                                                                                   |
| 436                  | 439          | Argillized Fault Zone & sejcite altered porphyry                                                                                                                                                |
| 439                  | 444          | Argillized Trachyte                                                                                                                                                                             |
| 444                  | 448          | Hydrothermal Infill & Clast supported <u>polymict</u> ,<br>breccia, sericite <u>altered quartz</u> , calcite infill,2% pyrite,<br>trace chalcopyrite                                            |
| 448                  | 451          | Argillized Trachyandesite/andesite                                                                                                                                                              |
| 451                  | 455          | Hydrothermal Infill & Clast supported polymict.<br>breccia, sericite altered quartz, calcite infill,2% pyrite                                                                                   |
| 455                  | 460          | Argillized Trachyandesite/andesite                                                                                                                                                              |
| 460                  | 476          | Hydrothermal Infill & Clast supported polymict,<br>breccia, sericite altered quartz, calcite infill,2%-5%<br>pyrite Cut by Sphalerite, pyrite, galena, pyrite calcite,<br>quartz vein 464-465m. |
| 476                  | 480          | Sericite altered porphyry, 2% pyrite                                                                                                                                                            |
| 480                  | 488          | Hydrothermal Infill & Clast supported hornfels<br>dominant breccia, sericite altered quartz, calcite<br>infill,2%-3% pyrite.                                                                    |
| 488                  | 495          | Relatively fresh latite porphyry, trace pyrite, minor<br>breccia slivers                                                                                                                        |
| 495                  | 499          | Intensely altered argillized fault zone                                                                                                                                                         |

Cannindah Resources

Limited

| From<br>Depth<br>(m) | To Depth (m) | Summary Geology Hole 25CAEDD024                                                                                    |
|----------------------|--------------|--------------------------------------------------------------------------------------------------------------------|
| 499                  | 505          | Hydrothermal Infill polymict breccia, sericite<br>altered quartz, calcite infill argillized in part, 5%<br>pyrite. |
| 505                  | 510.7        | Sericite altered porphyry, 3% pyrite, some vein<br>fracture network.                                               |

#### Table 1. (cont) Summary Log of Drillhole 25CAEDD024 (Om-510.7m EOH)

Appendix 2 <u>Cu Au Ag</u> 3 assays and chalcopyrite/pyrite visual estimates 0m-510.7m 25CAEDD024 (Table 1.) All assays are reported for those intervals containing significant <u>mineralization</u>. Lesser mineralized sections are grouped and summarized along geological unit lines. Lithology <u>colour</u> coded according to geological unit

| 22CAE# | From<br>Depth_<br>m | To<br>Depth<br>M | Lab<br>Cu<br>% | Lab Au<br>g/t | Lab Ag<br>g/t | Lab Sulphur% | Pyrite Visual % | Chalcopyrite Visual % | Lithology                                                                                                                                                            |
|--------|---------------------|------------------|----------------|---------------|---------------|--------------|-----------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DD024A | 0                   | 10               | 0.02           | 0.20          | 0.6           | 0.07         |                 |                       | Fractured oxidised hornfels                                                                                                                                          |
| DD024  | 11                  | 77               | 0.01           | 0.02          | 0.3           | 1.36         | 1.70            | 0.00                  | Mainly fresh bornfelsed<br>sittstonewith hairline pyrite<br>veins , sericite selvedges, 1%-<br>3% pyrite. Cut by some 2m to<br>4m dykes of equigranular,<br>diorite. |
|        | 77                  | 82               | 0.06           | 0.01          | 0.7           | 1.20         | з               | 0.25                  | Sericite altered & heavily veined<br>botofelsed siltstone.Prominent<br>sheeted veins-quartz ankerite<br>pyrite chalcopyrite &<br>molybdenite                         |
| DD024  | 82                  | 83               | 2.35           | 0.29          | 78.7          | 3.66         | 5               | 5                     | Chalcopyrite rich brecciated<br>hornfels                                                                                                                             |
| DD024  | 83                  | 84               | 3.74           | 0.16          | 127.1         | 4.55         | 5               | 10                    | Chalcopyrite rich brecciated<br>hornfels                                                                                                                             |
| DD024  | 84                  | 85               | 0.33           | 0.03          | 8.9           | 1.13         | 3               | 1                     | Hydrothermal infill breccia                                                                                                                                          |
| DD024  | 85                  | 86               | 0.05           | 0.02          | 3.5           | 1.39         | 3               | 0.1                   | Hydrothermal infill breccia                                                                                                                                          |
| DD024  | 86                  | 87               | 0.26           | 0.03          | 5.1           | 1.38         | 3               | 0.5                   | Hydrothermal infill breccia                                                                                                                                          |
| DD024  | 87                  | 88               | 0.11           | 0.03          | 14.1          | 2.64         | 5               | 0.2                   | Hydrothermal infill breccia                                                                                                                                          |
| DD024  | 88                  | 89               | 0.42           | 0.04          | 9.5           | 2.54         | 5               | 1                     | Hydrothermal infill breccia                                                                                                                                          |
| DD024  | 89                  | 90               | 0.28           | 0.02          | 4.4           | 1.60         | 2               | 0.2                   | Hydrothermal infill breccia                                                                                                                                          |
| DD024  | 90                  | 91               | 0.12           | 0.01          | 2.6           | 1.08         | 3               | 0.5                   | Hydrothermal infill breccia                                                                                                                                          |
| DD024  | 91                  | 92               | 0.02           | 0.01          | 2.2           | 1.33         | 3               | 0.2                   | Hydrothermal infill breccia                                                                                                                                          |
| DD024  | 92                  | 93               | 0.03           | 0.01          | 0.6           | 1.15         | 2               | 0.2                   | Hydrothermal infill breccia                                                                                                                                          |

٦

| 22CAE# | From<br>Depth<br>m | To<br>Depth<br>m | Lab<br>Cu<br>% | Lab Au<br>g/t | Lab Ag<br>g/t | Lab Sulphur% | Pyrite Visual % | Chalcopyrite Visual % | Lithology                   |
|--------|--------------------|------------------|----------------|---------------|---------------|--------------|-----------------|-----------------------|-----------------------------|
| DD024  | 93                 | 94               | 0.16           | 0.02          | 3.9           | 1.12         | 2               | 0.5                   | Hydrothermal infill breccia |
| DD024  | 94                 | 95               | 0.08           | 0.02          | 1.8           | 1.39         | 1               | 0.2                   | Hydrothermal infill breccia |
| DD024  | 95                 | 96               | 0.03           | 0.02          | 1.0           | 0.93         | 2               | 0.1                   | Hydrothermal infill breccia |
| DD024  | 96                 | 97               | 0.02           | 0.02          | 0.7           | 1.71         | 3               |                       | Hydrothermal infill breccia |
| DD024  | 97                 | 98               | 0.02           | 0.03          | 2.4           | 3.09         | 5               | 0.1                   | Hydrothermal infill breccia |
| DD024  | 98                 | 99               | 0.03           | 0.01          | 1.0           | 0.80         | 1               |                       | Hydrothermal infill breccia |
| DD024  | 99                 | 100              | 0.11           | 0.01          | 2.6           | 1.25         | 1               |                       | Hydrothermal infill breccia |
| DD024  | 100                | 101              | 0.15           | 0.03          | 5.5           | 2.22         | 3               | 0.5                   | Hydrothermal infill breccia |
| DD024  | 101                | 102              | 0.40           | 0.05          | 7.1           | 3.70         | 5               | 1                     | Hydrothermal infill breccia |
| DD024  | 102                | 103              | 0.15           | 0.05          | 4.6           | 4.73         | 10              | 0.5                   | Hydrothermal infill breccia |
| DD024  | 103                | 104              | 0.08           | 0.02          | 1.9           | 1.42         | 3               | 0.2                   | Argillizsed Diorite         |
| DD024  | 104                | 105              | 0.08           | 0.02          | 1.6           | 2.68         | 5               |                       | Argillizsed Diorite         |
| DD024  | 105                | 106              | 0.04           | 0.01          | 1.0           | 0.88         | 1               |                       | Argillizsed Diorite         |
| DD024  | 106                | 107              | 0.09           | 0.02          | 2.0           | 1.15         | 1               | 0.2                   | Hydrothermal infill breccia |
| DD024  | 107                | 108              | 0.02           | 0.01          | 0.3           | 0.41         | 1               | 0.1                   | Hydrothermal infill breccia |
| DD024  | 108                | 109              | 0.03           | 0.01          | 0.6           | 0.54         | 1               |                       | Hydrothermal infill breccia |
| DD024  | 109                | 110              | 2.10           | 0.07          | 21.6          | 3.72         | 5               | 5                     | Hydrothermal infill breccia |
| DD024  | 110                | 111              | 0.17           | 0.02          | 3.0           | 1.96         | 3               | 0.5                   | Hydrothermal infill breccia |
| DD024  | 111                | 112              | 0.21           | 0.04          | 4.6           | 2.32         | 4               | 0.5                   | Hydrothermal infill breccia |
| DD024  | 112                | 113              | 0.25           | 0.03          | 6.6           | 1.98         | 3               | 0.5                   | Hydrothermal infill breccia |
| DD024  | 113                | 114              | 0.08           | 0.02          | 2.1           | 1.26         | 2               | 0.2                   | Hydrothermal infill breccia |
| DD024  | 114                | 115              | 0.06           | 0.01          | 2.1           | 0.96         | 3               | 0.2                   | Hydrothermal infill breccia |
| DD024  | 115                | 116              | 0.19           | 0.02          | 5.5           | 1.98         | 3               | 0.2                   | Hydrothermal infill breccia |
| DD024  | 116                | 117              | 0.43           | 0.04          | 10.8          | 3.52         | 5               | 1                     | Hydrothermal infill breccia |
| DD024  | 117                | 118              | 1.03           | 0.05          | 22.2          | 5.36         | 10              | з                     | Hydrothermal infill breccia |
| DD024  | 118                | 119              | 0.22           | 0.06          | 9.0           | 8.55         | 10              | 0.5                   | Hydrothermal infill breccia |
| DD024  | 119                | 120              | 0.22           | 0.08          | 7.1           | 6.11         | 10              | 0.5                   | Hydrothermal infill breccia |
| DD024  | 120                | 121              | 0.02           | 0.13          | 2.4           | 7.37         | 10              | 0.2                   | Hydrothermal infill breccia |
| DD024  | 121                | 122              | 0.02           | 0.23          | 1.1           | 9.62         | 15              | 0.1                   | Hydrothermal infill breccia |
| DD024  | 122                | 123              | 0.11           | 0.18          | 1.8           | 9.38         | 15              | 0.1                   | Hydrothermal infill breccia |
| DD024  | 123                | 124              | 0.02           | 0.07          | 1.1           | 4.89         | 10              | 0.1                   | Hydrothermal infill breccia |
| DD024  | 124                | 125              | 0.07           | 0.01          | 1.1           | 1.21         | 3               | 0.1                   | Hydrothermal infill breccia |
| DD024  | 125                | 126              | 0.05           | 0.02          | 2.3           | 3.86         | 5               | 0.1                   | Hydrothermal infill breccia |
| DD024  | 126                | 127              | 0.03           | 0.30          | 2.8           | 5.22         | 10              | 0.1                   | Argillised Fault Zone       |
| DD024  | 127                | 128              | 0.23           | 0.38          | 8.3           | 2.76         | 10              | 0.5                   | Argillised Fault Zone       |

| 22CAE# | From<br>Depth | To<br>Depth<br>m | Lab<br>Cu<br>% | Lab Au<br>g/t | Lab Ag<br>g/t | Lab Sulphur% | Pyrite Visual % | Chalcopyrite Visual % | Lithology                   |
|--------|---------------|------------------|----------------|---------------|---------------|--------------|-----------------|-----------------------|-----------------------------|
| DD024  | 128           | 129              | 0.06           | 0.02          | 1.1           | 0.33         | 1               | 0.2                   | Altered Porphyry            |
| DD024  | 129           | 130              | 0.08           | 0.01          | 2.0           | 0.38         | 1               | 0.1                   | Altered Porphyry            |
| DD024  | 130           | 131              | 0.28           | 0.05          | 3.2           | 0.89         | 2               | 0.5                   | Altered Porphyry            |
| DD024  | 131           | 132              | 0.11           | 0.04          | 1.4           | 1.35         | 3               | 0.3                   | Hydrothermal infill breccia |
| DD024  | 132           | 133              | 0.93           | 0.20          | 13.0          | 7.66         | 15              | з                     | Hydrothermal infill breccia |
| DD024  | 133           | 134              | 0.51           | 0.14          | 12.5          | 8.16         | 15              | 2                     | Hydrothermal infill breccia |
| DD024  | 134           | 135              | 1.35           | 0.25          | 18.6          | 5.16         | 10              | 4                     | Hydrothermal infill breccia |
| DD024  | 135           | 136              | 1.65           | 0.44          | 35.7          | 5.80         | 10              | 5                     | Hydrothermal infill breccia |
| DD024  | 136           | 137              | 2.47           | 0.42          | 30.4          | 4.70         | 10              | 5                     | Hydrothermal infill breccia |
| DD024  | 137           | 138              | 1.41           | 0.38          | 30.1          | 5.53         | 10              | з                     | Hydrothermal infill breccia |
| DD024  | 138           | 139              | 1.02           | 0.21          | 11.2          | 3.44         | 5               | з                     | Hydrothermal infill breccia |
| DD024  | 139           | 140              | 1.83           | 0.38          | 19.3          | 3.86         | 5               | 5                     | Hydrothermal infill breccia |
| DD024  | 140           | 141              | 0.76           | 0.07          | 8.4           | 1.89         | 4               | 2                     | Hydrothermal infill breccia |
| DD024  | 141           | 142              | 1.14           | 0.86          | 12.8          | 3.51         | 5               | з                     | Hydrothermal infill breccia |
| DD024  | 142           | 143              | 1.56           | 0.32          | 17.1          | 3.94         | 5               | 4                     | Hydrothermal infill breccia |
| DD024  | 143           | 144              | 1.81           | 0.54          | 17.2          | 4.50         | 10              | 5                     | Hydrothermal infill breccia |
| DD024  | 144           | 145              | 1.19           | 0.22          | 13.0          | 5.42         | 10              | 4                     | Hydrothermal infill breccia |
| DD024  | 145           | 146              | 0.64           | 0.10          | 6.0           | 3.52         | 5               | 1                     | Hydrothermal infill breccia |
| DD024  | 145           | 147              | 0.21           | 0.04          | 1.8           | 3.87         | 5               | 0.5                   | Altered Porphyry            |
| DD024  | 147           | 148              | 0.08           | 0.01          | 2.0           | 0.58         | 2               | 0.2                   | Altered Porphyry            |
| DD024  | 148           | 149              | 0.12           | 0.10          | 5.0           | 0.84         | 2               | 0.1                   | Altered Porphyry            |
| DD024  | 149           | 150              | 0.13           | 0.02          | 3.1           | 0.85         | 2               | 0.1                   | Altered Porphyry            |
| DD024  | 150           | 151              | 0.81           | 0.18          | 8.9           | 1.90         | 3               | 2                     | Altered Porphyry            |
| DD024  | 151           | 152              | 1.23           | 0.24          | 12.8          | 3.63         | 5               | 2                     | Hydrothermal infill breccia |
| DD024  | 152           | 153              | 1.04           | 0.30          | 11.5          | 3.98         | 5               | з                     | Hydrothermal infill breccia |
| DD024  | 153           | 154              | 1.80           | 0.43          | 19.5          | 4.73         | 10              | 5                     | Hydrothermal infill breccia |
| DD024  | 154           | 155              | 0.44           | 0.11          | 4.4           | 5.36         | 10              | 1                     | Hydrothermal infill breccia |
| DD024  | 155           | 156              | 0.58           | 0.32          | 5.5           | 8.78         | 15              | 2                     | Hydrothermal infill breccia |
| DD024  | 156           | 157              | 0.43           | 0.11          | 6.4           | 1.98         | 3               | 1                     | Hydrothermal infill breccia |
| DD024  | 157           | 158              | 0.67           | 0.10          | 7.3           | 2.94         | 5               | 2                     | Hydrothermal infill breccia |
| DD024  | 158           | 159              | 0.53           | 0.13          | 8.0           | 3.01         | 5               | 2                     | Hydrothermal infill breccia |
| DD024  | 159           | 160              | 0.37           | 0.08          | 5.2           | 2.74         | 5               | 1                     | Hydrothermal infill breccia |
| DD024  | 160           | 164              | 0.10           | 0.04          | 2.3           | 1.36         | 2               | 0.25                  | Hornfels                    |
| DD024  | 164           | 165              | 0.39           | 0.05          | 3.8           | 1.65         | 3               | 1                     | Hydrothermal infill breccia |
| DD024  | 165           | 166              | 0.40           | 0.12          | 4.7           | 1.59         | 3               | 1                     | Hydrothermal infill breccia |

| 22CAE# | From<br>Depth | To<br>Depth<br>m | Lab<br>Cu<br>% | Lab Au<br>g/t | Lab Ag<br>g/t | Lab Sulphur% | Pyrite Visual % | Chalcopyrite Visual % | Lithology                                              |
|--------|---------------|------------------|----------------|---------------|---------------|--------------|-----------------|-----------------------|--------------------------------------------------------|
| DD024  | 166           | 167              | 0.84           | 0.32          | 9.8           | 4.03         | 5               | 2                     | Hydrothermal infill breccia                            |
| DD024  | 167           | 168              | 0.92           | 0.38          | 8.7           | 3.33         | 5               | з                     | Hydrothermal infill breccia                            |
| DD024  | 168           | 169              | 0.33           | 0.18          | 3.6           | 1.69         | 3               | 1                     | Hydrothermal infill breccia                            |
| DD024  | 169           | 170              | 0.32           | 0.08          | 2.8           | 2.26         | 5               | 1                     | Hydrothermal infill breccia                            |
| DD024  | 170           | 171              | 1.00           | 0.33          | 9.7           | 5.43         | 10              | з                     | Hydrothermal infill breccia                            |
| DD024  | 171           | 172              | 0.72           | 0.15          | 6.2           | 3.38         | 5               | 2                     | Hydrothermal infill breccia                            |
| DD024  | 172           | 173              | 0.95           | 0.19          | 10.0          | 4.25         | 5               | з                     | Hydrothermal infill breccia                            |
| DD024  | 173           | 174              | 0.96           | 0.38          | 15.2          | 3.18         | 5               | а                     | Hydrothermal infill breccia                            |
| DD024  | 174           | 175              | 1.19           | 0.24          | 15.3          | 4.45         | 5               | з                     | Hydrothermal infill breccia                            |
| DD024  | 175           | 176              | 1.04           | 0.30          | 14.1          | 4.30         | 5               | 2                     | Hydrothermal infill breccia                            |
| DD024  | 176           | 177              | 1.13           | 0.23          | 9.9           | 3.90         | 5               | з                     | Hydrothermal infill breccia                            |
| DD024  | 177           | 178              | 0.88           | 0.22          | 8.9           | 5.11         | 10              | 2                     | Hydrothermal infill breccia                            |
| DD024  | 178           | 179              | 0.26           | 0.09          | 5.5           | 1.94         | 2               | 1                     | Hydrothermal infill breccia                            |
| DD024  | 179           | 180              | 0.44           | 0.18          | 22.8          | 5.17         | 10              | 1                     | Hydrothermal infill breccia                            |
| DD024  | 180           | 181              | 0.65           | 0.14          | 8.6           | 3.81         | 5               | 2                     | Matrix supported Breccia                               |
| DD024  | 181           | 182              | 1.44           | 0.20          | 12.7          | 3.56         | 5               | 4                     | Hydrothermal infill breccia                            |
| DD024  | 182           | 183              | 0.46           | 0.08          | 4.5           | 2.57         | 5               | 1                     | Hydrothermal infill breccia                            |
| DD024  | 183           | 184              | 1.96           | 0.55          | 25.1          | 6.45         | 10              | 5                     | Hydrothermal infill breccia                            |
| DD024  | 184           | 185              | 1.46           | 0.30          | 15.2          | 5.45         | 10              | 4                     | Hydrothermal infill breccia                            |
| DD024  | 185           | 186              | 1.63           | 0.17          | 19.7          | 4.00         | 5               | 4                     | Hydrothermal infill breccia                            |
| DD024  | 186           | 187              | 0.92           | 0.26          | 16.7          | 5.28         | 10              | 2                     | Hydrothermal infill breccia                            |
| DD024  | 187           | 188              | 0.91           | 0.49          | 30.7          | 6.36         | 10              | з                     | Hydrothermal infill breccia                            |
| DD024  | 188           | 189              | 0.25           | 0.05          | 3.7           | 2.22         | 5               | 0.5                   | Hydrothermal infill breccia                            |
| DD024  | 189           | 190              | 0.36           | 0.16          | 7.4           | 2.34         | 5               | 1                     | Hydrothermal infill breccia                            |
| DD024  | 190           | 191              | 0.37           | 0.13          | 8.7           | 1.40         | 2               | 1                     | Hydrothermal infill breccia                            |
| DD024  | 191           | 192              | 0.47           | 0.13          | 7.6           | 2.46         | 5               | 1                     | Hydrothermal infill breccia                            |
| DD024  | 192           | 193              | 0.92           | 0.27          | 17.0          | 2.29         | 5               | 2                     | Hydrothermal infill breccia                            |
| DD024  | 193           | 194              | 0.38           | 0.28          | 7.9           | 2.50         | 5               | 1                     | Hydrothermal infill breccia                            |
| DD024  | 194           | 195              | 0.17           | 0.03          | 3.8           | 1.04         | 1               | 0.5                   | Hydrothermal infill breccia                            |
| DD024  | 195           | 196              | 0.61           | 0.18          | 15.8          | 2.95         | 5               | 2                     | Hydrothermal infill breccia                            |
| DD024  | 196           | 197              | 0.12           | 0.03          | 1.7           | 0.81         | 1               | 0.3                   | Hydrothermal infill breccia &<br>andesite              |
| DD024  | 197           | 198              | 0.23           | 0.17          | 5.8           | 2.18         | 5               | 0.5                   | Hydrothermal infill breccia &<br>andesite              |
| DD024  | 198           | 206              | 0.00           | 0.00          | 0.3           | 0.08         |                 |                       | Post Mineral andesite dyke, no<br>discernible sulphide |

| 22CAE# | From<br>Depth<br>m | To<br>Depth<br>m | Lab<br>Cu<br>% | Lab Au<br>g/t | Lab Ag<br>g/t | Lab Sulphur% | Pyrite Visual % | Chalcopyrite Visual % | Lithology                      |
|--------|--------------------|------------------|----------------|---------------|---------------|--------------|-----------------|-----------------------|--------------------------------|
| DD024  | 206                | 207              | 0.05           | 0.01          | 0.3           | 0.86         | 3               | 0.2                   | Hydrothermal infill breccia    |
| DD024  | 207                | 208              | 0.39           | 0.24          | 10.2          | 4.56         | 10              | 1                     | Hydrothermal infill breccia    |
| DD024  | 208                | 209              | 0.34           | 0.11          | 2.8           | 4.71         | 10              | 1                     | Hydrothermal infill breccia    |
| DD024  | 209                | 210              | 0.30           | 0.08          | 3.5           | 3.12         | 5               | 0.5                   | Hydrothermal infill breccia    |
| DD024  | 210                | 211              | 0.60           | 0.20          | 7.9           | 7.68         | 10              | 2                     | Hydrothermal infill breccia    |
| DD024  | 211                | 212              | 0.16           | 0.04          | 1.2           | 3.92         | 5               | 0.5                   | Hydrothermal infill breccia    |
| DD024  | 212                | 213              | 0.45           | 0.06          | 4.3           | 2.01         | 3               | 1                     | Hydrothermal infill breccia    |
| DD024  | 213                | 214              | 0.27           | 0.06          | 2.4           | 3.23         | 5               | 0.5                   | Hydrothermal infill breccia    |
| DD024  | 214                | 215              | 0.35           | 0.06          | 3.6           | 2.90         | 5               | 1                     | Hydrothermal infill breccia    |
| DD024  | 215                | 216              | 0.39           | 0.08          | 4.2           | 2.97         | 5               | 1                     | Hydrothermal infill breccia    |
| DD024  | 216                | 217              | 0.30           | 0.09          | 3.7           | 2.89         | 8               | 1                     | Hydrothermal infill breccia    |
| DD024  | 217                | 218              | 0.17           | 0.06          | 1.4           | 4.35         | 8               | 0.5                   | Hydrothermal infill breccia    |
| DD024  | 218                | 219              | 0.17           | 0.04          | 1.8           | 4.48         | 8               | 0.5                   | Hydrothermal infill breccia    |
| DD024  | 219                | 220              | 0.15           | 0.07          | 2.2           | 4.61         | 10              | 0.3                   | Hydrothermal infill breccia    |
| DD024  | 220                | 221              | 0.30           | 0.08          | 3.5           | 3.68         | 8               | 1                     | Hydrothermal infill breccia    |
| DD024  | 221                | 222              | 0.32           | 0.12          | 3.8           | 4.68         | 10              | 1                     | Hydrothermal infill breccia    |
| DD024  | 222                | 223              | 0.29           | 0.09          | 3.3           | 5.91         | 10              | 1                     | Hydrothermal infill breccia    |
| DD024  | 223                | 224              | 0.20           | 0.02          | 2.4           | 2.10         | 5               | 0.5                   | Hydrothermal infill breccia    |
| DD024  | 224                | 225              | 0.15           | 0.08          | 2.5           | 3.98         | 10              | 0.5                   | Hydrothermal infill breccia    |
| DD024  | 225                | 226              | 0.09           | 0.09          | 1.3           | 3.44         | 5               | 0.2                   | Hydrothermal infill breccia    |
| DD024  | 226                | 227              | 0.25           | 0.05          | 3.4           | 1.34         | 3               | 1                     | Hydrothermal infill breccia    |
| DD024  | 227                | 228              | 0.31           | 0.04          | 4.1           | 1.36         | 2               | 1                     | Hydrothermal infill breccia    |
| DD024  | 228                | 229              | 0.10           | 0.03          | 1.8           | 2.37         | 5               | 0.5                   | Hydrothermal infill breccia    |
| DD024  | 229                | 230              | 0.32           | 0.05          | 2.7           | 1.68         | 3               | 1                     | Hydrothermal infill breccia    |
| DD024  | 230                | 231              | 0.22           | 0.10          | 3.1           | 2.67         | 5               | 0.5                   | Hydrothermal infill breccia    |
| DD024  | 231                | 232              | 0.13           | 0.05          | 1.6           | 1.25         | 3               | 0.5                   | Hydrothermal infill breccia    |
| DD024  | 232                | 233              | 0.22           | 0.02          | 2.2           | 1.02         | 2               | 0.5                   | Hydrothermal infill breccia    |
|        |                    |                  |                |               |               |              |                 |                       | Post Mineral andesite dyke, no |
| DD024  | 233                | 237              | 0.00           | 0.00          | 0.3           | 0.09         |                 |                       | discernible sulphide           |
| DD024  | 237                | 238              | 0.37           | 0.11          | 2.9           | 1.46         | 2               | 1                     | Hydrothermal infill breccia    |
| DD024  | 238                | 239              | 0.25           | 0.09          | 3.5           | 2.15         | 2               | 0.5                   | Hydrothermal infill breccia    |
| DD024  | 239                | 240              | 0.24           | 0.10          | 1.8           | 3.31         | 5               | 1                     | Hydrothermal infill breccia    |
| DD024  | 240                | 241              | 0.22           | 0.13          | 3.0           | 2.64         | 5               | 0.5                   | Hydrothermal infill breccia    |
| DD024  | 241                | 242              | 0.15           | 0.08          | 1.7           | 2.79         | 5               | 0.5                   | Hydrothermal infill breccia    |
| DD024  | 242                | 243              | 0.81           | 0.28          | 7.6           | 7.63         | 10              | з                     | Hydrothermal infill breccia    |
| DD024  | 243                | 244              | 0.34           | 0.09          | 4.4           | 2.14         | 5               | 1                     | Hydrothermal infill breccia    |

| 22CAE# | From<br>Depth | To<br>Depth<br>m | Lab<br>Cu<br>% | Lab Au<br>g/t | Lab Ag<br>g/t | Lab Sulphur% | Pyrite Visual % | Chalcopyrite Visual % | Lithology                   |
|--------|---------------|------------------|----------------|---------------|---------------|--------------|-----------------|-----------------------|-----------------------------|
| DD024  | 244           | 245              | 0.14           | 0.05          | 1.6           | 2.35         | 5               | 0.5                   | Hydrothermal infill breccia |
| DD024  | 245           | 246              | 0.03           | 0.02          | 0.3           | 1.61         | 2               | 0.1                   | Hydrothermal infill breccia |
| DD024  | 246           | 247              | 0.16           | 0.19          | 2.8           | 8.37         | 15              | 0.5                   | Hydrothermal infill breccia |
| DD024  | 247           | 248              | 0.57           | 0.22          | 6.5           | 7.49         | 10              | 2                     | Hydrothermal infill breccia |
| DD024  | 248           | 249              | 1.11           | 0.77          | 14.5          | 4.85         | 5               | 5                     | Hydrothermal infill breccia |
| DD024  | 249           | 250              | 0.86           | 0.25          | 30.6          | 5.18         | 8               | 2                     | Hydrothermal infill breccia |
| DD024  | 250           | 251              | 0.68           | 0.23          | 7.8           | 2.77         | 3               | 2                     | Hydrothermal infill breccia |
| DD024  | 251           | 252              | 0.37           | 0.11          | 4.0           | 3.08         | 5               | 1                     | Hydrothermal infill breccia |
| DD024  | 252           | 253              | 0.04           | 0.02          | 0.5           | 1.06         | 2               | 0.1                   | Hornfels                    |
| DD024  | 253           | 254              | 0.34           | 0.58          | 3.8           | 2.81         | 5               | 1                     | Hydrothermal infill breccia |
| DD024  | 254           | 255              | 0.78           | 0.35          | 6.7           | 5.84         | 10              | 2                     | Hydrothermal infill breccia |
| DD024  | 255           | 256              | 0.29           | 0.07          | 2.5           | 2.67         | 5               | 1                     | Hydrothermal infill breccia |
| DD024  | 256           | 257              | 0.20           | 0.08          | 3.8           | 2.86         | 5               | 0.5                   | Hydrothermal infill breccia |
| DD024  | 257           | 258              | 0.34           | 0.05          | 3.7           | 2.21         | 2               | 1                     | Hydrothermal infill breccia |
| DD024  | 258           | 259              | 0.12           | 0.03          | 1.8           | 2.64         | 5               | 0.3                   | Hydrothermal infill breccia |
| DD024  | 259           | 260              | 0.19           | 0.05          | 2.5           | 4.01         | 8               | 0.5                   | Hydrothermal infill breccia |
| DD024  | 260           | 261              | 0.12           | 0.03          | 1.9           | 4.70         | 8               | 0.3                   | Hydrothermal infill breccia |
| DD024  | 261           | 262              | 0.04           | 0.03          | 0.5           | 1.66         | 2               | 0.1                   | Hydrothermal infill breccia |
| DD024  | 262           | 263              | 0.75           | 0.22          | 7.9           | 7.45         | 10              | 2                     | Hydrothermal infill breccia |
| DD024  | 263           | 264              | 0.37           | 0.84          | 5.2           | 5.78         | 8               | 1                     | Hydrothermal infill breccia |
| DD024  | 264           | 265              | 0.38           | 0.13          | 5.4           | 4.71         | 5               | 1                     | Hydrothermal infill breccia |
| DD024  | 265           | 266              | 0.31           | 0.16          | 5.0           | 3.72         | 5               | 1                     | Hydrothermal infill breccia |
| DD024  | 266           | 267              | 0.23           | 0.07          | 3.0           | 4.48         | 8               | 0.5                   | Hydrothermal infill breccia |
| DD024  | 267           | 268              | 0.32           | 0.11          | 4.5           | 5.94         | 10              | 1                     | Hydrothermal infill breccia |
| DD024  | 268           | 269              | 0.23           | 0.12          | 3.3           | 6.05         | 10              | 1                     | Hydrothermal infill breccia |
| DD024  | 269           | 270              | 0.16           | 0.08          | 2.4           | 6.16         | 10              | 0.5                   | Hydrothermal infill breccia |
| DD024  | 270           | 271              | 0.46           | 0.08          | 13.9          | 3.34         | 3               | з                     | Hydrothermal infill breccia |
| DD024  | 271           | 272              | 0.45           | 0.13          | 4.6           | 4.87         | 2               | з                     | Hydrothermal infill breccia |
| DD024  | 272           | 273              | 0.34           | 0.16          | 3.3           | 6.97         | 10              | з                     | Hydrothermal infill breccia |
| DD024  | 273           | 274              | 0.51           | 0.14          | 5.4           | 4.79         | 4               | з                     | Hydrothermal infill breccia |
| DD024  | 274           | 275              | 0.16           | 0.09          | 2.4           | 5.04         | 10              | 0.2                   | Hydrothermal infill breccia |
| DD024  | 275           | 276              | 0.21           | 0.10          | 3.9           | 5.48         | 10              | 2                     | Hydrothermal infill breccia |
| DD024  | 276           | 277              | 0.03           | 0.02          | 0.6           | 4.42         | 10              | 0.1                   | Hydrothermal infill breccia |
| DD024  | 277           | 278              | 0.36           | 0.09          | 6.5           | 3.03         | 3               | 2                     | Hydrothermal infill breccia |
| DD024  | 278           | 279              | 0.14           | 0.05          | 1.8           | 3.59         | 3               | 0.5                   | Hydrothermal infill breccia |

,

| 22CAE# | From<br>Depth<br>m | To<br>Depth<br>m | Lab<br>Cu<br>% | Lab Au<br>g/t | Lab Ag<br>g/t | Lab Sulphur% | Pyrite Visual % | Chalcopyrite Visual % | Lithology                        |
|--------|--------------------|------------------|----------------|---------------|---------------|--------------|-----------------|-----------------------|----------------------------------|
| DD024  | 279                | 280              | 0.07           | 0.02          | 2.1           | 2.56         | 3               | 0.1                   | Hydrothermal infill breccia      |
| DD024  | 280                | 281              | 0.20           | 0.05          | 2.8           | 2.94         | 5               | 2                     | Hydrothermal infill breccia      |
| DD024  | 281                | 282              | 1.26           | 0.27          | 10.1          | 4.16         | 3               | 5                     | Hydrothermal infill breccia      |
| DD024  | 282                | 283              | 0.41           | 0.09          | 5.2           | 2.91         | 4               | 0.5                   | Hydrothermal infill breccia      |
| DD024  | 283                | 284              | 0.02           | 0.09          | 0.3           | 6.15         | 5               | 0.1                   | Hydrothermal infill breccia      |
| DD024  | 284                | 285              | 0.05           | 0.02          | 0.5           | 3.06         | 4               | 0.1                   | Hydrothermal infill breccia      |
| DD024  | 285                | 286              | 0.29           | 0.10          | 2.6           | 3.20         | 3               | 1                     | Hydrothermal infill breccia      |
| DD024  | 286                | 287              | 0.55           | 0.20          | 6.4           | 6.13         | 4               | а                     | Hydrothermal infill breccia      |
| DD024  | 287                | 288              | 0.22           | 0.08          | 1.8           | 3.15         | 3               | 0.2                   | Hydrothermal infill breccia      |
| DD024  | 288                | 289              | 0.23           | 0.07          | 2.0           | 1.65         | 3               | 0.2                   | Hydrothermal infill breccia      |
| DD024  | 289                | 290              | 0.11           | 0.09          | 1.1           | 2.81         | 2               | 0.3                   | Hydrothermal infill breccia      |
| DD024  | 290                | 291              | 0.04           | 0.03          | 0.5           | 1.83         | 8               | 0.1                   | Hydrothermal infill breccia      |
| DD024  | 291                | 292              | 0.14           | 0.09          | 1.7           | 3.93         | 5               | 0.1                   | Hydrothermal infill breccia      |
| DD024  | 292                | 293              | 0.20           | 0.06          | 5.0           | 1.58         | 4               | 0.5                   | Hydrothermal infill breccia      |
| DD024  | 293                | 294              | 0.20           | 0.05          | 2.0           | 2.44         | 3               | 1                     | Hydrothermal infill breccia      |
| DD024  | 294                | 295              | 0.12           | 0.08          | 1.6           | 3.93         | 3               | 0.3                   | Hydrothermal infill breccia      |
| DD024  | 295                | 296              | 0.06           | 0.02          | 1.3           | 1.74         | 3               | 0.1                   | Hydrothermal infill breccia      |
| DD024  | 296                | 297              | 0.07           | 0.05          | 1.2           | 4.40         | 5               | 0.05                  | Hydrothermal infill breccia      |
| DD024  | 297                | 298              | 0.10           | 0.05          | 1.3           | 3.35         | 3               | 0.1                   | Hydrothermal infill breccia      |
| DD024  | 298                | 299              | 0.25           | 0.09          | 1.9           | 4.33         | 5               | 0.5                   | Hydrothermal infill breccia      |
| DD024  | 299                | 300              | 0.08           | 0.06          | 1.9           | 2.59         | 5               | 1                     | Hydrothermal infill breccia      |
| DD024  | 300                | 301              | 0.05           | 0.05          | 0.8           | 3.39         | 5               | 0.3                   | Hydrothermal infill breccia      |
| DD024  | 301                | 302              | 0.20           | 0.03          | 3.2           | 2.15         | 3               | 0.5                   | Hydrothermal infill breccia      |
| DD024  | 302                | 303              | 0.02           | 0.01          | 0.3           | 2.03         | 2               |                       | Hornfels                         |
| DD024  | 303                | 304              | 0.01           | 0.00          | 0.3           | 1.18         | 3               |                       | Hornfels                         |
| DD024  | 304                | 305              | 0.02           | 0.04          | 0.6           | 1.44         | 2               | 0.1                   | Polymict Clast Supported Breccia |
| DD024  | 305                | 306              | 0.13           | 0.11          | 4.0           | 2.51         | 5               | 0.1                   | Matrix supported Breccia         |
| DD024  | 306                | 307              | 0.05           | 0.08          | 1.8           | 2.01         | 4               | 0.1                   | Hydrothermal infill breccia      |
| DD024  | 307                | 308              | 0.07           | 0.04          | 1.2           | 1.16         | 1               | 0.5                   | Polymict Clast Supported Breccia |
| DD024  | 308                | 309              | 0.10           | 0.04          | 1.6           | 1.16         | 2               | 0.5                   | Polymict Clast Supported Breccia |
| DD024  | 309                | 310              | 0.07           | 0.02          | 0.7           | 1.87         | 2               | 0.1                   | Polymict Clast Supported Breccia |
| DD024  | 310                | 311              | 0.04           | 0.09          | 0.6           | 1.74         | 2               | 0.3                   | Polymict Clast Supported Breccia |
| DD024  | 311                | 312              | 0.13           | 0.14          | 2.0           | 3.34         | 5               | 0.5                   | Hydrothermal infill breccia      |
| DD024  | 312                | 313              | 0.04           | 0.06          | 0.7           | 1.46         | 2               | 0.05                  | Polymict Clast Supported Breccia |
| DD024  | 313                | 314              | 0.02           | 0.03          | 0.3           | 0.98         | 0.5             |                       | Polymict Clast Supported Breccia |

\$ Chalcopyrite Visual Lab Sulphur% **Pyrite Visual** Lab From То Lab Au Lab Ag Cu Depth Depth 22CAE# g/t Lithology 96 g/t m m 0.01 0.03 0.3 1.31 0.1 Polymict Clast Supported Breccia 314 315 2 DD024 315 0.01 0.04 0.5 1.48 0.1 316 Polymict Clast Supported Breccia DD024 З 316 317 0.07 0.89 2.76 З 0.1 3.8 Hydrothermal infill breccia DD024 1.5 З 0.1 317 318 0.08 0.10 3.17 Hydrothermal infill breccia DD024 318 319 0.02 0.02 0.3 1.44 3 0.1 Polymict Clast Supported Breccia DD024 319 320 0.13 0.07 1.34 3 0.3 Polymict Clast Supported Breccia 2.2 DD024 320 321 2.3 DD024 0.09 0.173.84 8 2 Hydrothermal infill breccia 321 322 0.07 1.5 0.1 0.12 3.83 8 DD024 Hydrothermal infill breccia 322 323 0.13 0.11 1.8 2.91 8 0.3 DD024 Hydrothermal infill breccia 323 324 0.19 0.5 0.17 3.0 4.71 8 DD024 Hydrothermal infill breccia 324 325 0.01 0.05 0.3 1.76 2 0.1 Hydrothermal infill breccia DD024 325 326 0.02 0.3 0.80 2 DD024 Altered Porphyry 326 327 0.02 0.05 0.3 2 DD024 1.26 Hydrothermal infill breccia 327 328 0.01 0.04 0.3 1.81 5 DD024 Hydrothermal infill breccia 329 0.01 0.99 2 328 0.05 0.3 0.2 DD024 Hydrothermal infill breccia 329 330 0.02 0.06 0.6 0.94 2 0.1 Hydrothermal infill breccia DD024 330 331 0.01 0.170.9 1.22 З Hydrothermal infill breccia DD024 331 332 0.02 0.04 0.3 0.65 1 Hydrothermal infill breccia DD024 332 333 0.01 0.00 0.3 0.49 0.5 DD024 Hydrothermal infill breccia 333 334 0.03 0.09 0.8 0.93 0.5 DD024 Hydrothermal infill breccia 334 335 0.1 0.07 3.1 0.86 DD024 0.13 2 Hydrothermal infill breccia 335 336 0.30 0.08 9.2 1.24 DD024 5 2 Hydrothermal infill breccia 0.03 2 0.2 336 337 0.03 0.8 0.83 DD024 Hydrothermal infill breccia Argillised Matrix supported Breccia З 337 338 0.09 0.05 2.0 0.88 DD024 Argillised Trachyandesite -quartz-10 sulphide vein & matrix supported breccia 338 339 0.15 DD024 5.1418.3 2.44 Argillised sulphidic clast З supported breccia 339 0.01 0.5 342 0.03 2.24 DD024 Argillised matrix supported 10 342 0.04 343 1.162.41.75 DD024 breccia 2 343 344 0.01 0.02 1.0 1.76 DD024 Hydrothermal infill breccia 0.04 0.05 0.80 344 345 6.6 З DD024 Hydrothermal infill breccia 345 346 0.02 0.01 4.8 1.02 2 Hydrothermal infill breccia DD024

| 22CAE# | From<br>Depth | To<br>Depth<br>m | Lab<br>Cu<br>% | Lab Au<br>g/t | Lab Ag<br>g/t | Lab Sulphur% | Pyrite Visual % | Chalcopyrite Visual % | Lithology                              |
|--------|---------------|------------------|----------------|---------------|---------------|--------------|-----------------|-----------------------|----------------------------------------|
| DD024  | 346           | 347              | 0.01           | 0.01          | 0.7           | 1.86         | 2               | 0.1                   | Hydrothermal infill breccia            |
| DD024  | 347           | 353              | 0.08           | 0.09          | 4.2           | 0.54         | 2               | 0.1                   | Altered Porphyry                       |
| DD024  | 353           | 354              | 0.01           | 0.00          | 0.3           | 0.68         | 0.7             |                       | Argillised matrix supported<br>breccia |
| DD024  | 354           | 355              | 0.05           | 0.61          | 2.1           | 3.51         | 10              | 0.5                   | Argillised matrix supported<br>breccia |
| DD024  | 355           | 356              | 0.27           | 1.46          | 10.6          | 2.40         | 0.7             | 0.2                   | Hornfels                               |
| DD024  | 356           | 362              | 0.03           | 0.02          | 1.1           | 1.32         | 3               | 0.01                  | Hornfels                               |
| DD024  | 362           | 363              | 0.01           | 0.01          | 0.3           | 2.28         | 1.5             |                       | Hydrothermal infill breccia            |
| DD024  | 363           | 364              | 0.02           | 0.01          | 0.3           | 3.06         | 5               | 0.1                   | Hydrothermal infill breccia            |
| DD024  | 364           | 365              | 0.02           | 0.00          | 0.6           | 3.48         | 5               | 0.1                   | Hydrothermal infill breccia            |
| DD024  | 365           | 366              | 0.00           | 0.00          | 0.3           | 0.72         | 3               | 0.1                   | Hydrothermal infill breccia            |
| DD024  | 366           | 367              | 0.03           | 0.01          | 1.5           | 1.19         | 3               | 0.2                   | Hydrothermal infill breccia            |
| DD024  | 367           | 368              | 0.01           | 0.01          | 0.7           | 0.78         | 5               | 0.1                   | Hydrothermal infill breccia            |
| DD024  | 368           | 369              | 0.00           | 0.00          | 0.3           | 4.17         | 10              | 0.2                   | Hydrothermal infill breccia            |
| DD024  | 369           | 370              | 0.01           | 0.00          | 0.3           | 1.44         | 10              | 0.2                   | Hydrothermal infill breccia            |
| DD024  | 370           | 371              | 0.01           | 0.00          | 0.3           | 0.79         | 2               |                       | Crowded diorite porphyry               |
| DD024  | 371           | 372              | 0.02           | 0.01          | 0.3           | 0.79         | 2               |                       | Crowded diorite porphyry               |
| DD024  | 372           | 373              | 0.02           | 0.01          | 0.8           | 4.26         | 4               |                       | Crowded diorite porphyry               |
| DD024  | 373           | 374              | 0.01           | 0.00          | 0.3           | 2.04         | 3               |                       | Hydrothermal infill breccia            |
| DD024  | 374           | 375              | 0.01           | 0.00          | 0.3           | 0.86         | 5               |                       | Hydrothermal infill breccia            |
| DD024  | 375           | 376              | 0.01           | 0.00          | 0.3           | 1.86         | 3               | 0.1                   | Hydrothermal infill breccia            |
| DD024  | 376           | 377              | 0.01           | 0.00          | 0.3           | 2.73         | 3               | 0.2                   | Hydrothermal infill breccia            |
| DD024  | 377           | 378              | 0.01           | 0.02          | 0.3           | 1.26         | 1.5             | 0.2                   | Hydrothermal infill breccia            |
| DD024  | 378           | 379              | 0.01           | 0.00          | 0.3           | 1.16         | 5               |                       | Hydrothermal infill breccia            |
| DD024  | 379           | 380              | 0.01           | 0.00          | 0.3           | 1.97         | 1               |                       | Hydrothermal infill breccia            |
| DD024  | 380           | 381              | 0.00           | 0.00          | 0.3           | 1.35         | 5               |                       | Hydrothermal infill breccia            |
| DD024  | 381           | 382              | 0.01           | 0.00          | 0.3           | 1.13         | 3               |                       | Hydrothermal infill breccia            |
| DD024  | 382           | 383              | 0.01           | 0.00          | 0.3           | 2.01         | 3               |                       | Hydrothermal infill breccia            |
| DD024  | 383           | 384              | 0.00           | 0.00          | 0.3           | 0.75         | 3               |                       | Hydrothermal infill breccia            |
| DD024  | 384           | 385              | 0.01           | 0.01          | 0.3           | 4.61         | 5               |                       | Hydrothermal infill breccia            |
| DD024  | 385           | 386              | 0.00           | 0.00          | 0.3           | 0.52         | 3               | 0.2                   | Hydrothermal infill breccia            |
| DD024  | 386           | 387              | 0.01           | 0.01          | 0.3           | 1.49         | 3               |                       | Hydrothermal infill breccia            |
| DD024  | 387           | 388              | 0.01           | 0.00          | 0.3           | 1.83         | 3               |                       | Hydrothermal infill breccia            |
| DD024  | 388           | 389              | 0.06           | 0.01          | 1.7           | 2.81         | 5               |                       | Hydrothermal infill breccia            |
| DD024  | 389           | 390              | 0.02           | 0.01          | 0.6           | 1.32         | 3               |                       | Hydrothermal infill breccia            |

٦,

| 22CAE# | From<br>Depth_<br>m | To<br><u>Depth</u> | Lab<br>Cu<br>% | Lab Au<br>g/t | Lab Ag<br>g/t | Lab Sulphur% | Pyrite Visual % | Chalcopyrite Visual % | Lithology                                  |
|--------|---------------------|--------------------|----------------|---------------|---------------|--------------|-----------------|-----------------------|--------------------------------------------|
| DD024  | 390                 | 391                | 0.02           | 0.00          | 0.7           | 3.57         | 5               | 0.1                   | Hydrothermal infill breccia                |
| DD024  | 391                 | 392                | 0.01           | 0.02          | 12.3          | 2.48         | 5               | 0.5                   | Hydrothermal infill breccia                |
| DD024  | 392                 | 393                | 0.00           | 0.00          | 0.3           | 0.46         | 3               |                       | Hydrothermal infill breccia                |
| DD024  | 393                 | 394                | 0.01           | 0.00          | 0.3           | 1.45         | 2               |                       | Hydrothermal infill breccia                |
| DD024  | 394                 | 395                | 0.01           | 0.00          | 0.3           | 1.25         | 2               |                       | Hydrothermal infill breccia                |
| DD024  | 395                 | 396                | 0.01           | 0.00          | 0.3           | 2.00         | 2               |                       | Hydrothermal infill breccia                |
| DD024  | 396                 | 397                | 0.01           | 0.00          | 0.3           | 2.03         | 2               |                       | Hydrothermal infill breccia                |
| DD024  | 397                 | 398                | 0.01           | 0.00          | 0.3           | 1.66         | 2               |                       | Hydrothermal infill breccia                |
| DD024  | 398                 | 399                | 0.03           | 0.12          | 2.1           | 1.16         | 3               |                       | Hydrothermal infill breccia                |
| DD024  | 399                 | 400                | 0.09           | 0.06          | 3.7           | 1.48         | 5               | 0.2                   | Argillised fault zone                      |
| DD024  | 400                 | 401                | 0.59           | 0.22          | 32.0          | 2.32         | 8               | з                     | Argillised fault zone                      |
| DD024  | 401                 | 402                | 0.02           | 0.01          | 0.6           | 2.03         | 10              | 0.5                   | Hydrothermal & Matrix<br>supported Breccia |
| DD024  | 402                 | 403                | 0.01           | 0.00          | 0.3           | 2.37         | 5               | 0.5                   | Hydrothermal & Matrix<br>supported Breccia |
| DD024  | 403                 | 404                | 0.05           | 0.09          | 2.5           | 1.40         | 3               | 0.1                   | Hydrothermal & Matrix<br>supported Breccia |
| DD024  | 404                 | 405                | 0.00           | 0.00          | 0.3           | 2.75         | 3               | 0.1                   | Hydrothermal & Matrix<br>supported Breccia |
| DD024  | 405                 | 406                | 0.00           | 0.00          | 0.3           | 1.42         | 3               |                       | Hydrothermal & Matrix<br>supported Breccia |
| DD024  | 406                 | 407                | 0.00           | 0.00          | 0.3           | 1.34         | 5               |                       | Hydrothermal & Matrix<br>supported Breccia |
| DD024  | 407                 | 408                | 0.01           | 0.00          | 0.3           | 1.31         | 3               |                       | Hydrothermal infill breccia                |
| DD024  | 408                 | 409                | 0.00           | 0.03          | 0.3           | 1.37         | 3               |                       | Hydrothermal infill breccia                |
| DD024  | 409                 | 410                | 0.01           | 0.04          | 0.3           |              | 5               | 0.1                   | Hydrothermal infill breccia                |
| DD024  | 410                 | 411                | 0.01           | 0.00          | 0.3           | 1.02         | 3               |                       | Hydrothermal infill breccia                |
| DD024  | 411                 | 412                | 0.01           | 0.00          | 0.3           | 1.11         | 3               |                       | Hydrothermal infill breccia                |
| DD024  | 412                 | 413                | 0.01           | 0.01          | 0.7           | 3.61         | 3               |                       | Hydrothermal infill breccia                |
| DD024  | 413                 | 414                | 0.01           | 0.01          | 0.3           | 4.31         | 5               | 0.1                   | Hydrothermal infill breccia                |
| DD024  | 414                 | 415                | 0.01           | 0.00          | 0.3           | 1.33         | 3               |                       | Hydrothermal infill breccia                |
| DD024  | 415                 | 416                | 0.01           | 0.00          | 0.3           | 0.50         | 2               |                       | Hydrothermal infill breccia                |
| DD024  | 416                 | 417                | 0.00           | 0.00          | 0.3           | 1.48         | 3               | 0.1                   | Hydrothermal infill breccia                |
| DD024  | 417                 | 418                | 0.01           | 0.00          | 0.5           | 2.10         | 5               |                       | Hydrothermal infill breccia                |
| DD024  | 418                 | 419                | 0.01           | 0.01          | 1.2           | 1.91         | 5               |                       | Hydrothermal infill breccia                |
| DD024  | 419                 | 420                | 0.02           | 0.02          | 1.7           | 1.45         | 5               |                       | Argillised fault zone                      |
| DD024  | 420                 | 421                | 0.01           | 0.01          | 0.3           | 1.32         | 5               |                       | Hydrothermal infill breccia                |

| 22CAE# | From<br>Depth | To<br>Depth<br>B | Lab<br>Cu<br>% | Lab Au<br>g/t | Lab Ag<br>g/t | Lab Sulphur% | Pyrite Visual % | Chalcopyrite Visual % | Lithology                                                  |
|--------|---------------|------------------|----------------|---------------|---------------|--------------|-----------------|-----------------------|------------------------------------------------------------|
| DD024  | 421           | 422              | 0.00           | 0.00          | 0.3           | 1.32         | 5               |                       | Hydrothermal infill breccia                                |
| DD024  | 422           | 423              | 0.00           | 0.01          | 0.3           | 2.08         | 5               |                       | Hydrothermal infill breccia                                |
| DD024  | 423           | 424              | 0.00           | 0.02          | 0.3           | 4.03         | 10              |                       | Hydrothermal infill breccia                                |
| DD024  | 424           | 425              | 0.00           | 0.03          | 0.7           | 3.79         | 10              |                       | Hydrothermal infill breccia                                |
| DD024  | 425           | 426              | 0.01           | 0.01          | 0.9           | 2.12         | 5               | 0.1                   | Hydrothermal infill breccia                                |
| DD024  | 426           | 427              | 0.01           | 0.00          | 0.3           | 2.06         | 3               |                       | Hydrothermal infill breccia                                |
| DD024  | 427           | 428              | 0.01           | 0.02          | 0.7           | 2.14         | 2               |                       | Hydrothermal infill breccia                                |
| DD024  | 428           | 429              | 0.01           | 0.01          | 0.8           | 2.38         | 3               |                       | Hydrothermal infill breccia                                |
| DD024  | 429           | 430              | 0.01           | 0.01          | 0.5           | 1.41         | 2               | 0.1                   | Hydrothermal infill breccia                                |
| DD024  | 430           | 431              | 0.01           | 0.15          | 0.9           | 1.36         | 2               |                       | Hydrothermal infill breccia                                |
| DD024  | 431           | 432              | 0.01           | 0.00          | 0.3           | 0.87         | 2               |                       | Hydrothermal infill breccia                                |
| DD024  | 432           | 433              | 0.00           | 0.01          | 0.3           | 0.86         | 3               | 0.1                   | Hydrothermal infill breccia                                |
| DD024  | 433           | 434              | 0.00           | 0.01          | 0.3           | 0.25         | 2               | 0.1                   | Hydrothermal infill breccia                                |
| DD024  | 434           | 437              | 0.00           | 0.01          | 0.4           | 0.34         | 3               | 0.1                   | Altered Porphyry                                           |
| DD024  | 437           | 438              | 0.01           | 0.02          | 0.8           | 1.25         | 5               |                       | Hydrothermal infill breccia<br>argillized fault zone       |
| DD024  | 438           | 439              | 0.01           | 0.03          | 0.7           | 1.73         | 5               | 0.1                   | Hydrothermal infill breccia<br>argillized fault zone       |
| DD024  | 439           | 443              | 0.00           | 0.00          | 0.3           | 0.11         |                 |                       | Argillised trachyte                                        |
| DD024  | 443           | 444              | 0.02           | 0.56          | 1.1           | 0.81         | 2               |                       | Argillised trachyte & sulphidic<br>clast supported breccia |
| DD024  | 444           | 445              | 0.00           | 0.03          | 0.3           | 1.27         | 1               |                       | Argillised sulphidic clast<br>supported breccia            |
| DD024  | 445           | 446              | 0.01           | 0.01          | 0.3           | 4.13         | 5               | 1                     | Argillised sulphidic clast<br>supported breccia            |
| DD024  | 446           | 447              | 0.00           | 0.00          | 0.3           | 2.54         | 5               | 1                     | Argillised sulphidic clast<br>supported breccia            |
| DD024  | 447           | 448              | 0.01           | 0.01          | 0.3           | 5.53         | 5               | 0.1                   | Argillised sulphidic clast<br>supported breccia            |
| DD024  | 446           | 451              | 0.01           | 0.03          | 0.3           | 0.17         |                 |                       | Argillised Trachyandesite                                  |
| DD024  | 451           | 455              | 0.01           | 0.03          | 0.8           | 0.95         | 2               |                       | Hydrothermal infill breccia                                |
| DD024  | 455           | 459              | 0.01           | 0.03          | 0.3           | 0.23         |                 |                       | Argillised Trachyandesite                                  |
| DD024  | 459           | 460              | 0.04           | 0.16          | 5.5           | 1.16         | 5               |                       | Argillised Trachyandesite                                  |
| DD024  | 460           | 461              | 0.01           | 0.01          | 0.3           | 0.67         | 2               |                       | Hydrothermal infill breccia                                |
| DD024  | 461           | 462              | 0.01           | 0.03          | 0.7           | 2.55         | 5               |                       | Hydrothermal infill breccia                                |
| DD024  | 462           | 463              | 0.01           | 0.01          | 0.6           | 1.77         | 5               | 0.1                   | Hydrothermal infill breccia                                |

| 22CAE# | From<br>Depth<br>m | To<br><u>Depth</u><br><u>m</u> | Lab<br>Cu<br>% | Lab Au<br>g/t | Lab Ag<br>g/t | Lab Sulphur% | Pyrite Visual % | Chalcopyrite Visual % | Lithology                                                                                                                       |
|--------|--------------------|--------------------------------|----------------|---------------|---------------|--------------|-----------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------|
| DD024  | 463                | 464                            | 0.04           | 0.68          | 1.1           | 1.95         | 2               |                       | Hydrothermal infill breccia                                                                                                     |
| DD024  | 464                | 465                            | 0.06           | 31.07         | 6.6           | 1.94         | 5               | 0.1                   | Hydrothermal infill breccia cut<br>by quartz sphalerite galena vein                                                             |
| DD024  | 465                | 476                            | 0.01           | 0.03          | 0.3           | 1.60         | 4               |                       | Hydrothermal infill breccia                                                                                                     |
| DD024  | 476                | 480                            | 0.01           | 0.00          | 0.5           | 1.10         | 2.30            |                       | Sericite altered porphyry, 2%<br>pyrite                                                                                         |
| DD024  | 480                | 488                            | 0.02           | 0.02          | 0.4           | 2.20         | 2.90            | 0.0375                | Hydrothermal Infill & Clast<br>supported hornfels dominant<br>breccia, sericite altered quartz,<br>calcite infill,2%-3% pyrite. |
| DD024  | 488                | 495                            | 0.00           | 0.00          | 0.3           | 1.38         | 0.90            | 0.01429               | Relatively fresh latite porphyry,<br>trace pyrite, minor breccia slivers                                                        |
| DD024  | 495                | 499                            | 0.01           | 0.01          | 0.3           | 1.23         | 3.30            |                       | Intensely altered <u>argillized</u> fault<br>zone                                                                               |
| DD024  | 499                | 505                            | 0.01           | 0.00          | 0.3           | 2.54         | 4.00            | 0.01667               | Hydrothermal Infill polymict<br>breccia, sericite altered quartz,<br>calcite infill argillized in part, 5%<br>pyrite.           |
| DD024  | 505                | 510.7                          | 0.01           | 0.00          | 0.3           | 2.58         | 3.00            |                       | Sericite altered porphyry, 3%<br>pyrite, some vein fracture<br>network.                                                         |



### Appendix 3: JORC Table 1. Section 1: Sampling Techniques and Data

| Sampling techniques         Nature and quality of sampling (e.g. cut<br>channels, random chibs, or specific<br>specialized industry standard<br>measurement tools appropriate to the<br>minerals under investigation, such as<br>down hole garma sondes, or handheid<br>XRF instruments, etc.) These examples<br>should not be taken as limiting the broad<br>meaning of sampling.         Sampling results are based on sawn half<br>core samples of both PO_HO_HO_HO<br>investigation, such as<br>onsistently retained for archive purposes.<br>The orientation line was consistently sent<br>and the other side was<br>consistently retained for archive purposes.<br>The orientation line was consistently<br>measurement tools or systems used.           Include reference to measures taken to<br>ensure sampling reconsectivity, and the<br>appropriate calibration of<br>any<br>measurement tools or systems used.         Indicative preliminary analysis to support<br>the geological longing at MI Cannindah is<br>nether atom lines while diamond drilling.<br>These samples are collected from the<br>subsampled, crushed in a mortar & pestle<br>and analysed with a PXRF instrument.<br>Standards and comparisons with lab<br>results are consistent with the sludge<br>samples being representative of the<br>metres drilled. Caution is required in<br>assessing the sludge results as the<br>samples are influenced by drilling<br>additives, muck, detergents etc and wear<br>and tear of the drill string, rods and bits.<br>Providing these considerations are taken<br>to account, CAE's geological consultants<br>Terra Saarch are generally confident of<br>the robust nature of the sludge results as<br>the samples are influenced by drilling<br>additives, muck, detergents etc and wear<br>and tear of the drill string, rods and bits.<br>Providing these considerations are taken<br>to account, CAE's geological consultants<br>terra Saarch are generally confident of<br>the robust nature of the sludge results as<br>the cannindah. Change of Drilling<br>contractor for MI Cannindah project in<br>2024 has introduceed issues with regard to<br>use of diff |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| base metal analyses. Checks against the<br>logged visual estimates also provide<br>robust support for the sludge results as<br>well as final checking against lab assays.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

# Cannindah Resources



| Criteria              | Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | Aspects of the determination of<br>mineralisation that are Material to the<br>Public Report. In cases where 'industry<br>standard' work has been done this would<br>be relatively simple (e.g. 'reverse<br>circulation drilling was used to obtain 1m<br>samples from which Skg was pulverised to<br>produce a 30g charge for fire assay'). In<br>other cases more explanation may be<br>required, such as where there is coarse<br>gold that has inherent sampling problems.<br>Unusual commodities or mineralisation<br>types (e.g. submarine nodules) may<br>warrant disclosure of detailed information. | Half core samples were sawn up on a<br>diamond saw on a <b>gastra</b> basis for <u>HO.NO</u><br>PQ diameter core a. Samples were<br>forwarded to commercial NATA standard<br>laboratories for crushing, splitting and<br>grinding ,Laboratory used in this instance<br>is Intertek <b>Gastavsis</b> . Townsville.<br>Analytical sample size was in the order of<br>2.5kg to 3kg.                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Drilling techniques   | Drill type (e.g. core, reverse circulation,<br>open-hole hammer, rotary air blast, auger,<br>Bangka, sonic, etc.) and details (e.g. core<br>diameter, triple or standard tube, depth of<br>diamond tails, face-sampling bit or other<br>type, whether core is oriented and if so, by<br>what method, etc.)                                                                                                                                                                                                                                                                                                  | Drill type is diamond core. Core diameter<br>at top of hole is PQ, generally below 30m<br>core diameter is HQ Triple tube<br>methodology was deployed for PQ & HQ,<br>Core orientation utilized an Ace Orientation<br>equipment and has been rigorously<br>supervised by on-site <u>geologist</u> . Triple<br>Tube for the most of the hole has resulted<br>in excellent core recovery throughout the<br>breccia and lower sections of the hole.<br>Highly fractured homfels has provided a lot<br>of drilling challenges in the recent 2024-<br>2025 campaigns and core recovery in the<br>this broken ground has been poor. In<br>general, key economic grades are more<br>restricted to the breccia and porphyry<br>sections where core recovery is excellent.<br>NO.Core, diameter has been utilized in<br>previous years at Mt Cannindah. |
| Drill sample recovery | Method of recording and assessing core<br>and chip sample recoveries and results<br>assessed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Core recovery was recorded for all drill<br>runs and documented in a Geotechnical<br>log. The Triple Tube technology and<br>procedure ensured core recoveries were<br>excellent throughout the hole.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                       | Measures taken to maximise sample<br>recovery and ensure representative nature<br>of the samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Triple Tube for the most of the hole has<br>resulted in excellent core recovery<br>throughout the breccia and lower sections<br>of the hole. Highly fractured hornfels has<br>provided a lot of drilling challenges in the<br>recent 2024-2025 campaigns and core<br>recovery in the this broken ground has<br>been poor. In general, key economic<br>grades are more restricted to the breccia<br>and porphyry sections where core<br>recovery is excellent Core was marked<br>up in metre lengths and reconciled with<br>drillers core blocks. An orientation line was<br>drawn on the core Core sampling was<br>undertaken by an experienced operator<br>who ensured that half core was sawn up<br>with one side consistently sent for analysis<br>and the other side was consistently                                                      |

| Criteria                                             | Explanation                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                      |                                                                                                                                                                                                                           | retained for archive purposes. The<br>orientation line was consistently<br>preserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                      | Whether a relationship exists between<br>sample recovery and grade and whether<br>sample blas may have occurred due to<br>preferential loss/gain of fine/coarse<br>material.                                              | Core recoveries were good. An unbiased<br>consistent half core section was submitted<br>for the entire hole, on the basis of<br>continuous 1m sampling. The entire half<br>core section was crushed at the lab and<br>then split. The representative subsample<br>was then fine ground and a representative<br>unbiased sample was extracted for further<br>analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Logging                                              | Whether core and chip samples have been<br>geologically and geotechnically logged to<br>a level of detail to support appropriate<br>Mineral Resource estimation, mining<br>studies and metallurgical studies              | Geological logging was carried out by well-<br>trained/experienced geologist and data<br>entered via a well-developed logging<br>system designed to capture descriptive<br>geology, coded geology and quantifiable<br>geology. All logs were checked for<br>consistency by the Principal Geologist.<br>Data captured through Excel spread<br>sheets and Explorer 3 Relational Data<br>Base Management System. A<br>geotechnical log was prepared.                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                      | Whether logging is qualitative or<br>quantitative in nature. Core (or costean,<br>channel etc.) photography.                                                                                                              | Logging was qualitative in nature. A<br>detailed log was described on the basis of<br>visual observations. A comprehensive<br>Core photograph catalogue was<br>completed with full core dry, full core wet<br>and half core wet photos taken of all <u>core</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                      | The total length and percentage of the<br>relevant intersections logged.                                                                                                                                                  | The entire length of all drill holes has been<br>geologically logged.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sub-sampling<br>techniques and<br>sample preparation | If core, whether cut or sawn and whether<br>quarter, half or all <u>core</u> taken.                                                                                                                                       | Half core samples were <u>sawn</u> up on a<br>diamond saw on a <u>castro</u> basis for HQ, <u>NQ</u><br><u>diameter</u> core and a 0.5m basis for PQ<br>diameter core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                      | If non-core, whether riffled, tube sampled,<br>rotary split, etc. and whether sampled wet<br>or dry.                                                                                                                      | All sampling was of diamond core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                      | For all sample types, the nature, quality<br>and appropriateness of the sample<br>preparation technique.<br>Quality control procedures adopted for all<br>sub-sampling stages to maximise<br>representativity of samples. | The above techniques are considered to<br>be of a high quality, and appropriate for the<br>nature of miceralisation anticipated.<br>QA/QC protocols were instigated such<br>that they conform to mineral industry<br>standards and are compliant with the<br>JORC code.<br>Terra Search's input into the Quality<br>Assurance (QA) process with respect to<br>chemical analysis of mineral exploration<br>diamond core samples includes the<br>addition of both coarse blanks, Certified<br>pulped Blanks, Certified and Internal<br>matrix matched standards to each batch<br>so that checks can be done after they are<br>analysed. As part of the Quality Control<br>(QC) process, Terra Search checks the<br>resultant assay data against known or<br>previously determined assays to<br>determine the quality of the analysed batch<br>of samples. An assessment is made on |

| Criteria              | Explanation                                      | Commentary                                    |
|-----------------------|--------------------------------------------------|-----------------------------------------------|
|                       |                                                  | the data and a report on the quality of the   |
|                       |                                                  | data is compiled.                             |
|                       | Measures taken to ensure that the                | The lab results are checked against visual    |
|                       | sampling is representative of the <u>in-situ</u> | estimations and PXRF sampling of sludge       |
|                       | material collected, including for instance       | and coarse crush material.                    |
|                       | results for field duplicate/second-half          |                                               |
|                       | sampling.                                        |                                               |
|                       | Whether sample sizes are appropriate to          | The standard 2kg -5kg sample is more          |
|                       | the grain size of the material being             | than appropriate for the grainsize of the     |
|                       | sampled.                                         | rock-types and sulphide grainsize. The        |
|                       |                                                  | sample sizes are considered to be             |
|                       |                                                  | appropriate to represent the style of the     |
|                       |                                                  | mineralisation, the thickness and             |
|                       |                                                  | consistency of the intersections.             |
| Quality of assay data | The nature, quality and appropriateness of       |                                               |
| and laboratory tests  | the assaying and laboratory procedures           | Intertek/Genalysis lab Townsville samples     |
| and laboratory tests  | used and whether the technique is                |                                               |
|                       | -                                                | were assayed for gold using the 50g fire      |
|                       | considered partial or total.                     | assay method                                  |
|                       |                                                  | The primary assay method used is              |
|                       |                                                  | designed to measure both the total gold in    |
|                       |                                                  | the sample as per classic fire assay.         |
|                       |                                                  | ,,,,,,                                        |
|                       |                                                  | The total amount of economic metals tied      |
|                       |                                                  | up in subshides and oxides such as Cu, Pb,    |
|                       |                                                  | Zn, Ag, As, Mo, Bi S, is captured by the 4    |
|                       |                                                  | acid digest method ICP finish. This is        |
|                       |                                                  | regarded as a total digest method and is      |
|                       |                                                  | checked against QA-QC procedures which        |
|                       |                                                  | also employ these total techniques.           |
|                       |                                                  | Major elements which are present in           |
|                       |                                                  | silicates, such as K, Ca, Fe, Ti, Al-Mg are   |
|                       |                                                  | also digested by the 4 acid digest Total      |
|                       |                                                  | method.                                       |
|                       |                                                  |                                               |
|                       |                                                  | The techniques are considered to be           |
|                       |                                                  | entirely appropriate for the breccia.         |
|                       |                                                  | porphyry, skarn and vein style deposits in    |
|                       |                                                  | the area.                                     |
|                       |                                                  | The economically important elements in        |
|                       |                                                  | these deposits are contained in sulphides     |
|                       |                                                  | which is liberated by 4 acid_digest, all gold |
|                       |                                                  | is determined with a classic fire assay.      |
|                       |                                                  |                                               |
|                       | For geophysical tools, spectrometers,            | Magnetic susceptibility measurements          |
|                       | handheld XRF instruments, etc. the               | utilizing Exploranium KT10 instrument,        |
|                       | parameters used in determining the               | zeroed between each measurement.              |
|                       | analysis including instrument make and           | zeroed between each measurement.              |
|                       | model, reading times, calibration factors        | PXRF analysis has been utilized to provide    |
|                       | applied and their derivation, etc.               | multi-element data for the prospect. Dried    |
|                       | applied and their derivation, etc.               |                                               |
|                       |                                                  |                                               |
|                       |                                                  | appropriate and representative samples to     |
|                       |                                                  | provide preliminary chemical analysis to      |
|                       |                                                  | guide exploration targeting, providing the    |
|                       |                                                  | shortcomings of the nature of these           |
|                       |                                                  | samples is taken into consideration. The      |
|                       |                                                  | latter applies in particular to drilling      |
|                       |                                                  | additives, muds, wear and tear on the drill   |
|                       |                                                  | string etc.                                   |
|                       |                                                  | PXRF Analysis is carried out in a             |
|                       |                                                  | PARE Analysis is camed out in a               |
|                       |                                                  | controlled environment in air conditioned     |
|                       |                                                  |                                               |
|                       |                                                  | controlled environment in air conditioned     |

| Criteria                                    | Explanation                                                                                                                                                                                                                     | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                             |                                                                                                                                                                                                                                 | instrument used is Terra Search's portable<br>Nitae XRF analyser (Nitae 'tuese'<br>analytical mode) analysing for a suite of 40<br>major and minor elements. in.<br>The PXRF equipment is set up on a bench<br>and the sub-sample (loose powder in a thin<br>clear plastic freezer bag) is placed in a<br>lead-lined stand. An internal detector<br>autocalibrates the portable machine, and<br>Terra Search standard practice is to<br>instigate recalibration of the equipment<br>every 2 to 3 hours.<br>Readings are undertaken for 60 seconds<br>on a circular area of approximately 1cm<br>diameter. A higher number of<br>measurements are taken from the centre<br>of the circle and decreasing outwards.<br>PXRF measures total concentration of<br>paticular elements in the sample. Reading<br>of the X-Ray spectra is <u>effected</u> by<br>interferences between different elements.<br>The matrix of the sample of iron content<br>bas, log be taken into account when<br>interpreting the spectra.<br>The reliability and accuracy of the PXRF<br>results are checked regularly by reference<br>to known standards. There are some<br>known interferences relevant to particular. |
|                                             | Nature of quality control procedures<br>adopted (e.g. standards, blanks,<br>duplicates, external laboratory checks)<br>and whether acceptable levels of accuracy<br>(i.e. lack of blas) and precision have been<br>established. | into account when assessing the results.<br>QAQC samples are monitored on a batch<br>by-batch basis, Terra Search has we<br>established sampling protocols includin<br>blanks (both coarse & pulped), certifie<br>reference material (CRM standards), an<br>in-house standards which are matri<br>matched against the samples in th<br>program.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                             |                                                                                                                                                                                                                                 | Terra Search quality control include<br>determinations on certified OREA<br>samples and analyses on duplicat<br>samples interspersed at regular interval<br>through the sample suite of both th<br>commercial laboratory batch. <u>Standard</u><br>were checked and found to be within<br>acceptable tolerances. Laboratory assa<br>results for these quality control sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                             | The verification of significant intersections                                                                                                                                                                                   | are within 5% of accepted values.<br>Significant intersections were verified b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Verification of<br>sampling and<br>assaying | by either independent or alternative<br>company personnel.                                                                                                                                                                      | Terra Search Pty Ltd, geological<br>consultants who geologically supervise<br>the drilling. Validation is checked b<br>comparing assay results with logge<br>mineralogy og sulphide material in relation<br>to copper and gold gradse.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Explanation                                                                                                                                                                             | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                         | earlier drill holes , assay results and<br>geology and assay results are entirely<br>consisted with previous results .                                                                                                                                                                                                                                                                                                                                                                                             |
| procedures, data verifications, data<br>storage (physical and electronic)                                                                                                               | Data is collected by qualified geologists<br>and experienced field assistants and<br><u>sptered into</u> excel spreadsheets.                                                                                                                                                                                                                                                                                                                                                                                       |
| protocovs.                                                                                                                                                                              | Data is imported into database tables from<br>the Excel spreadsheets with validation<br>checks set on different fields. Data is then<br>checked thoroughly by the Operations<br>Geologist for errors. Accuracy of drilling<br>data is then validated when imported into<br>MapInfo.                                                                                                                                                                                                                                |
|                                                                                                                                                                                         | Location and analysis data are then<br>collated into a single Excel spreadsheet.<br>Data is stored on servers in the<br>Consultants office and also with CAE.<br>There have been regular backups and<br>archival copies of the database made.<br>Data is also stored at Terra Search's<br>Townsville Office. Data is validated by<br>long-standing procedures within Excel<br>Spreadsheets and Explorer 3 data base<br>and spatially validated within MapInfo GIS.                                                 |
| Discuss any adjustment to assay data.                                                                                                                                                   | No adjustments are made to the<br>Commercial lab assay data. Data is<br>imported into the database in its original<br>raw format.                                                                                                                                                                                                                                                                                                                                                                                  |
| Accuracy and quality of surveys used to<br>locate drill holes (collar and down-hole<br>surveys), trenches, mine workings and<br>other locations used in Mineral Resource<br>estimation. | Collar location information was originally<br>collected with a Garmin 76 hand held GPS.<br>X-Y accuracy is estimated at 3-5m,<br>whereas height is +/- 10m.Coordinates<br>have been reassessed with DGPS,                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                         | Accuracy is sub 0.5m in X_Y,Z.<br>Down hole surveys were conducted on all<br>holes using a Reflex downhole Gyro.<br>Single shot surveys were generally taken<br>every 30m downhole as the hole was<br>drilled dis procreatic azimuth and magnetic<br>field were tecorded. At the completion of<br>the hole a survey tocod was mad every 3m<br>up and down the hole.                                                                                                                                                |
| Specification of the grid system used.                                                                                                                                                  | Coordinate system is UTM Zone 55 (MGA)<br>and datum is GDA94                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Quality and adequacy of topographic<br>control.                                                                                                                                         | Pre-existing DTM is high quality and<br>available.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Data spacing for reporting of Exploration<br>Results.                                                                                                                                   | At the Mt Cannindah mine area previous<br>drilling program total over 100 deep<br>diamond and Reverse Circulation<br>percussion boles. Almost all have been<br>drilled in 25m to 50m spaced <u>spaces</u> from<br>west to east, variously positioned over a<br>strike length of 350m and a cross strike<br>width of at least 500m. Down hole sample<br>spacing is in the order of 1m to 2m which                                                                                                                   |
|                                                                                                                                                                                         | Documentation of primary data, data entry<br>procedures, data verifications, data<br>storage (physical and electronic)<br>protocols.<br>Discuss any adjustment to assay data.<br>Accuracy and quality of surveys used to<br>locate drill holes (collar and down-hole<br>surveys), trenches, mine workings and<br>other locations used in Mineral Resource<br>estimation.<br>Specification of the grid system used.<br>Quality and adequacy of topographic<br>control.<br>Data spacing for reporting of Exploration |

| Criteria                                                      | Explanation                                                                                                                                                                                                                                 | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                               |                                                                                                                                                                                                                                             | drilling is in excess of 12,000 m. Most CAE<br>holes have drilled east to west and rake<br>across earlier drill hole sections such that<br>the grid drill spacing is now considerably<br>tighter than previous.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                               | Whether the data spacing and distribution<br>is sufficient to establish the degree of<br>geological and grade continuity<br>appropriate for the Mineral Resource and<br>Ore Reserve estimation procedure(s) and<br>classifications applied. | Previous resource estimates on Mt<br>Cannindah include Golders 2008 for<br>Queensland Ores and Helman & Schofield<br>2012 for Drummond Gold. Both these<br>estimates utilised 25m to 50m fences of<br>west to east <u>drillholes</u> , <u>hut</u> expressed<br>concerns regarding confidence in assay<br>continuity both between 50m sections and<br>between holes within the plane of the cross<br>sections. The hole reported here<br>25CAEDD024 has drilled to the west south<br>west and is largely drilling in a direction<br>and area where there is little previous<br>drilling. CAE Holes # 13, 19 rake across<br>the east west section containing hole 24,<br>with 50m t0 60m separating drill collars,<br>and up to 100m between drill traces down<br>hole. Further drilling may be necessary to<br>enhance and fine tune the previous<br>Mineral Resource, estimates at Mt<br>Cannindah and lift the category from<br>Inferred to Indicated and Measured and<br>compliant with JORC 2012 |
|                                                               | Whether sample compositing has been<br>applied.                                                                                                                                                                                             | No sample compositing has been applied,<br>Almost all sampling is of 1m downhole<br>samples of half core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Orientation of data in<br>relation to geological<br>structure | Whether the orientation of sampling<br>achieves unbiased sampling of possible<br>structures and the extent to which this is<br>known, considering the deposit type.                                                                         | The main objective of hole<br>25CAEDD025reported here was to drill to<br>the west <u>south west</u> CAE hole #24 was<br>drilled at the southern end of the prospect<br>in an area of <u>Ettle</u> previous drilling and<br>fragmented outcrop and <u>subcrop</u> .<br>The overall geological interpretation at Mt<br><u>Cannindah</u> , <u>built</u> up from the CAE holes<br>and historical drilling, is of a steeply west<br>dipping, roughly north south oriented,<br>tabular body of breccia, bounded on the<br>east by hornfels and on the west by<br>diorite and wedges of hornfels.<br>CAE Hole #24 followed up on CAE Hole<br>#1319 & 18 planned to explore the<br>southern & south western end of the Mt<br>Cannindah breccia. CAE Holes # 13 & 18<br>drilled NNE to SSW, whereas Hole 24 drills<br>east to <u>west</u> <u>effectively</u> scissoring<br>historical drilling at Mt Cannindah.                                                                                              |
|                                                               |                                                                                                                                                                                                                                             | The drill direction of CAE hole #24 is<br>particularly appropriate for north south or<br>NNE striking structures which includes the<br>breccia clast alignment, some dykes,<br>mineralised structures and IP and<br>geological features. Follow up results from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Criteria | Explanation                                                                    | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                                                                | CAE holes # 13, # 17 # 18 show that the                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          |                                                                                | east - west trending andesite dykes                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          |                                                                                | encountered in many holes are thin                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                                                                | (mostly less than 5m true thickness)                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                | and do not materially appear to stope out                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |                                                                                | significant volumes of potential ore at<br>Cannindah, Structural measurements on                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                | mineralised, often high grade veins and                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          |                                                                                | sulphidic zones have also been shown to                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          |                                                                                | be north south and NNE and the westerly                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          |                                                                                | drill direction of CAE Hole #19 is entirely<br>appropriate to test these structures                                                                                                                                                                                                                                                                                                                                                                                                     |
|          |                                                                                | Historical and CAE drill results show that                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          |                                                                                | there are several orientations of<br>mineralized zones, breccia bodies and pre                                                                                                                                                                                                                                                                                                                                                                                                          |
|          |                                                                                | and post mineral dykes . The most                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          |                                                                                | common orientations are broadly east                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                | west, and north south. In this regard,<br>geological consultants Terra Search have                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                                                                | planned drill holes of various orientations                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |                                                                                | to target the known range of orientations                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |                                                                                | observed and measured in the mineralised                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                | structures and breccia bodies.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | If the relationship between deline                                             | The left breeze is measive textured                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          | If the relationship between drilling<br>orientation and the orientation of key | The Infill breccia is massive textured,<br>recent interpretation suggests the clasts                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | mineralised structures is considered to                                        | may have an imbrication or preferred                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | have introduced a sampling blas, this                                          | orientation, that is gently to moderately                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | should be assessed and reported If                                             | dipping to the east or south east. The                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          | materiar.                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          |                                                                                | are still to be established with certainty                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          |                                                                                | In a similar fashion to the other CAE                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          |                                                                                | diamond holes in this area, hornfels                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          |                                                                                | degrees to the WSW. Even though the                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          |                                                                                | bounding footwall and hanging wall                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          |                                                                                | sheet. CAE holes drilled from the east                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          |                                                                                | sheet, CAE holes drilled from the east ,<br>clearly show that they are drilling the long                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          |                                                                                | clearly show that they are drilling the long<br>axis of the breccia body, with breccia<br>matrix infill mineralization generally                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                | clearly show that they are drilling the long<br>axis of the breccia body , with breccia                                                                                                                                                                                                                                                                                                                                                                                                 |
|          |                                                                                | clearly show that they are drilling the long<br>axis of the breccia body, with breccia<br>matrix infill mineralization generally<br>developed parallel to the alignment of the<br>clasts, ig, normal to the core axis.<br>CAE Hole # 24 was drilled in a WSW                                                                                                                                                                                                                            |
|          |                                                                                | clearly show that they are drilling the long<br>axis of the breccia body, with breccia<br>matrix infill mineralization generally<br>developed parallel to the alignment of the<br>clasts, ig, normal to the core axis.<br>CAE Hole # 24 was drilled in a WSW<br>diraction generate to the mostly east west                                                                                                                                                                              |
|          |                                                                                | clearly show that they are drilling the long<br>axis of the breccia body, with breccia<br>matrix infill mineralization generally<br>developed parallel to the alignment of the<br>clasts, ig, normal to the core axis.<br>CAE Hole # 24 was drilled in a WSW<br>diraction conocita to the mostly east west<br>holes at Mt Cannindah. One of the key                                                                                                                                     |
|          |                                                                                | clearly show that they are drilling the long<br>axis of the breccia body , with breccia<br>matrix infill mineralization generally<br>developed parallel to the alignment of the<br>clasts, ig, normal to the core axis.<br>CAE Hole # 24 was drilled in a WSW<br>diraction conocita to the mostly east west<br>holes at Mt Cannindah. One of the key<br>aims of Hole # 24 was to determine the                                                                                          |
|          |                                                                                | clearly show that they are drilling the long<br>axis of the breccia body, with breccia<br>matrix infill mineralization generally<br>developed parallel to the alignment of the<br>clasts, ig, normal to the core axis.<br>CAE Hole # 24 was drilled in a WSW<br>diraction conocita to the mostly east west<br>holes at Mt Cannindah. One of the key                                                                                                                                     |
|          | material.                                                                      | In a similar fashion to the other CAE<br>diamond holes in this area, hornfels<br>clasts in the breccia within CAE hole # 24<br>are often slab, shingle or splinter-like wit<br>their long axes aligned normal to the drill<br>core axis, which in this case is drilled -70<br>degrees to the WSW. Even though the<br>bounding footwall and hanging wall<br>attitude of the Cannindah Breccia has the<br>broad geometry of a north porth east<br>trending, west dipping (100m plus wide) |

Criteria Explanation Commentary the long axis of the breccia in this area where there was a significan, 50m-100m downhole gap between previous intercepts in CAE holes 13 &19.\_\_\_ No sampling bias is evident in the logging, or the presentation of results on drill cross and long sections. Steep structures are evident and with steep inclined holes these are cut at oblique angles. The breccia zone at Mt Cannindah is of sufficient width and depth that drillhole 25CAEDD024 provides valuable unbiased information concerning grade continuity of the breccia body. The hole orientation is appropriate for the broadly north south oriented structures and geological units. The complete geometry of the breccia body is still uncertain at this stage. Similarly, vein structures have several orientations and only in certain instances is it evident that vein orientations have introduced a sampling bias. These are well documented with oriented core. Historically, most holes at Mt Cannindah have been drilled from west to east. These can be severely hampered when encountering the similar parallel direction of east west post mineral andesite dykes and other structures. Following the historical drill pattern at Mt Cannindah does not necessarily lead to optimum results. Analysis of these geological relationships has led geological consultants Terra Search to design drill directions both 180 degrees and 90 degrees contrary to the historical direction. This drill pattern has produced outstanding results, leading to drill intersections of considerable grade and length. From preliminary investigation of the grade model It is anticipated that there is little overall evidence of any sampling bias in the CAE drilling at Mt Cannindah. Sample security The measures taken to ensure sample Chain of custody was managed by Terra security. Search Pty Ltd. Core trays were freighted in sealed & strapped pallets from Monto were they were dispatched by Terra Search. The core was processed and sawn in Terra Search's Townsville facilities and half core samples were delivered by Terra Search to Intertek/Genalysis laboratory Townsville lab. There have been numerous independent Audits or reviews The results of any audits or reviews of sampling techniques and data. reviews carried out on the Mt Cannindah project. reviewing sampling, data sets, geological controls, the most notable ones are Newcrest circa 1996; Coolgardie Gold1999; Queensland Ores 2008:Metallica ,2008; Drummond Gold,

Cannindah Resources

Limited

 Cannindah Resources Limited

 Criteria
 Explanation

 Criteria
 Explanation

 Commentary
 2011;

 CAE
 2014.

 International
 Porphyry

 Wilson, 2023, Helman & Schoffeld 2024.

#### APPENDIX 2 – JORC Code Table 2

### Section 2: Reporting of Exploration Results

| Mineral tenement and<br>land tenure status | Type, reference name/number, location<br>and ownership including agreements or<br>material issues with third parties such as<br>joint ventures, partnerships, overriding<br>royaities, native title interests, historical<br>sites, wilderness or national and<br>environmental settings. | Exploration conducted on MLs 2301,<br>2302, 2303, 2304, 2307, 2308, 2309, EPM<br>14524, and EPM 15261. 100% owned by<br>Cannindah Resources Pty Ltd.<br>The MLs were acquired in 2002 by<br>Queensland Ores Limited (QOL), a<br>precursor company to Cannindah<br>Resources Limited. QOL acquired the<br>Cannindah Mining Leases from the<br>previous owners, Newcrest and MIM, <u>As</u><br>part of the purchase arrangement a 1.5%<br>net smelter return (NSR) royalty on any<br>production is payable to MIM/Newcrest<br>and will be shared 40% by MIM and 60%<br>by Newcrest.<br>An access agreement is in place with the<br>current landholders over the Cannindah<br>ML <u>area</u> . |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            | The security of the tenure held at the time<br>of reporting along with any known<br>impediments to obtaining a license to<br>operate in the area.                                                                                                                                         | Environmental Permitting and other<br>regulatory approvals <u>would be</u> required to<br>advance the project to mining stage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Exploration done by<br>other parties       | Acknowledgement and appraisal of exploration by other parties.                                                                                                                                                                                                                            | Previous exploration has been conducted<br>by multiple companies. Data used for<br>evaluating the Mt Cannindah project<br>include : Drilling & geology, surface<br>sampling by MIM (1970 onwards ) drilling<br>data Astrik (1987), Drill Soil, IP & ground<br>magnetics and geology data collected by<br>Newcrest (1994-1996), rock chips<br>collected by Dominion (1992),. Drilling<br>data collected by Coolgardie Gold (1999),<br>Queensland Ores (2008-2011), Planet<br>Metals-Drummond Gold (2011-2013).<br>Since 2014 Terra Search Pty Ltd,<br>Townsville QLD has provided geological<br>consultant support to Cannindah<br>Resources.                                                |
| Geology                                    | Deposit type, geological setting and style<br>of mineralisation.                                                                                                                                                                                                                          | Breccia and porphyry intrusive related Cu-<br>Au-Aq-Mo, base metal skarns and shear<br>hosted Au bearing quartz veins occur<br>adjacent to a Cu-Mo porphyry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### Drill hole information

A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:

- Easting and northing of the drill hole collar
- Elevation or RL (Reduced Level elevation above sea level in metres) of the drill hole collar
- Dip and azimuth of the hole
- Down hole length and interception depth
- Hole length

If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.

Data aggregation methods In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.

The standard for reporting of high grade Cu zones in hole from Mt Cannindah reported since 2021 is an intersection grade of 0.5% Cu equivalent, allowing for 5m of internal waste.. The standard cut-off for reporting of total aggregate Cu mineralized zones is 0.15% CuEo% allowing for 15m of internal waste. No cutoffs have been routinely applied in reporting of the historical drill results There has been no cutting of high grade analyses including gold. . Laboratory repeat analyses are determined for very high grade analyses of gold in particular and these are averaged. Repeat analyses to date of highly sulphidic samples have not shown major nugget effects even with high grade gold values.

Where aggregate intercepts incorporate short lengths of <u>blob grade</u> results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations be shown in detail

The Cu-Au-Ag breccia style mineralisation at Mt Cannindah is developed over considerable downhole lengths. The breccia is generally mineralised, although copper grade and sulphide content is variable. In addition pre and post mineral dykes and intrusive bodies can mask the mineralisation Down hole Cu-Au-Ag intercepts have been quoted both as a semi-continuous, aggregated down hole interval and also as tighter higher grade Cu-Au-Ag sections. In addition, many times possionally bistorical results have been reported in the aggregated form displayed in the ASX Announcement for CAE, March, 2021, There are some zones of high grade which can influence the longer intercepts, All results are reported as down hole plotted 1m half core sampling intervals or tabulated with lower grade zones clearly noted. Aggregation of the longer intercepts at Mt Cannindah is advantageous for analysis and

A major drill data base exists for the Mt Cannindah district amounting to over 400 holes. Selected Cu and Au down hole intervals of historical interest have been listed in CAE's ASX announcement, March,2021.



The assumptions used for any reporting of metal equivalent values should be clearly stated. comparison of historical and recently collected drill data.

A copper equivalent has been used to report the wider copper bearing intercepts that carry Au and Ag credits with copper being dominant. In order is maintain continuity of reporting of results the same Copper Equivalent calculation has been utilised throughout the project since 2021 and also applies to the 2024 MRE. Previous holders have undertaken preliminary metallurgical test work.

The full equation for Copper Equivalent is:

CuEq/% = (Cu/% \* 92.50 \* CuRecoverx + Au/ppm \* 56.26 \* AuRecoverx + Ag/ppm \* 0.74 \* Ag Recovery (492.5\* CuRecoverx)

When recoveries are equal this reduces to the simplified version:

CuEo(% = (Cu/% \* 92.50 + Au/ppm \* 56.26 + Ag/ppm \* 0.74)/ 92.5

We have applied a 30 day average prices in USD for Q4,2021, for Cu, Au, Ag, specifically copper @ USD\$9250/tonne, gold @ USD\$1750/oz and silver @ USD\$23/oz. This equates to USD\$92.50 per 1 wt %Cu in ore, USD\$56.26 per 1 ppm gold in ore, USD\$0.74 per 1 ppm silver in one. As these prices are similar (or conservative in the case of Au & Ag) to current averages, CAE has maintained these prices in order to allow consistent reporting from 2021..

We have conservatively used equal recoveries of 80% for copper, 80% for gold, , 80% for Ag and applied to the Cuica calculation.

| Relationship between<br>mineralisation widths<br>and intercept lengths | The relationships are particularly important<br>in the reporting of Exploration Results.<br>If the geometry of the mineralisation with<br>respect to the drill hole angle is known, its<br>nature should be reported<br>if it is not known and only the down hole<br>lengths are reported, there should be a<br>clear statement to this effect (e.g. down<br>hole length, true width not known). | 25CAEDD024 reported here is an angled<br>hole, inclined 70 degrees to the west <u>south-<br/>west</u> (magnetic azimuth 246 degrees at<br>the drill collar). The hole is collared on<br>fractured oxidised hornfels.<br>As the breccia geometry is still to be<br>established, the final attitude and<br>thickness of the mineralisation is still to be<br>delineated with certainty at this stage.<br>. The Mt Cannindah Infill breccia is<br>massive <u>textured</u> , recent interpretation<br>suggests the clasts have an alignment or<br>preferred orientation, that is relatively flat |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                  | dipping to the east or south east.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

> The overall orientation of the Cannindah breccia sheet is steeply dipping to the west, although the bounding

> > Previous resource estimations at Mt Cannindah model the breccia body as elongated NNE-SSW and at least 100m plus thick in an east west direction. Previous estimations indicate a potentially depth extension to 350m plus. The breccia body geometry, as modelled at surface has the long axis oriented NNE-SSW. In this context, hole 25CAEDD024 drills WSW through the mineralised envelope previously recognized at Mt Cannindah slightly raking across the strike of the overall body and drilling for depth extensions and establishing continuity of grade and potential high grade Au structures. Observations of core reported here in CAE

structures are uncertain. The WSW drill direction of hole #24 was considered important to determine whether mineralised breccia extended in that

direction

Mt

Hole # 24 show an alignment of breccia clasts that is broadly at a high angle to the drill hole, indicating the hole orientation is appropriate for the broadly north south oriented structures and geological units. In this regard, the orientation of CAE hole # 24 was entirely appropriate for the geometry and trends of the targeted bodies and structures.

CAE drilling has shown that the longest axis of the Mt Cannindah breccia is plunging to great depths, and the upper and lower contacts effectively the hanging and footwall contacts are still to be firmly established.. Further investigation is required to establish the geometry of the mineralised breccia body in the north, south and down plunges of the Mt Cannindah deposit.

| Diagrams           | Appropriate maps and sections (with<br>scale) and tabulations of intercepts should<br>be included for any significant discovery<br>being reported. These should <u>include hut</u><br>not be limited to a plan view of drill hole<br>collar locations and appropriate sectional<br>views. | Preliminary sections and plans of the<br>drillhole 25CAEDD034 reported here, are<br>included in this report. Geological data is<br>still being assembled at the time of this<br>report. An update of the geological model<br>for Mt Cannindah is underway and will be<br>released upon completion.                                                                       |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Balanced reporting | Where comprehensive reporting of all<br>Exploration Results is not practicable,<br>representative reporting of both low and<br>high grades and/or widths should be<br>practised to avoid misleading reporting of<br>Exploration Results.                                                  | Over the past two years, the majority of 1m<br>CHAUAGS assays from drilling at Mt<br>Cannindah are listed with CAE's ASX<br>reports. In some instances. These have<br>been reported as lithological and<br>geochemical groups or sub-sets.<br>Significant intercepts of CHAUAG are<br>tabulated. All holes were sampled over<br>their entire length, Reported intercepts |

|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                  | have been aggregated where<br>mineralization extends over significant<br>down hole widths. This aggregation has<br>allowed for the order of 15m of non-<br>mineralized late dykes or lower grade<br>breccia sections to be incorporated within<br>the reported intersections. In general, a<br>lower value of 0.15% CuEn has been<br>utilized for the aggregated results. Wider<br>aggregations have been reported for<br>comparative purposes, in respect of<br>reporting assaying of the mineralized<br>sections which extend over the entire hole<br>length. Aggregated intersections that<br>contain zones of internal waste are clearly<br>identified. |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Other substantive<br>exploration data | Other exploration data, if meaningful and<br>material, should be reported including (but<br>not limited to): geological observations;<br>geophysical survey results; geochemical<br>survey results; bulk samples – size and<br>method of treatment; metallurgical test<br>results; bulk density, groundwater,<br>geotechnical and rock characteristics;<br>potential deleterious or contaminating<br>substances. | The latest drill results from the Mt<br>Cannindah project are reported here. The<br>report concentrates on the Culou Ag<br>results. Visual estimates of sulphide<br>minerals supported by PXRF sludge<br>results are also reported. Other data,<br>although not material to this update will be<br>collected and reported in due course.                                                                                                                                                                                                                                                                                                                    |
| Furzher work                          | The nature and scale of planned further<br>work (e.g. test for lateral extensions or<br>depth extensions or large-scale step-out<br>drilling).                                                                                                                                                                                                                                                                   | Drill targets are identified and further<br>drilling is required. Hole 25CAEDD024<br>drills at the southern end of the prospect<br>in a WSW direction, Drilling is underway<br>at Mt Cannindah for the year 2025. CAE<br>Hole # 25 is <u>complete</u> and core is being<br>processed. Hole # 26 is underway <u>south</u><br>west of CAE Hole # 26. The current hole<br># 26 is testing the breccia and porphyry<br>intrusions under Mt Theodore. Further<br>drilling is planned at Mt Cannindah<br>Breccia and other <u>target</u> in the Cannindah<br>project area.                                                                                        |
|                                       | Diagrams clearly highlighting the areas of<br>possible extensions, including the main<br>geological interpretations and future<br>drilling areas, provided this information is<br>not commercially sensitive.                                                                                                                                                                                                    | Not yet determined, further work is being<br>conducted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

APPENDIX 3– JORC Code Table 2

### Section 3: Estimation and Reporting of Mineral Resources

| Audits or Review | The results of audits and reviews of any<br>ore resource Estimates. | There have been several mineral resource<br>estimates (MRE) made over the various<br>deposits <u>at Mt</u> Cannindah. These have<br>been in the public domain for <u>a number of</u><br>years.                                                                                                                                                                                                                      |
|------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  |                                                                     | Hellman & Schofield completed a MRE in<br><u>2011 for</u> Drummond Gold on the resource<br>at Mt Cannindah itself. This was reported<br>under the JORC 2004 code and has now<br>been updated to comply with JORC 2012<br>on the basis that the information has not<br>materially changed since it was last<br>reported.                                                                                             |
|                  |                                                                     | CAE reported this MRE in CAE ASX<br>Announcement 3/7/2024 with 14.5ML@<br>1.09% copper equivalent (0.72% Cu, 0.42<br>g/t Au, 13.7 g/t Ag).                                                                                                                                                                                                                                                                          |
|                  |                                                                     | The most recent resource statement was<br>put together by Simon Tear of H&SC<br>Consultants in 2024 and is fully reported in<br>in CAE ASX Announcement 3/7/2024. The<br>full methodology and accompanying<br>JORC Table 1 documentation for the<br>Cannindah <u>Breccia</u> 2024 MRE is<br>presented in this July 2024 CAE ASX<br>Announcement.                                                                    |
|                  |                                                                     | The upgraded Mineral Resources for the Mt Cannindah Cu/Au deposit are reported in the Accompanying Table at a <u>cut_off</u> grade of 0.3%CuEq, within a nominal pit shell. It has been assumed that the mineral resources will be extracted via an open pit method. To take into account reasonable prospects of economic extraction a nominal pit shape was designed with a maximum pit floor 350m below surface. |

### Table 2: Mt Cannindah Mineral Resource Table

On 3 July 2024 Cannindah Resources Limited announced a significant upgrade of the Mineral Resource Estimate (MRE) for the Mt Cannindah project. The MRE was prepared by independent resource specialists H&S Consultants The upgraded MRE for the Mt Cannindah Cu/Au deposit reported in the H&SC study is shown in the tables below:

| Category  | Mt   | Cu%  | Au gpt | Ag ppm | CuEq% | Density t/m3 |
|-----------|------|------|--------|--------|-------|--------------|
| Measured  | 7.1  | 0.77 | 0.41   | 15.4   | 1.15  | 2.77         |
| Indicated | 5.7  | 0.67 | 0.39   | 12.2   | 1.00  | 2.79         |
| Inferred  | 1.7  | 0.70 | 0.58   | 12.0   | 1.15  | 2.78         |
| Total     | 14.5 | 0.72 | 0.42   | 13.7   | 1.09  | 2.77         |

| Category  | Cu Kt | Au Kozs | Ag Mozs |
|-----------|-------|---------|---------|
| Measured  | 54.7  | 93.4    | 3.5     |
| Indicated | 38.1  | 71.9    | 2.2     |
| Inferred  | 11.9  | 32.0    | 0.7     |
| Total     | 104.8 | 197.3   | 6.4     |

(minor rounding errors)

Source: H&SC "Updated Mineral Resource Estimate for the Mt Cannindah Cu/Au/Ag Deposit SE Queensland" (June 2024) p9 Refer ASX Announcement 3 July 2024

There have been no material changes in the assumptions of the resource estimate between the release of the resource estimate on 3 July 2024 and the date of this report.