

23 June 2025

Mineral Resource Estimate upgrade paves way for Northern Silica Project PFS

- Updated Mineral Resource Estimate for the Si2 Deposit, with 187.5Mt of Measured Mineral Resource.
- 16% increase in total tonnage at Si2. Measured Mineral Resource increased from 49.5Mt to 187.5Mt, a 278% upgrade
- Total MRE has increased by 513% since 2021
- Timely upgrade further supports recent Major Project Status designation by Federal Government
- Improved geological foundation for upcoming PFS and mine planning
- PFS to consider 25 year life of mine operation supporting 3-5mtpa production

Emerging silica sands developer, Diatreme Resources Limited (ASX:DRX) announced today an updated Mineral Resource Estimate (MRE) for its Northern Silica Project Si2 Deposit (**Si2**), which forms part of the Company's broader three project silica sand portfolio in North Queensland. The upgraded estimate confirms the Northern Silica Project's Si2 Deposit as one of Australia's most significant undeveloped high-grade silica sand deposits, providing both scale and quality for future development.

The Si2 Deposit, located within the world-class Cape Bedford–Cape Flattery Dune Field, and immediately adjacent to the Port of Cape Flattery, is uniquely positioned to supply the booming demand for high-purity silica, especially for photovoltaic glass used in solar energy applications. The updated MRE significantly enhances the Company's geological confidence and positions Diatreme for its next phase of development and mine development pre-planning. The results of the MRE are provided in Table 1.

Diatreme's CEO, Neil McIntyre commented: "This major Resource upgrade reinforces the outstanding potential of our Northern Silica Project. We've more than confirmed the scale and purity needed to support a long-life mining operation targeting photovoltaic silica markets. With permitting and testwork underway, and a PFS next on the agenda, we're building the foundations for an exciting new silica sand supply chain out of Cape York with decades of mine life."

> +61 7 3397 2222 Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151 **diatreme.com.au**

Page **1** of **49**

Resource Category	Silica Sand ^{Mt}	SiO ₂ %	Fe₂O₃ %	TiO₂ %	Al ₂ O ₃ %
Measured	187.5	99.24	0.10	0.14	0.11
Indicated	42	99.15	0.12	0.16	0.11
Inferred	43	99.11	0.11	0.15	0.11
Total	272.5	99.21	0.11	0.14	0.11

Table 1: June 2025 Si2 Deposit Mineral Resource Estimate

Mineral Resource Estimate

Figure 1: Mineral Resource growth since discovery of Si2 in November 2021

AUSTRALIAN SANDS. UNIVERSAL DEMAND.

DIATREME RESOURCES LIMITED | ABN 33 061 267 061 | ASX:DRX

+61 7 3397 2222 Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151 Page 2 of 49

RESULTS OVERVIEW

The results of the Si2 Deposit Mineral Resource update in summary are as follows:

- Measured Mineral Resource increased from 49.5Mt to 187.5Mt, a 278% upgrade.
- Diatreme now has a MRE of suitable confidence to support mine planning. This provides the foundation for a PFS and Ore Reserve estimation.
- 16% increase in tonnes at the Si2 Deposit, from 235mt to 272.5Mt.
- Bulk density of 1.65t/m³ following recent testwork, further refining the prior assumption of 1.6t/m³
- Particle size distribution results confirm the deposit hosts a relatively homogeneous silica sand profile, suitable for downstream processing into high-end products.
- Global resource estimates now exceed 500Mt (501.16Mt) across the Cape Flattery & Cape Bedford area.

NEXT STEPS

With this updated Mineral Resource Estimate, Diatreme now has a robust geological and grade foundation to progress finalisation of the Pre-Feasibility Study (PFS). This will include mine schedule optimisation and mine design, underpinned by the continuity and scale established at the Si2 Deposit.

Environmental permitting continues as the Company's foremost focus. Detailed impact and mitigation assessments are underway as part of the Environmental Impact Statement (EIS), progressing toward final EIS submission in Q3 2025.

Metallurgical testwork is ongoing to refine product specifications and further confirm suitability for photovoltaic and other industrial applications. Following successful testwork, Diatreme will commence binding offtake discussions with targeted end-users in the global silica sand market.

+61 7 3397 2222 Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151 Page 3 of 49

DIATREME RESOURCES LIMITED | ABN 33 061 267 061 | ASX:DRX

Figure 2: Diatreme Resources' Silica Sand Projects

+61 7 3397 2222 Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151

diatreme.com.au

Page 4 of 49

AUSTRALIAN SANDS. UNIVERSAL DEMAND.

DIATREME RESOURCES LIMITED | ABN 33 061 267 061 | ASX:DRX

ASX LISTING RULE 5.8.1 SUMMARY

This section provides a summary of the Mineral Resource Estimate for the Si2 Deposit. This executive summary is provided consistent with ASX Listing Rule 5.8.1 and is effective from the date of issue.

GEOLOGY AND GEOLOGICAL INTERPRETATION

The Si2 Deposit is located within the Cape Bedford–Cape Flattery Dune Field, a major aeolian dune system covering over approximately 700 km² on the east coast of Cape York Peninsula. The dune field developed from quartz-rich sandstones of the Gilbert River Formation and Dalrymple Sandstone, supplemented by contributions from coastal granites and Hodgkinson Formation metasediments. Weathering and leaching processes, both within the Laura Basin aquifer system and through subsequent surface erosion, produced silica sand now concentrated in the dune systems.

Silica sand mineralisation is predominantly hosted within the trailing arms and apices of elongate parabolic aeolian dunes. Interdunal areas are often devoid of thick aeolian sand and predominantly exhibit exposed B1 horizons, clays, bedrock, or other sediments. Sediments tend to have undergone reworking due to successive deflationary events.

Dune deflation tends to hold a parabolic shape and deflates in a downward direction, until reaching a zone (typically a wet zone, either groundwater or saturated clays) where sand grains are less available to movement by wind. There is an observable basement high coincident with the topographic high towards the coastline on the western dunes. Dunal features tend to be steeper toward the coast, compared to a less pronounced steepness distal from the coastline. Figure 1 highlights the features in an active elongate parabolic dune.

Figure 3: Evolution of active elongate parabolic dune system

+61 7 3397 2222 Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151

diatreme com au

Page 5 of 49

AUSTRALIAN SANDS. UNIVERSAL DEMAND.

DIATREME RESOURCES LIMITED | ABN 33 061 267 061 | ASX:DRX

Sampling Program	ID Series	# Holes	Drilling Method	Commentary
November 2021 to January 2022	PLTxxx	99	Vacuum	Vacuum drill collected 2-3 kg cuttings which reported to a return thick perspex canister mounted on the drill rig (100% of drill material returned by the vacuum drill rig) after passing through a single tiered (50/50) riffle splitter. Samples were collected in numbered calico sample bags, and sealed ready for assaying as drilling progressed. Primary Analysis Lab: ALS QC: Duplicates 1 in 50
September 2022 to November 2022	Si20xxx	82		1 m interval samples were collected from an aircore drill rig after passing through a single tiered (50/50) riffle splitter. The samples were collected in numbered calico sample bags, and sealed ready for assaying as drilling progressed. Primary Analysis Lab: Bureau Veritas QC: Introduction of ELIM22 CRM Duplicates 1 in 25
August 2023 to November 2023	Si21xxx	88	Aircore	 1 m interval samples were collected from an aircore drill rig after passing through a single tiered (50/50) riffle splitter. The samples were collected in numbered calico sample bags, and sealed ready for assaying as drilling progressed. Primary Analysis Lab: Bureau Veritas QC: Introduction of Coarse Blanks Samples were composited in 2024 to 3m and assayed at ALS on a target market size fraction, using ICP.
August 2024 to December 2024	Si22xxxx	154		1m interval samples were collected from an aircore drill rig, before being composited to a nominal 3m composite.All samples were assayed at 3m including XRF full sample, and target market production fraction.Primary Analysis Lab: ALS QC:Introduction of systematic recovery sampling.Introduction of NCS DC 60116a & NCS DC 60117a CRM
December 2021	AHxxx	1		1m interval samples were collected before being split in a 50/50 riffle splitter. The samples were collected in numbered calico sample bags and sealed ready for assaying. Primary Analysis Lab: ALS
September 2022 to December 2022	Si2HAxxx	60	Hand Auger	1m interval samples were collected before being split in a 50/50 riffle splitter. The samples were collected in numbered calico sample bags and sealed ready for assaying. Primary Analysis Lab: BV for first part of season, ALS for second part of season.
January 2025 to February 2025	Si23xxxH	14		1m interval samples were collected and retained in numbered calico sample bags and sealed. No assaying completed, strictly for geological observations.

Table 2: Sampling Program Details

SAMPLING AND SUB-SAMPLING TECHNIQUES

All drill holes were photographed, logged and sampled under the supervision of Mr Watson, Diatreme Resources' Technical Services Lead. The samples are stored in clearly labelled chip trays with bagged samples and stored at CSHPL's Cooktown laydown yard. The Competent Persons have determined that the quality of the drilling, sampling, and analysis meets the necessary standard for inclusion in a publicly reported Mineral Resource estimate, as per the JORC Code (2012)

+61 7 3397 2222 Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151

diatreme.com.au

Page 6 of 49

DRILLING TECHNIQUES

Four hundred and ninety-eight drill holes were used to define the Mineral Resource Estimate. Samples were obtained by vacuum drilling, aircore drilling or hand augering methods and were drilled vertically.

Drilling programs were mainly concentrated on the trailing arms and apexes of the elongate parabolic dunes. Additionally, hand augering was specifically carried out in the deflationary troughs between the dunes to support geological interpretation and constrain the lateral extent of the resource in areas typically devoid of mineralisation. Table 2 highlights the drilling techniques and holes used in the Mineral Resource Estimate.

Vacuum drilling was undertaken by contractor Yearlong Contracting using a 4x4 tractor mounted drill rig with a blade drill bit diameter of 60 mm equivalent to NQ sample size with 1.8 m rods. Aircore drilling was undertaken by a Diatreme Resources track mounted drill rig, with a 3" blade drill bit, on 3 m rods. Hand augering was undertaken by Diatreme staff using a Dormer Sand Auger with an internal diameter of 2". Drilling terminated immediately at refusal when damp clay basement or wet sands were intersected. All drilling programs were designed and conducted under the supervision of Diatreme Resources geologists.

SAMPLE ANALYSIS METHOD

Samples across the life of the project were either analysed at Bureau Veritas in Adelaide, or at ALS in Brisbane. The XRF methods at each lab are considered comparable (ALS' ME-XRF26, and Bureau Veritas' XF100). In 2024, to align more closely with JORC Code Clause 49, a size fraction representative of the target market specification was assayed at ALS by ME-ICP64.

ESTIMATION METHODOLOGY

The Mineral Resource Estimate was prepared by modelling the silica sand unit (A2). The topography surface was surveyed using LIDAR to a resolution of 10 points/m² to create a 1m gridded digital elevation model with a 10cm relative vertical accuracy. The top surface of the resource volume was set at 0.3 m below the LIDAR topography, representing the base of the topsoil. The base of the resource was constructed from:

- The base depth of the A2 unit determined from drilling, or augering
- The depth of the groundwater table determined from drilling, and
- Interpretation of the dune edge from LiDAR survey and aerial imagery.

The resource boundary was established by geological interpretation and analysis of surface dune extents visible in LIDAR and aerial imagery. Both assayed drill samples and geological observations from hand auger holes were used to interpret the top and base of the mineralised profile.

Coordinates of drill-hole data and the block model were transformed so each dune base aligned to a single flattened RL, accounting for significant RL variations and dune thickness variability across the deposit. This allowed grade estimation to reflect podsolisation influences and reduce vertical smearing. Grades were interpolated within three semi-soft vertical domains (upper, middle, and lower sands) to capture observed vertical grade variations. After estimation, coordinates were transformed back to their original positions. A comparison with estimates run using

> +61 7 3397 2222 Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151

> > diatreme com au

Page 7 of **49**

untransformed coordinates showed comparable global tonnes and grades, confirming no material bias from the transformation.

Hand auger holes were excluded from grade estimation due to concerns about sample contamination associated with the drilling method. These holes were predominantly located at the edges of the deposit, and their mineralised intervals were geologically interpreted to guide and constrain the resource boundaries. These intervals closely matched the interdunal level, further validating the geological interpretation.

A block model was used to estimate the deposit grade. The orientation of the block model was set to the average strike of the dunes (315 degrees). The dimensions for the parent blocks were determined as 25 m across strike by 25 m along strike by 3 m vertical, which were then subdivided into cubic sub-blocks of 1 x 1 x 1 m to best fit the undulating geological model.

All drillhole data were composited to nominal 3 m intervals prior to grade estimation. Grade estimation was completed using ordinary kriging, and a validation check estimate was completed using inverse distance weighting squared. The Ordinary Kriging (OK) method was used to estimate the grades and populate the block model for SiO₂, Fe₂O₃, TiO₂, Al₂O₃ and LOI. The grade estimation process was conducted over 4 (four) sequential passes, each defined by specific search radii that help to guide to the categories of 'Measured', 'Indicated' and 'Inferred' in resource classification. This methodology involved setting the major sample search parameters for each block horizontally in the average strike direction of the dune (315 degrees), the semi-major search direction is also set horizontal (perpendicular to the major search direction) across the dune, and the minor search direction is set to vertical. The search distances used for each pass were derived from variography studies, ensuring that the interpolation aligns with the spatial characteristics of the geological data. All passes used a quadrant-based search with the maximum number of samples set at 16 and required a minimum of two drillholes for reliable grade estimation. Block discretisation of 4 x 4 x 4 (X,Y,Z) was employed.

Bulk density was determined through laboratory testwork on dried and compacted samples collected from drilling across the Si2 Deposit. A total of 132 samples were tested. The dry bulk density was calculated as the average of the measured samples, and a value of 1.65 tonnes per cubic metre was adopted for tonnage estimation.

Cross-checks were undertaken to assess the sensitivity of the resource estimate to varying parameters, including different block sizes, estimation methods (Inverse Distance Weighting vs Ordinary Kriging), and the application of domain boundaries and coordinate transformations (flattened versus real space). Results showed no material differences across these comparisons, confirming robustness and reliability of the final Mineral Resource Estimate.

CUT OFF GRADES

No cut-off grade was applied during compositing, block estimation, or reporting. The Mineral Resource is reported from all classified blocks with interpolated SiO₂ grades. While no cut-off was applied, a minimum SiO₂ grade of approximately 98.5% was one of several factors considered when defining the base of the geological model in drillholes. Geological domains were based on a combination of SiO₂ grade, sand colour, and contaminant levels. Minor internal intervals with SiO₂ grades below 98.5% were included within the high-purity silica domain where they did not materially affect the overall quality of the Mineral Resource, and would not have an effect on minerals processing.

+61 7 3397 2222 Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151 **diatreme.com.au** Page **8** of **49**

RESOURCE CLASSIFICATION

The Mineral Resource has been classified according to the principles of the JORC Code (2012 edition). The resource has been divided into Measured, Indicated, and Inferred categories, corresponding to a high, moderate and low level of confidence in the geological and grade continuity of the resource. The classification integrates several key factors, including depth of geological knowledge of the deposit, geological and mineralisation continuity, drill hole spacing, and the results of quality control measures.

The classification also considers drill hole logging, analytical results from drill samples, geostatistical analysis, and confidence in geological and grade continuity, along with recent metallurgical/process test outcomes. Additionally, search and interpolation parameters, recently completed density data, and considerations from JORC Code Clause 49 are factored into the classification process.

MINING AND METALLURGICAL METHODS AND PARAMETERS, AND OTHER MATERIAL FACTORS CONSIDERED TO DATE

Metallurgical testwork completed to-date confirms the silica sand resource is readily amenable to upgrading by conventional washing and screening methods to a low iron, high purity silica sand for photovoltaic applications (solar panels).

The potential for economic extraction at the Si2 Project has been evaluated considering various factors including openpit mining methods, anticipated product specifications, marketability of the product, and advantageous logistics. Based on these considerations, it was concluded that the Si2 Project has Reasonable Prospects for Eventual Economic Extraction (RPEEE) and can be designated as an Industrial Mineral Resource according to JORC Code Clause 49.

The results of the Mineral Resource Estimate are provided in Table 1 and the Resource Area is shown in Figure 4 on the following page. Representative dune profiles across the Resource Area are shown in the cross section and long section in Figure 5 below. All Mineral Resources are contained within EPM 17795.

+61 7 3397 2222 Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151 Page **9** of **49**

DIATREME RESOURCES LIMITED | ABN 33 061 267 061 | ASX:DRX

Figure 4: Mineral Resource Categories

DIATREME RESOURCES LIMITED | ABN 33 061 267 061 | ASX:DRX

+61 7 3397 2222 Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151 Page 10 of 49

Figure 5: Sections indicating SiO2 grade across Si2.

Page 11 of 16

AUSTRALIAN SANDS. UNIVERSAL DEMAND.

DIATREME RESOURCES LIMITED ABN 33 061 267 061 ASX:DRX

Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151 diatreme.com.au

+61 7 3397 2222

Project	Mineral Resource Category	Tonnes Mt	SiO ₂ %	Fe₂O₃ %	TiO ₂ %	Al ₂ O ₃ %
	Measured	43.12	99.21	0.09	0.11	0.13
Calalar	Indicated	23.12	99.16	0.09	0.13	0.10
Galalar	Inferred	9.22	99.10	0.11	0.16	0.11
	Total	75.46	99.18	0.09	0.12	0.12
	Measured	187.5	99.24	0.10	0.14	0.11
cia	Indicated	42	99.15	0.12	0.16	0.11
512	Inferred	43	99.11	0.11	0.15	0.11
	Total	272.5	99.21	0.11	0.14	0.11
	Indicated	10.3	99.20	0.15	0.24	0.16
WRA	Inferred	81.4	99.38	0.09	0.15	0.06
	Total	91.7	99.36	0.10	0.16	0.07
	Inferred	12	99.15	0.09	0.16	0.12
CFS West	Total	12	99.15	0.09	0.16	0.12
	Measured	16.1	99.20	0.08	0.12	0.22
	Indicated	33.2	99.05	0.10	0.18	0.25
CFS East	Inferred	0.2	99.00	0.12	0.27	0.28
	Total	49.5	99.10	0.09	0.16	0.24
	Measured	246.72	99.23	0.10	0.13	0.12
Total Silica	Indicated	108.62	99.13	0.11	0.17	0.16
Sand	Inferred	145.82	99.26	0.10	0.15	0.08
	Total	501.16	99.22	0.10	0.15	0.12

Table 2: Diatreme Resources Mineral Resource Inventory across all Silica Sand Projects.

+61 7 3397 2222 Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151 **diatreme.com.au** Page 12 of 49

This announcement is authorised for release by the Board.

Neil McIntyre Chief Executive Officer Mr Neil McIntyre Ph: +61 (0)7 3397 2222 <u>manager@diatreme.com.au</u> www.diatreme.com.au

For investor/media queries, please contact: Anthony Fensom, Fensom Advisory <u>anthony@fensom.com.au</u> Ph: +61 (0)407 112 623

About Diatreme Resources Limited (ASX Code: DRX)

Diatreme Resources (ASX: DRX) is an emerging Australian producer of mineral and silica sands based in Brisbane. Our key projects comprise the Northern Silica Project and Galalar Silica Sand Project in Far North Queensland, located next to the world's biggest silica sand mine at Cape Flattery, together with the recently acquired Cape Flattery Silica Project. Both the Northern Silica and Cape Flattery projects have been designated "Coordinated Projects" by the Queensland Government and are strategically located adjacent to the export-focused Cape Flattery Port.

Global material solutions group Sibelco is Diatreme's development partner on its Queensland silica projects portfolio. Sibelco has completed an investment of circa \$49 million into both the silica sands projects and Diatreme at the corporate level.

In Western Australia's Eucla Basin, Diatreme's Cyclone Zircon Project is considered one of a handful of major zirconrich discoveries of the past decade. Diatreme also owns 100% of the Clermont Copper-Gold Project in central Queensland.

Diatreme's silica sand resources will support global decarbonisation by providing the necessary high-grade, premiumquality silica for use in the solar PV industry. The Company has a strong focus on its ESG obligations, working closely with its local communities and all other key stakeholders to ensure the long-term sustainability of our operations, including health, safety and environmental stewardship.

Diatreme has an experienced Board and management, with expertise across all stages of project exploration, mine development and project financing together with strong community and government engagement skills.

For more information, please visit www.diatreme.com.au

+61 7 3397 2222 Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151 **diatreme.com.au** Page 13 of 49

ASX releases referenced for this release:

- 17 June 2025 Northern Silica Project awarded Major Project Status
- 20 March 2025 2024 Exploration Program results for the Northern Silica Project
- 17 April 2024 Mineral Resource upgrade paves way for Northern Silica Project

Diatreme confirms that it is not aware of any new information or data that materially affects the information included in the original releases and that all material assumptions and technical parameters underpinning the estimates in the original releases continue to apply and have not materially changed. Diatreme confirms that the form and context in which the competent person's findings are presented have not been materially modified from the original releases.

> +61 7 3397 2222 Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151

Page 14 of 49

COMPETENT PERSONS STATEMENT

The information in this report that relates to Mineral Resources is based on the work carried out by Mr Chris Ainslie, Principal Resource Geologist. Mr Ainslie is an employee of Measured Group Pty Ltd and a Member of the Australian Institute of Geoscientists. Mr Ainslie takes responsibility for estimation, classification and modelling of the Mineral Resource Estimate. Mr Ainslie has been engaged to assist preparing this report and there is no conflict of interest between the parties. Mr Ainslie has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity for which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code). Mr Ainslie consents to the inclusion in the report on the matters based on their information in the form and context in which it appears.

The information in this report that relates to Exploration Targets, Exploration Results & Mineral Resources is based on information compiled by Mr Frazer Watson, Technical Services Lead, a Competent Person who is a Member of The Australasian Institute of Mining and Metallurgy, and the Australian Institute of Geoscientists. Mr Watson takes responsibility for the sampling, analytical results, and the general technical basis to support the Reasonable Prospects of Eventual Economic Extraction, and provides technical oversight of the Mineral Resource Estimate. Mr Watson is a full-time employee of Diatreme Resources Limited. Mr Watson has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resource and Ore Reserves'. Mr Watson consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The corresponding JORC 2012 Table 1 is attached to this report and can be found in Appendix 1.

+61 7 3397 2222 Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151

APPENDIX A: JORC TABLE 1

SECTION 1: SAMPLING TECHNIQUES AND DATA

Criteria			Explanation		Commentary	
	Sampling techniques	•	Nature and quality of sampling (e.g. channels, random chips, or specific industry standard measurement too appropriate to the minerals under in such as down hole gamma sondes, XRF instruments, etc.). These exam not be taken as limiting the broad m sampling. Include reference to measures take sample representivity and the appre- calibration of any measurement too systems used. Aspects of the determination of min that are Material to the Public Repo where 'industry standard' work has this would be relatively simple (e.g. circulation drilling was used to obta samples from which 3 kg was pulve produce a 30 g charge for fire assay cases, more explanation may be re as where there is coarse gold that h sampling problems. Unusual comm mineralisation types (e.g. submarin may warrant disclosure of detailed	cut e specialised ols nvestigation, or handheld pples should heaning of en to ensure opriate ols or neralisation rt. In cases been done 'reverse hin 1 m erised to c'). In other quired, such has inherent hodities or e nodules) information.	 For drillholes reported PLT001 to PLT247, Vacuum drilling samples were collected in 1m intervals, before being passe a single-tiered 50/50 riffle splitter. The sample was sent to ALS Brisbane from which 250g was pulverised to produce a bead before being assayed by method code ME-XRF26. For drillholes reported Si20001 through to Si20076, Aircore drilling samples were collected in 1m intervals (~2kg) after through a single-tiered (50/50) riffle splitter. The sample was sent to Bureau Veritas in South Australia from which 150 pulverised to produce a fused bead before being assayed by method code XF100. For drillholes reported Si20077 through to Si20082, Aircore drilling samples were collected in 1m intervals (~2kg) after through a single-tiered (50/50) riffle splitter. The sample was sent to ALS Brisbane from which 250g was pulverised to a fused bead before being assayed by method code ME-XRF26. For hand auger hole reported AH001, hollow stem auger samples were collected in 1m intervals (~2kg) after passing this single-tiered (50/50) riffle splitter. The sample was sent to Bureau Veritas in South Australia from which 150g was pulverised to produce a fused bead before being assayed by method code XF100. For hand auger holes reported Si2HA0002 to Si2HA0013, hollow stem auger samples were collected in 1m intervals (~after passing through a single-tiered (50/50) riffle splitter. The sample was sent to ALS Brisbane from which 250g was pulverised to produce a fused bead before being assayed by method code XF100. For hand auger holes reported Si2HA0014 to Si2HA0061, hollow stem auger samples were collected in 1m intervals (~after passing through a single-tiered (50/50) riffle splitter. The sample was sent to ALS Brisbane from which 250g was pulverised to produce a fused bead before being assayed by method code XF100. For hand auger holes reported Si2HA0014 to Si21A0061, hollow stem auger samples were collected in 1m intervals (~2k	d through fused passing g was passing produce nrough a rerised to ~2kg) m which ~2kg) g). These ained for er nich 150g cussing on osited and - d by mposited itted to

AUSTRALIAN SANDS. UNIVERSAL DEMAND.

Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151

DIATREME RESOURCES LIMITED ABN 33 061 267 061 ASX:DRX

diatreme.com.au

+61733972222

Page 16 of 49

		ALS Brisbane for sieving into three fractions +710µm, -710µm+106µm and -106µm. The respective fractions were then weighed, followed with the 710µm+106µm fraction pulverised and assayed by method code ME-ICP64. In addition a sample
		 representing the full particle size distribution was split, pulverised and then assayed by ME-XRF26. Mr Watson considers the quality of the sampling method to be fit for the deposit style, and the stage of exploration, given the homogenous nature of this silica sand deposit.
Drilling techniques	 Drill type (e.g. core, reverse circulat hole hammer, rotary air blast, auger sonic, etc.) and details (e.g. core dia or standard tube, depth of diamond sampling bit or other type, whether oriented and if so, by what method, 	 on, open- Bangka, AC drilling was by a track mounted drill rig with a 3" blade bit, and a rod length of 3m. VX drilling was by a track mounted drill rig with a 60mm diameter blade bit, and a rod length of 1.8m VX drilling was by a tractor mounted drill rig with a 60mm diameter blade bit, and a rod length of 1.8m Hand Auguring (HA) was conducted using a Dormer Sand Auger with an internal diameter of 2". Aircore and Vacuum drilling was to refusal, which occurs at geologically determined contact such as clayey sands at the base of mineralisation, or a water table. This is due to the limitations of AC drilling at the water table, and limitations of the AC drill rig when penetrating the clay layers. Mr Watson considers the quality of the sampling method to be fit for the deposit style, as mineral sands are easily contaminated, or recoveries can be poor and not representative using other drilling methods.
Drill sample recovery	 Method of recording and assessing chip sample recoveries and results Measures taken to maximise samp and ensure representative nature o samples. Whether a relationship exists betwore recovery and grade and whether sa may have occurred due to preferent of fine/coarse material. 	 During the 2024 drilling program, sample recovery is monitored at the rig by recording sample mass of each 1m interval to observe for the presence or deviation from a consistent sample size. Weighing of samples at the drill site was not undertaken in a systematic manner in prior years. In the absence of systematic weighing, sample recovery was visually monitored on the rig for a consistent sample size. Sample recovery is maximised within a closed system from the drill bit to the riffle splitter. After encountering wet clays, sacrificial rods are drilled into clean dry sand, to flush out any contamination through the drilling hoses, prior to drilling the subsequent drill hole. No relationship between recovery and grade has been observed, as the orebody is relatively homogenous. Correct interval delineation on AC drilling is achieved with metre intervals marked on the drill mast, and samples are collected when the base of the top drive reaches a metre interval.
Logging	 Whether core and chip samples ha geologically and geotechnically log of detail to support appropriate Min Resource estimation, mining studie metallurgical studies. Whether logging is qualitative or qu nature. Core (or costean, channel, or photography. The total length and percentage of intersections logged. 	 All drillholes have been logged in their entirety, with qualitative descriptions of grain size, sphericity, roundness, moisture content, lithology, and colour recorded. Photography is captured on a chip tray basis firstly at the drill rig, and then later on a chip tray compartment by compartment basis when samples have dried. Sample photography in a controlled setting using Imago software with a Canon EOS R5 and a Canon 24-50mm lens, a hexadecimal colour value is extracted from the imagery, and the RGB values are derived through python scripts. Colour photography is verified against a Calibrite ColorChecker. The quality of logging is sufficient for this stage of exploration.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and wh quarter, half or all core taken. If non-core, whether riffled, tube sa rotary split, etc. and whether samp 	 Prior to 2023, VX and AC samples were riffle split after the cyclone, and placed in sample bags representing 1m intervals. In 2024, AC samples were scooped from the sample bags representing 1m intervals, and composited to a nominal 3m composite. The single scoop is approximately 330g in mass. Where sample preparation was completed at ALS in Brisbane. Full samples are dried at 105°C, then weighed (WEI-22g), then a

DIATREME RESOURCES LIMITED | ABN 33 061 267 061 | ASX:DRX

+61 7 3397 2222 Pag

diatreme.com.au

Coorparoo, Qld, 4151

Criteria		Explanation	Commentary
		 For all sample types, the nature, qua appropriateness of the sample prepa technique. 	ity and retained. A nominal 150g split of the raw sample, and a nominal 150g split of the -710µm+106µm fraction are then pulverised using a tungsten carbide ring mill (PUL-33), prior to being assayed. Prior to 2024, only the full sample was assayed, no screening was conducted.
		 Quality control procedures adopted is sampling stages to maximise representative of the in situ material including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriating and size of the material being samples. 	 by all sub- ntivity of Where sample preparation was completed by BV in South Australia. Samples progressed through the PR001 method where samples are sorted, weighed wet, and then dried at 105°C, samples are then split using a rotary sample divider, and volumetrically weighed to a nominal 150g before undergoing the PR305 method where samples are pulverised in a tungsten carbide bowl. Importantly, Mr Watson remarks that the -710µm+106µm does not represent "product" grade, as heavy minerals are not removed through the sieving process, nor is the material washed. The PUL-33 method has a QC check on a 20g split to ensure >85% passes -75µm Coarse flushes of an unpulverized sample matching ELIM22 CRM has been introduced to both clean the lab pulveriser between drillholes, and test for any contamination. ELIM22 was prepared by OREAS, specifically for ore grade material in the Cape Bedford / Cape Flattery dune systems. Field duplicate results are validated upon receipt of lab results, particular attention is paid to Fe₂O₃, and TiO₂. A coarse flush of the raw ELIM22 sample is included after intersecting a deleterious horizon – and this is used to clean the Tungsten Carbide ring mill / pulveriser at ALS Brisbane. All samples are pulverised sequentially through the same pulveriser. Crushing is not required as the grain size of the sample material is suitable for pulverizing. Mr Watson considers the drill sample sizes as appropriate for the grain size of the material, the style of mineralisation and the nature of the drilling program. These methods are determined to be appropriate by the Competent Person to avoid sample carry-over contamination, in
	Quality of assay data and laboratory tests	 The nature, quality and appropriateners assaying and laboratory procedures whether the technique is considered total. For geophysical tools, spectrometers XRF instruments, etc., the parameter determining the analysis including immake and model, reading times, calil factors applied and their derivation, e Nature of quality control procedures (e.g. standards, blanks, duplicates, elaboratory checks) and whether accel levels of accuracy (i.e. lack of bias) a precision have been established. 	 addition Cr₂O₃ is monitored to ensure that pulverisation is performed in a non-ferrous pulverising bowl. ss of the ised and partial or As ME-ICP64 is considered a partial digest, it is considered appropriate for silica sand due to the high purity of the -710µm+106µm sample, and the low detection limit for Fe₂O₃ comparative to XRF methods. As ME-XRF26, and XF100 methods are considered a total digest, it is considered appropriate for silica sand when assessing full sample geochemistry. Loss On Ignition (LOI) determined by thermogravimetric analysis (TGA) using method code OA-GRA05x or ME-GRA05 at ALS or TG002 at Bureau Veritas) and, where a sample is placed in a furnace at ambient temperature and then heated to 1000°C, and then weighed. Field duplicates were submitted at a nominal rate of 1 in 25 in line with the quality assurance procedure. Prior to 2023, this was nominally 1 in 50. CRM (ELIM22) is utilised every 33rd sample. This CRM was introduced to the program in 2021. Either CRM NCS 60116a or NCS 60117a are used 2 in 100 – for samples drilled in 2024. ALS Brisbane, and verification of CRM and field duplicate results have indicated that for the method ME-ICP64, Al₂O₃ and Fe₂O₃ are acceptable for higher purity samples. For this reason, Al₂O₃ and Fe₂O₃ report, while reporting TiO₂ recovery would be considered misleading. The quality control procedures adopted by Diatreme establish an acceptable level of accuracy and precision. Bureau Veritas, and ALS conducts their own internal checks, and these results have been provided to Diatreme and are monitored by both parties as part of the quality control process.

Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151

DIATREME RESOURCES LIMITED | ABN 33 061 267 061 | ASX:DRX

diatreme.com.au

+61733972222

Page 18 of 49

iteria		Explanation	Commentary
			• The variability observed between the primary sample and the field duplicate assay results are considered appropriate for the style of mineralisation by the Competent Person.
	Verification of sampling and assaying	 The verification of significant intersecent either independent or alternative compersonnel. The use of twinned holes. Documentation of primary data, data procedures, data verification, data second (physical and electronic) protocols. Discuss any adjustment to assay data 	 Mr Watson and various Diatreme Resources' Exploration Geologists have personally inspected all sample intervals. Several twinned holes have been completed, with minimal sampling bias observed, the only difference being the depth of refusal changed. This is considered to be temporally related to groundwater levels. Collar and geological logging is captured by and stored within the geological logging/database software MX Deposit, in accordance with company procedures. Photographic data is captured, and stored within Imago, a software package that acts as a repository and analysis tool for geoscientific imagery. Assay data is recorded, and stored in MX Deposit, a Drillhole Database software. No adjustment has been made to assay data.
	Location of data points	 Accuracy and quality of surveys use drill holes (collar and down-hole su trenches, mine workings and other l used in Mineral Resource estimatio Specification of the grid system use Quality and adequacy of topographi 	 All drill hole locations have been surveyed using Spectra Precision SP60, with a Trimble RTX CenterPoint DGPS correction ± 0.05m on the horizontal plane. The collar data is recorded in the UTM coordinate system: Map Grid of Australia 1994 (MGA94) Zone 55, this is then reprojected to GDA2020 Zone 55 for compatibility with other spatial files. All drill holes are shallow and vertical, no down-hole surveying is conducted. Digital elevation models derived from LiDAR (December 2022) were used as the topographic surface to generate RL's for each collar. The DEM was generated via a cloth simulation function, using an approximate 10 ground classified points per square metre. Relative accuracy is considered to be ± 0.1m.
	Data spacing and distribution	 Data spacing for reporting of Explore Results. Whether the data spacing and distri sufficient to establish the degree of and grade continuity appropriate for Resource and Ore Reserve estimati procedure(s) and classifications ap 	 Auger drilling occasionally is performed at the edge of the a given dune to provide geological observations of the contact between the eluviated sand and the illuviated horizon. First pass drilling spaced nominally at 380m along dune crests, and infill drilling at a nominal 180 - 200m along the trailing arm of an elongate parabolic dune, and in the interdunal valleys, although the Competent Person considers data spacing at these intervals are not a material constraint on the development of geological grade or geological continuity, and as such, the Competent Person considers the data spacing to be more than appropriate for this style of deposit, at this stage of exploration. Select samples have been composited to nominal 3m intervals, following recommendations from a variability assessment completed by Measured Group in 2024, and also on an assessment that the 3m compositing also aligns with likely SMU's for the deposit. This is defined in further detail in the Sampling Techniques section of this Table.
	Orientation of data in relation to geological structure	 Whether the orientation of sampling unbiased sampling of possible struct the extent to which this is known, control If the relationship between the drilling orientation and the orientation of keen mineralised structures is considered introduced a sampling bias, this show assessed and reported if material. 	 The deposit style is an unlithified aeolian sand deposit, comprised of a series of complex parabolic and elongate parabolic dune systems which are repeatedly deflated and are superimposed upon older dune systems. The mineralisation process (podsolisation) is gravitationally controlled. The Competent Person has determined that vertical drilling intersects the bedforms at an angle which represents the true width of mineralisation. The orientation of heavy mineral bedding (if present) is considered immaterial due to the processing methods of silica sand. The main grade control on economic extraction is the podsolisation profile. No sampling bias is introduced by the orientation of drilling.
	Sample security	The measures taken to ensure sample	e security. Sample bags were sealed by cable-tie, and transported in polywoven bags, then securely stored in a locked yard on-site until transported by courier to the respective laboraties.

DIATREME RESOURCES LIMITED ABN 33 061 267 061 ASX:DRX

+61 7 3397 2222 Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151 Page **19** of **49**

Criteria	Explanation			Commentary				
				٠	Transport chain of custody forms have been reviewed for each sample dispatch.			
				•	Submission reconciliation reports are provided by the laboratory and checked against the sample s	ubmission forms.		
	Audits or	 The results of any audits or reviews of sampling 		٠	Mr Ainslie (Measured Group) has conducted an audit on the drillhole database, but not the sampling	g techniques.		
	reviews techniques and data.	techniques and data.	nd data. • Internal complia		Internal reviews by Diatreme staff on both the drillhole database and sampling techniques have bee compliance to internal standards.	en conducted, indicating		
				•	No external reviews have been completed at this stage.			

SECTION 2: REPORTING OF EXPLORATION RESULTS

Criteria	Explanation			Commentary		
	Mineral tenement and land tenure status	 Type, referent location and agreements third parties partnerships native title in wilderness of environment. The security time of repoknown impellicence to optime the security of the security for the security the secure type the security the security the security the security t	nce name/number, ownership including or material issues with such as joint ventures, s, overriding royalties, iterests, historical sites, or national park and tal settings. of the tenure held at the rting along with any diments to obtaining a berate in the area.	•	These Exploration Results comprise exploration on the Si2 Deposit, which is the mineral of Silica Project, which is located adjacent to the coastline in Far North Queensland, approx Cooktown. The project is adjacent to the south of the Cape Flattery Silica Mines (CFSM) N been in operation since 1967 and is Queensland's largest producer of high purity silica and highest production of high purity silica sand of any mine historically. The project is located at the northern end of the Cape Flattery/Cape Bedford dune field care Exploration Permits for Minerals (EPM) 17795 & 27212. Most of the EPM, and the entirety of the Si2 Deposit is located on one land title, Lot 35/SF 110,000 hectares. The Project and EPM is in the Mareeba Mining District and falls within the Hope Vale Abor This lies approximately 35km north of the township of Hope Vale, with a population of app Hope Vale Aboriginal Shire Council. EPM 17795 is owned by Northern Silica Pty Ltd, a wholly owned subsidiary of the Joint Vee Pty Ltd between Diatreme Resources 73.2% and Sibelco Silica Pty Ltd 26.8%. Diatreme was granted a renewal on EPM 17795 "Cape Bedford" until 21 June 2026 on the targeting of heavy mineral sands and silica sand. The EPM was granted under protected N Conditions. As of March 2025, the tenure is in good standing. EPM 17795 is an extensive EPM comprising 147 continuous subblocks (approximately 4& of the Cape Flattery-Cape Bedford Quaternary dune field complex. Three EPM's contiguous with EPM 17795 have been taken up by Diatreme, EPM 27212 (g 2021), EPM 27265 (granted 30th January 2020, and currently in renewal) and application October 2021). These tenements cover small areas of the dune field not covered by EPM by Cape Silica Holdings Pty Ltd, EPM 27430, EPM 27265 are held by Northern Silica Pty Lt An additional EPM 25734 also targeting silica sand was acquired by Diatreme through at a minerals in 2024.	resource within the Northern imately 53km north of Mining Lease. CFSM has d is reported to have the complex within the 2232620, a freehold lot of iginal Shire Council area. coroximately 1,500 in the enture Cape Silica Holdings e basis of continued lative Title Protection 30km2) covering the majority ranted 27th September EPM 27430 (granted 26th 17795. EPM 27212 is held td. akeover of Metallica

AUSTRALIAN SANDS. UNIVERSAL DEMAND.

Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151 Page 20 of 49

DIATREME RESOURCES LIMITED | ABN 33 061 267 061 | ASX:DRX

diatreme.com.au

+61733972222

Criteria	Explan	ation			Commentary	
	Exploration done by other parties	 Acknowledgr exploration b 	nent and appraisal of y other parties.	• • •	 Exploration for silica sand has been undertaken in the Cape Flattery – Cape Bedford area in 11 / (ATP's) or Exploration Permits for Minerals (EPMs) since the 1960's. In general, past exploration primarily focused on the prominent active parabolic dunes of clean white silica sand. Historical exploration activities appear to have missed the Si2 Deposit in its entirety, until disco Resources in late 2021. As there are no assay certificates for this historic data, and the locations of which are dubious, a qualitative and is not used for Mineral Resource Estimation, or Exploration Targeting. 	Authorities to Prospect on of the dune field has covery by Diatreme , the data is considered
	Geology	 Deposit type, style of mine 	, geological setting and ralisation.	•	 The Northern Silica Project is comprised of unlithified aeolian dune complexes. The Cape Flattery & Cape Bedford dune fields are aeolian dunes established in the Pleistocene remobilised during the Pleistocene and Holocene epochs. The dune fields are situated on a coal Hodgkinson Formation basement with Dalrymple Sandstone forming mesa on basement highs. Mineralisation is thought to be due to repeated eluviation and illuviation events on immobilised comprised of an existing quartzose sand source, with reactivated dune systems also exhibiting Intradunal valleys tend to be a surface expression of the B1 horizon, and typically are not conside Deleterious metals are thought to have been eluviated by organic acids, which are transported away for through the water table. 	e epoch and regularly astal plain overlying the s. d dune systems g mineralisation. dered mineralised. by gravity through the from the deposit
	Drill hole Information	 A summary of to the underst exploration of information of information of holes: easting and nicollar elevation or Felevation abcord the drill hold of the drill hold dip and azimuted down hole leidepth hole length. If the exclusion down understandim Competent Felevation is exclusion down hold the the standim Competent Felevation why the the standim competent of the standim why the standim why the standim competent of the standim	f all information material standing of the esults including a the following or all Material drill orthing of the drill hole RL (Reduced Level – ove sea level in metres) le collar uth of the hole ngth and interception on of this information is he basis that the s not Material and this es not detract from the ng of the report, the Person should clearly his is the case	٠	 All material collar information for drillholes has been aggregated in the Table of Material Drillhol attached in this appendix to the announcement. 	oles and Results

DIATREME RESOURCES LIMITED | ABN 33 061 267 061 | ASX:DRX

+61733972222

Page **21** of **49**

Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151

Criteria	Explan	ation			Commentary	
	Data aggregation methods	 In reporting E weighting aw maximum ar truncations (grades) and o Material and Where aggree incorporates grade results low grade results low grade results stated and se such aggrega in detail. The assumption reporting of r should be cloaded and se such aggregation of the should be cloaded and se should be cloaded and se should be cloaded and se should be cloaded and set should and se	Exploration Results, eraging techniques, ind/or minimum grade e.g. cutting of high cut-off grades are usually should be stated. gate intercepts short lengths of high and longer lengths of sults, the procedure h aggregation should be ome typical examples of ations should be shown tions used for any netal equivalent values early stated	•	Data aggregation used in this report is a calculation of the mean average for each reported var respective mineralised profile for that drillhole. All intercepts have been aggregated in the Table of Material Drillholes and Results attached in report.	riable across the
	Relationship between mineralisation widths and intercept length	 These relation important in Exploration F If the geomer with respect known, its nation of the second s	onships are particularly the reporting of Results. try of the mineralisation to the drill hole angle is ature should be reported. nown and only the down are reported, there clear statement to this lown hole length, true own').	•	All drilling was vertical (-90°) intersecting undulating flat-lying aeolian dune sands. Downhole length correlates with true width of mineralisation. The deposit is a large homogenous mass of eluviated aeolian sands. Intercept length is an ord than the mineralisation width. The eluviated zone is gradual, with in most cases a distinct delin illuviated zone.	ler of magnitude smaller ineable contact for the
	Diagrams	 Appropriate scales) and the should be ind discovery be should inclue plan view of and appropriate 	maps and sections (with abulations of intercepts cluded for any significant ing reported These de, but not be limited to a drill hole collar locations ate sectional views.	٠	Plan view of drill hole collar locations and appropriate are contained in this report.	
	Balanced reporting	Where comp Exploration F practicable, of both low a widths shoul	rehensive reporting of all Results is not representative reporting Ind high grades and/or Id be practiced to avoid	•	All mineralised silica sand results used in the estimation of this Mineral Resource are reported. Where the results in the table are not published, there is either organics present in the first me sands / sandy clays below the mineralised horizon, or are considered immaterial for the RE.	d. etre, or unmineralized

DIATREME RESOURCES LIMITED | ABN 33 061 267 061 | ASX:DRX

+61 7 3397 2222 Unit 8, 55–61 Holdsworth St Page 22 of 49

Coorparoo, Qld, 4151

Criteria	Explan	ation		Commentary				
		misleading r Results.	eporting of Exploration					
	Other substantive exploration data	Other explor and material including (bu geological of survey result results; bulk method of tr test results; groundwater characterist or contamina	ration data, if meaningful I, should be reported It not limited to): oservations; geophysical ts; geochemical survey samples – size and eatment; metallurgical bulk density, r, geotechnical and rock ics; potential deleterious ating substances.	 Fe₂O₃ percentage is the most significant limiting factor on conversion of ore to high purity silica sand product and determines value after SiO₂ percentage. Fe₂O₃ when found in association with TiO₂, does not act as a contaminant or barrier to refining high- purity silica sand, with metallurgical testing showing gravity separation to accurately remove this impurity. Colour (oranges, yellows, reds) tend to be a significant - but not limiting – indicator on the identification of deleterious or low yielding sands. For the 1t bulk sample, a nominal 850g was composited from each of 1147 intervals drilled in 2023 selected to represent the Measured Category of the Si2 Mineral Resource. The relevant drillholes and intervals are included in this Appendix in the Table of Material Drillholes and Results. Metallurgical testwork was performed at ALS Brisbane using ME-XRF26 for head grade & lower purity samples, and ME-PKG85 for higher purity product samples. ME-PKG85 and ME-XRF26 are considered a full digest. Metallurgical testwork was performed at MT Carrara. Geochemical results were performed at MT Carrara, and consisted of: Receiving a 1t bulk sample, Sample homogenisation, and then sub sampling 5kg of feed material. Sieving and retaining the -0.710mm+0.106mm product stream Sieving and retaining the -0.710mm+0.106mm product stream sample Undertaking a Heavy Liquid Separation using Bromoform and Acetone to achieve a SG of 2.7 (This is a benchtop scale testwork method to simulate the gravity separation process) The 2.7 SG floats are then attritioned for 5 minutes with 75% solids without any reagents The material is then wet sieved at 0.106mm, with the oversize fraction then passed through two reading IRMS units at 3.0A, 11500 Gauss and 8.0A and 18000 Gauss, respectively				
	Further work	 The nature a further work extensions of large-scale s Diagrams cleareas of pos including the interpretatio areas, provid commercial 	nd scale of planned (e.g. tests for lateral or depth extensions or step-out drilling). early highlighting the sible extensions, e main geological ns and future drilling ded this information is not by sensitive.	 Mr Watson and Mr Ainslie recommend the following programs to increase geological confidence on the deposit. Undertake sizing analysis and ICP (or other suitable low Fe₂O₃ detection limit assay) on samples from 2021 & 2022 programs, and maintaining this on future drill programs. In particular, the B1 horizon needs to be checked and tested in the interdune locations by drilling, or geological observations with hand augering to assist better defining geological continuity and support potential upgrade areas. Further study stages may require an improved understanding of environmental and cultural constraints (currently being identified through an EIS) relevant to the development of the deposit. Maintain regular bulk density measurements in future drill programs. Complete mineralogical analysis on Fe bearing minerals (such as surface coats, and inclusions) within the silica sands, and with respect to the relevant size fractions. Establishment of a geometallurgical model to underpin the relationship between head grade and amenability to processing. 				

Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151

DEMAND.

diatreme.com.au

+61733972222

Page 23 of 49

Criteria	Explana	ation	Commentary
			 Submission of samples for umpire checks and bulk density assessment, is underway. Testing of lateral extensions of the deposit toward the Southeast Maintain the routine use of Certified Reference Materials (CRMs) to monitor and validate assay accuracy for primary and deleterious element Geochemical analysis of the +710µm and -106µm fractions Maintain regular collection of bulk density measurements to support accurate tonnage estimation. Verify and refine the interpretation of topsoil thickness across the resource area, considering the observed variability in vegetation density.

SECTION 3: ESTIMATION AND REPORTING OF MINERAL RESOURCES

Criteria	Explanation		Commentary						
	Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used.	 The Mineral Resource Estimate for the Si2 Deposit is based on information developed by CSHPL. Mr Watson and Mi Ainslie consider it appropriate and reasonable for the purpose of estimating Mineral Resources in accordance with the guidelines of the JORC Code (2012). The data used for resource estimation, includes but was not limited to: Drillhole collar information, including total hole depths; Drillhole lithological logging data; Sample data, including sample intervals and assay results Metallurgical testwork results; Density measurements; Quality Assurance/Quality Control (QAQC) data. Data validation procedures included checks on collar locations, assay results against laboratory certificates, lithological coding consistency, and QAQC performance. No material data errors were identified. 						
	Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case.	• The Competent Person (Mr Ainslie) completed a site visit to the Si2 Deposit on 18 October 2022, The Competent Person (Mr Watson) completes quarterly site visits throughout 2021-2025. During the visits, active drilling and sampling procedures were observed, and field observations were made of the dune field characteristics. The site visit confirmed that drilling practices, sampling methods, and geological interpretations were consistent with the data provided.						
	Geological interpretation •	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	• The Si2 Deposit is located within the Cape Bedford–Cape Flattery Dune Field. Silica sand mineralisation is predominantly hosted within the trailing arms and apices of elongate parabolic aeolian dunes. sit.						

AUSTRALIAN SANDS. UNIVERSAL DEMAND.

DIATREME RESOURCES LIMITED | ABN 33 061 267 061 | ASX:DRX

Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151

diatreme.com.au

+61733972222

Page **24** of **49**

Criteria	Explana	tion			Commentary							
		 Nature of the assumption The effect, interpretation The use of grade and of grade and 	e data used and of any s made. f any, of alternative ons on Mineral Resource eology in guiding and Mineral Resource affecting continuity both I geology.	• • •	The Mineral Resource is generally constrained to these dune features, which are clearly imagery. Drilling often intersects overlapped dunal features, which are not represented by photography. Interdunal areas are often devoid of thick aeolian sand and predominantly exhibit expose bedrock, or other sediments. Where drilling has intersected obscured silica sand mineral has been included in the geological model. There is an observable basement high coincident with the topographic high towards the dunes. The interpreted geology of the Si2 Deposit is considered robust, and alternative interpreted materially impact the Mineral Resource Estimate.	defined by surface LiDAR by LiDAR or aerial ed B1 horizons, clays, alisation, the sampled sand coastline on the western tations are unlikely to						
	Dimensions	The extent a Mineral Res length (alon plan width, to the upper Mineral Res	nd variability of the ource expressed as g strike or otherwise), and depth below surface r and lower limits of the ource.	٠	 The Mineral Resource Estimate spans a total area of approximately 1400 hectares with varying dimensions maximum length along strike of 9.5 km and a width up to 2.7 km. The average thickness of the resource metres, though it can reach up to 55 metres. The top of the resource varies in elevation from 22 mRL to corresponding to the topography, while the bottom ranges from 16 mRL to 96.5 mRL, aligning with the resource basement level. 							
	Estimation and modelling techniques	 The nature a the estimation and key assist treatment of domaining, and maximule extrapolation computer a method was description and parame The availabid previous est production Mineral Rest appropriate The assumption recovery of Estimation of or other non economic st for acid minin characteristic 	and appropriateness of on technique(s) applied umptions, including f extreme grade values, interpolation parameters um distance of n from data points. If a ssisted estimation s chosen include a of computer software ters used. lity of check estimates, timates and/or mine records and whether the ource estimate takes account of such data. otions made regarding by-products. of deleterious elements I-grade variables of ignificance (e.g. sulphur e drainage ation).	• • • • •	 The Mineral Resource Estimate was prepared by modelling the high-purity silica sand ur surface was surveyed using LIDAR techniques to a resolution of 1 m horizontally and 10 accuracy. The top surface of the resource volume was set at 0.3 m below the LIDAR top base of the topsoil. The base of the resource was constructed from: The base depth of the A2 unit determined from drilling The depth of the groundwater table determined from drilling Interpretation of the dune edge from LiDAR survey and aerial imagery The resource boundary was established by geological interpretation and analysis of surf LIDAR and aerial imagery. Both assayed drill samples and geological observations from to interpret the top and base of the mineralised profile Coordinates of drill-hole data and the block model were transformed so each dune base RL, accounting for significant RL variations and dune thickness variability across the depresentation to reflect podsolisation influences and reduce vertical smearing. Grades were semi-soft vertical domains (upper, middle, and lower sands) to capture observed vertical estimation. Hand auger holes were excluded from grade estimation due to concerns about sample of with the drilling method. These holes were predominantly located at the edges of the deintervals were geologically interpreted to guide and constrain the resource boundaries. The atched the interdunal level, further validating the geological interpretation. 	it (A2). The topography cm relative vertical ography, representing the ace dune extents visible in hand auger holes were used e aligned to a single flattened posit. This allowed grade re interpolated within three al grade variations. After with estimates run using no material bias from the contamination associated posit, and their mineralised These intervals closely lel was set to the average d as 25 m across strike by 25						

DIATREME RESOURCES LIMITED ABN 33 061 267 061 ASX:DRX

Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151 Page 25 of 49

diatreme.com.au

+61733972222

Criteria	Explanation		Commentary	
	•	In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	 m along strike by 3 m vertical, which were then subdivided into sub-blocks of 1 x 1 x 1 m to b geological model. All drillhole data were composited to nominal 3 m intervals prior to grade estimation. Grade completed using ordinary kriging, and a validation check estimate was completed using inversion squared. The Ordinary Kriging (OK) method was used to estimate the grades and populate th Fe₂O₃, TiO₂, Al₂O₃ and LOI. The grade estimation process was conducted over 4 (four) seque defined by specific search radii that help to guide to the categories of 'Measured', 'Indicated' resource classification. This methodology involved setting the major sample search paramethorizontally in the average strike direction of the dune (315 degrees), the semi-major search horizontal (perpendicular to the major search direction) across the dune, and the minor sear vertical. The search distances used for each pass were derived from variography studies, ensinterpolation aligns with the spatial characteristics of the geological data. All passes used a with the maximum number of samples set at 16 and required a minimum of two drillholes for estimation. Block discretisation of 4 x 4 x 4 (X,Y, Z) was employed. 	best fit the undulating estimation was erse distance weighting he block model for SiO ₂ , ential passes, each d' and 'Inferred' in eters for each block n direction is also set irch direction is set to nsuring that the u quadrant-based search for reliable grade
	Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	• Tonnages are estimated on a dry basis. Bulk density testwork was completed on dried and c supporting a dry bulk density of 1.65 tonnes per cubic metre, which is typical for silica sand o	compacted samples, deposits.
	Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	 No cut-off grade was applied during compositing, block estimation, or reporting. The Mineral from all classified blocks with interpolated SiO₂ grades. While no cut-off was applied, a minimum SiO₂ grade of approximately 98.5% was one of sev when defining the base of the geological model in drillholes. Geological domains were based SiO₂ grade, sand colour, and contaminant levels. Minor internal intervals with SiO₂ grades below 98.5% were included within the high-purity s did not materially affect the overall quality of the Mineral Resource. 	al Resource is reported everal factors considered ad on a combination of silica domain where they
	Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining	 The 2023 Northern Silica Scoping Study identified that mining operations will involve extracting from the face using a Wheel Loader. Once extracted, the material will be transported to the pathrough a conveyor system or via a slurry pipeline. The Scoping Study excluded selective mining. The entire face will be sampled. Some intervals of less than 98.5% SiO₂ are included within the high purity silica unit however dilute estimation. The upper 300 mm is likely to be topsoil and reserved for rehabilitation purposes. This overbur upper boundary of the estimated geological domain and is not included in the Mineral Resource. 	ting material directly processing plant either er these do not materially burden surface forms the urce Estimate.

DIATREME RESOURCES LIMITED | ABN 33 061 267 061 | ASX:DRX

Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151 Page 26 of 49

diatreme.com.au

+61733972222

Criteria	Explana	tion		Commentary							
		methods ar estimating not always the case, th with an exp the mining a	nd parameters when Mineral Resources may be rigorous. Where this is is should be reported lanation of the basis of assumptions made.								
	Metallurgical factors or assumptions	 The basis for predictions amenability as part of the reasonable economic economic economic economic potential metallurgic and paramecent reporting Metallurgic always be reporting services and paration case, this services and paration metallurgic 	or assumptions or regarding metallurgical /. It is always necessary ne process of determining prospects for eventual extraction to consider etallurgical methods, but otions regarding al treatment processes eters made when ineral Resources may not igorous. Where this is the hould be reported with an n of the basis of the al assumptions made.	•	Metallurgical testwork completed to-date confirms the silica sand resource is readily amenable to upgrading by screening, density separation, attritioning, and magnetic separation to produce a low iron, high purity silica sand for photovoltaic applications (solar panels). Metallurgical testwork completed to date across the NSP has been benchtop in nature. However the benchtop methods are agreeable with bulk testwork undertaken at the Cape Flattery Silica deposit, and the Galalar Silica Sand project. These initial metallurgical test results clearly demonstrate that low iron, high purity silica sands are potentially deliverable. As final products may require tight specifications, further systematic metallurgical testing should be considered from future infill and grade control drilling.						
	Environmental factors or assumptions	 Assumption possible was disposal op necessary a determining for eventua consider th impacts of operation. N determinati environmer for a greenf always be v of early com potential er should be r aspects hav this should explanation assumption 	ns made regarding aste and process residue tions. It is always as part of the process of greasonable prospects l economic extraction to e potential environmental the mining and processing While at this stage the ton of potential ntal impacts, particularly ields project, may not vell advanced, the status isideration of these nvironmental impacts eported. Where these ve not been considered be reported with an of the environmental ns made.	•	 CSHPL is currently undertaking an EIS on the Northern Silica Project. The study has not yet been completed, this Mineral Resource Estimate does not include a detailed environmental assessment at the Si2 Deposit, although early findings are considered material. Based on the nature of the deposit and proposed mining method, environmental factors are not expected to present significant barriers to eventual economic extraction. The 2023 Northern Silica Scoping Study identified in a processing flowsheet where high Fe, oversize, low grade, heavy minerals or slimes are rejected from product streams. The material will be stacked to form a replacement dune as a post mining surface, suitable for rehabilitation. The coagulants and flocculants used in processing are considered to be environmentally neutral. Early-stage considerations indicate that the proposed mining and processing activities are likely to have manageable environmental impacts, subject to future detailed assessments. The Si2 dune system lies above a perched aquifer, and a deeper dune aquifer which are hydrogeologically connected to window lakes within the dune fields. At present there is no relationship established between mining and the water levels of these lakes. The Si2 deposit area is proximal to several wetlands, vegetation types in the dune area are considered habitat for the Ctenotus rawlinsonii skink, and there are several protected plant species in the area such as Xanthostemon arenius, Acacia solenota, Dendrobium johannis, Myrmecodia beccarii. 						

DIATREME RESOURCES LIMITED | ABN 33 061 267 061 | ASX:DRX

Coorparoo, Qld, 4151 diatreme.com.au

Unit 8, 55–61 Holdsworth St

+61733972222

Page 27 of 49

Criteria	Explanatio	n			
	Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc.), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 		Bulk density was determined through laboratory testwork on dried and compacted sam across the Si2 Deposit. A total of 132 samples were tested. The dry bulk density was ca the measured samples, and a value of 1.65 tonnes per cubic metre was adopted for ton spaces and porosity are not considered material given the aeolian dune nature of the de	bles collected from drilling lculated as the average of nage estimation. Void posit.
	Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	•	The Mineral Resource has been classified according to the principles of the JORC Code has been divided into Measured, Indicated, and Inferred categories, corresponding to a h of confidence in the geological and grade continuity of the resource. The classification in including: depth of geological knowledge of the deposit, geological and mineralisation co and the results of quality control measures. The classification also considers drill hole logging, analytical results from drill samples, confidence in geological and grade continuity, along with recent metallurgical/process to search and interpolation parameters, recently completed density data, and consideration 49 are factored into the classification process. All relevant factors have been considered and the result reflects Mr Watson and Mr Ains	(2012 edition). The resource high, moderate and low level tegrates several key factors, ontinuity, drill hole spacing, geostatistical analysis, and est outcomes. Additionally, ons from JORC Code Clause die's view of the deposit.
	Audits or reviews.	 Whether the result appropriately reflects the Competent Person's view of the deposit. The results of any audits or reviews of Mineral Resource estimates. 		Internal reviews of the Mineral Resource Estimate were conducted and confirmed that t aligned with industry standards.	he results were robust and
	Discussion of relative accuracy/ confidence	• Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify	•	The Mineral Resource classification reflects the Competent Person's assessment of the distribution of mineralisation and grade variability across the Si2 Deposit on a global bas. A high degree of confidence is placed in the geological interpretation, supported by the k of the aeolian dune sands. Consistently high SiO ₂ grades and strong geological continuit across all drillholes. A detailed LiDAR survey provides high confidence in the volume est The interpreted geology of the Si2 Deposit is considered robust, and alternative interprete materially impact the Mineral Resource Estimate.	e confidence in the is. nown formation processes y have been observed imation of the dunes. rations are unlikely to

DIATREME RESOURCES LIMITED | ABN 33 061 267 061 | ASX:DRX

+61 7 3397 2222 F

Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151 Page 28 of 49

Criteria	Explanation	Commentary	
	 the rel within such a approp of the relativ the es The st wheth estima releva releva evalua includ proced These accura estima prodution 	 No production data is available for comparison. Estimation was based on i within geological domains guided by dune morphology and lithological logg of the accuracy and confidence of stimate. tatement should specify the rit relates to global or local ates, and, if local, state the int tonnages, which should be int to technical and economic ation. Documentation should le assumptions made and the dures used. tatements of relative accuracy of relative acy and confidence of the ate should be compared with ction data, where available. 	nterpolation of composited drillhole data

+61733972222

Page **29** of **49**

Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151

diatreme.com.au

APPENDIX B: TABLE OF MATERIAL DRILLHOLES

		Col	lar Inforn	nation				Mineralise	ed Interval	C	Grain Size Fracti	ons	<0.71mm >0.7	106mm Grade			Head	d Grade		
	Northing	Easting	RL				Depth	From	То	<0.71mm	<0.71mm >0.106mm	>0.106mm	Al ₂ O ₃	Fe ₂ O ₃	SiO ₂	Fe ₂ O ₃	TiO ₂	Al ₂ O ₃	LOI	Total
Hole ID	GDA 2020 Zone 55	GDA 2020 Zone 55	m	Azimuth	Dip	Notes	m	m	m	%	%	%	%	%	%	%	%	%	%	%
AH001	8342968	306235	27.7	0°	-90°	1	2	0.3	2						99.15	0.07	0.53	0.12	0.09	100.05
PLT002	8342658	306128	32.7	0°	-90°	1	3.5	0.3	3.5						99.02	0.08	0.2	0.08	0.19	99.65
PLT003	8342713	306306	30.8	0°	-90°	1	6	0.3	6						99.44	0.04	0.08	0.05	0.08	99.71
PLT004	8342753	306470	28.8	0°	-90°	1	5	0.3	5						99.15	0.09	0.25	0.11	0.12	99.8
PLT005	8342691	306640	31.2	0°	-90°	1	4	0.3	4						98.98	0.1	0.22	0.06	0.2	99.63
PLT006	8342702	306874	31.2	0°	-90°	1, 2	2													
PLT007	8342825	307012	31.4	0°	-90°	1	2	0.3	2						99.18	0.02	0.04	0.04	0.41	99.71
PLT008	8342934	307025	30.9	0°	-90°	1	2	0.3	2						99.8	0.03	0.04	0.05	0.08	100.05
PLT009	8343040	307169	31.1	0°	-90°	1	2	0.3	2						99.31	0.04	0.07	0.03	0.19	99.67
PLT010	8343190	307275	31.3	0°	-90°	1	2.5	0.3	2.5						99.42	0.02	0.03	0.03	0.17	99.7
PLT011A	8343331	307086	33.8	0°	-90°	1, 3	4	0.3	4						99.15	0.09	0.17	0.04	0.13	99.62
PLT011B	8343326	307090	33.3	0°	-90°	1	6	0.3	6						98.99	0.11	0.22	0.07	0.05	99.5
PLT012	8342909	306693	33.7	0°	-90°	1	5.7	0.3	5.7						99.05	0.05	0.09	0.07	0.14	99.44
PLT057	8342503	306740	30.9	0°	-90°	1	2.5	0.3	2.5						99.17	0.06	0.15	0.06	0.2	99.7
PLT058	8342398	306945	32.4	0°	-90°	1	2.8	0.3	2.8						99.26	0.05	0.11	0.07	0.26	99.78
PLT059	8342263	307090	31.9	0°	-90°	1	1.7	0.3	1.7						99.11	0.05	0.13	0.07	0.39	99.77
PLT060	8342196	307299	35.7	0°	-90°	1	5	0.3	5						99.15	0.11	0.21	0.1	0.18	99.8
PLT061	8342014	307422	33.5	0°	-90°	1	3	0.3	3						99.32	0.06	0.1	0.1	0.11	99.71
PLT062	8341948	307592	37.8	0°	-90°	1	6.7	0.3	6.7						99.4	0.05	0.09	0.07	0.14	99.79
PLT063	8341783	307739	38.2	0°	-90°	1	7.5	0.3	7.5						99.22	0.1	0.16	0.08	0.16	99.78
PLT064	8341689	307909	39.5	0°	-90°	1	8.5	0.3	8.5						99.62	0.03	0.05	0.05	0.14	99.93
PLT065	8341524	308035	46.1	0°	-90°	1	17	0.3	14						99.66	0.04	0.08	0.06	0.13	99.99
PLT066	8341340	307874	53.7	0°	-90°	1	23.5	0.3	23.5						99.62	0.07	0.11	0.07	0.1	99.99
PLT067	8341466	307691	49.7	0°	-90°	1	19.5	0.3	19.5						99.4	0.13	0.22	0.08	0.18	100.06

+61733972222

Page **30** of **49**

AUSTRALIAN SANDS. UNIVERSAL DEMAND.

Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151

		Col	lar Inforn	nation				Mineralise	ed Interval	C	Grain Size Fraction	ons	<0.71mm >0.3	L06mm Grade			Head	d Grade		
	Northing	Easting	RL				Depth	From	То	<0.71mm	<0.71mm >0.106mm	>0.106mm	Al ₂ O ₃	Fe_2O_3	SiO ₂	Fe_2O_3	TiO ₂	Al ₂ O ₃	LOI	Total
Hole ID	GDA 2020 Zone 55	GDA 2020 Zone 55	m	Azimuth	Dip	Notes	m	m	m	%	%	%	%	%	%	%	%	%	%	%
PLT068	8341199	308033	51.9	0°	-90°	1	32.5	0.3	16						99.77	0.06	0.09	0.08	0.09	100.1
PLT069	8341078	307568	74.3	0°	-90°	1	40	0.3	40						99.04	0.24	0.33	0.11	0.15	99.95
PLT070	8342335	305852	41.7	0°	-90°	1	10	0.3	10						99.32	0.12	0.19	0.08	0.08	99.84
PLT071	8342239	305916	40.6	0°	-90°	1	9.7	0.3	9.7						99.62	0.05	0.06	0.05	0.11	99.89
PLT072	8341992	305924	46	0°	-90°	1	15.5	0.3	15.5						99.24	0.09	0.14	0.07	0.22	99.82
PLT073	8342028	306133	37	0°	-90°	1	8.5	0.3	8.5						99.64	0.06	0.09	0.06	0.07	99.96
PLT074	8341881	306057	41.2	0°	-90°	1	10.8	0.3	10.8						99.49	0.13	0.21	0.1	0.11	100.09
PLT075	8341683	306120	41.1	0°	-90°	1	11	0.3	11						99.49	0.09	0.15	0.09	0.14	100.02
PLT076	8341551	306266	34.2	0°	-90°	1	4.4	0.3	4.4						99.68	0.03	0.05	0.07	0.15	100
PLT077	8341495	306459	36.3	0°	-90°	1	7	0.3	7						99.22	0.11	0.19	0.08	0.13	99.77
PLT078	8341360	306596	34.1	0°	-90°	1	6	0.3	6						99.36	0.05	0.16	0.06	0.13	99.79
PLT079	8341253	307443	65.7	0°	-90°	1	37	0.3	28						99.18	0.19	0.28	0.1	0.1	99.92
PLT080	8341408	307348	58.2	0°	-90°	1	31	0.3	29						99.25	0.09	0.11	0.09	0.06	99.62
PLT081	8341496	307161	56.6	0°	-90°	1, 3	3	0.3	3						98.85	0.2	0.35	0.1	0.12	99.7
PLT081A	8341491	307167	57.1	0°	-90°	1	27	0.3	22						99.28	0.14	0.19	0.07	0.12	99.84
PLT082	8341625	307014	50.2	0°	-90°	1	22	0.3	22						99.43	0.08	0.09	0.08	0.14	99.85
PLT083	8341748	306847	49.4	0°	-90°	1	20.5	0.3	20.5						99.43	0.11	0.19	0.07	0.11	99.98
PLT084	8341870	306708	49.1	0°	-90°	1	20	0.3	20						99.54	0.06	0.1	0.06	0.14	99.95
PLT085	8342503	306552	30.3	0°	-90°	1	3	0.3	3						98.83	0.04	0.04	0.25	0.3	99.54
PLT086	8342301	306544	30.2	0°	-90°	1	3	0.3	3						99.33	0.05	0.08	0.1	0.34	99.95
PLT087	8342102	306612	31	0°	-90°	1	3	0.3	3						98.95	0.13	0.29	0.12	0.47	100.05
PLT088	8340916	307690	66.6	0°	-90°	1	35	0.3	35						99.46	0.13	0.16	0.08	0.13	100.02
PLT089	8340766	307833	58.8	0°	-90°	1	26	0.3	26						99.54	0.08	0.11	0.07	0.12	99.96
PLT090	8340691	307998	68.3	0°	-90°	1	30	0.3	30						99.31	0.12	0.18	0.08	0.11	99.85
PLT091	8341067	308189	48	0°	-90°	1	26.5	0.3	12						99.01	0.17	0.28	0.1	0.09	99.72
PLT092	8340920	308340	45.3	0°	-90°	1	14.5	0.3	8						99.16	0.18	0.32	0.11	0.13	99.98
PLT093	8340772	308511	44.8	0°	-90°	1	14.5	0.3	10						99.39	0.14	0.24	0.11	0.17	100.13

Page **31** of **49**

Unit 8, 55–61 Holdsworth St

		Col	lar Inforn	nation				Mineralise	ed Interval	(Grain Size Fractio	ons	<0.71mm >0.3	106mm Grade			Head	d Grade		
	Northing	Easting	RL				Depth	From	То	<0.71mm	<0.71mm >0.106mm	>0.106mm	Al ₂ O ₃	Fe ₂ O ₃	SiO ₂	Fe ₂ O ₃	TiO ₂	Al ₂ O ₃	LOI	Total
Hole ID	GDA 2020 Zone 55	GDA 2020 Zone 55	m	Azimuth	Dip	Notes	m	m	m	%	%	%	%	%	%	%	%	%	%	%
PLT094	8341354	307052	54.8	0°	-90°	1	26	0.3	26						99.18	0.12	0.15	0.08	0.08	99.66
PLT095	8341250	306983	60.3	0°	-90°	1	32	0.3	32						99.08	0.12	0.18	0.07	0.15	99.65
PLT096	8341213	306829	54.9	0°	-90°	1	26	0.3	26						99.31	0.07	0.11	0.05	0.16	99.72
PLT097	8341133	306930	63.4	0°	-90°	1	35	0.3	35						99.15	0.11	0.15	0.07	0.12	99.64
PLT098	8341119	307020	70.5	0°	-90°	1	42.5	0.3	42.5						99.14	0.09	0.13	0.06	0.14	99.58
PLT099	8341008	306929	71.1	0°	-90°	1, 3	42	0.3	42						99.21	0.08	0.11	0.06	0.08	99.56
PLT100	8341005	307049	68.5	0°	-90°	1	39.5	0.3	39.5						99.21	0.11	0.15	0.07	0.09	99.68
PLT101	8340923	306975	66.6	0°	-90°	1	36.5	0.3	36.5						99.35	0.08	0.11	0.06	0.1	99.75
PLT102	8340830	307040	58.6	0°	-90°	1	27	0.3	27						99.22	0.11	0.18	0.07	0.1	99.72
PLT103	8340756	307115	56.8	0°	-90°	1	25	0.3	25						99.42	0.11	0.18	0.06	0.1	99.92
PLT104	8340589	308561	63.3	0°	-90°	1	35	0.3	33						99.3	0.1	0.11	0.08	0.12	99.77
PLT105	8340432	308685	49.7	0°	-90°	1	26	0.3	23						99.51	0.09	0.16	0.08	0.13	100.07
PLT106	8340399	308891	42.3	0°	-90°	1	14	0.3	14						99.42	0.05	0.07	0.08	0.1	99.77
PLT107	8340251	309031	38.7	0°	-90°	1	10.5	0.3	10.5						99.12	0.09	0.15	0.09	0.12	99.6
PLT108	8340062	309147	52.2	0°	-90°	1	24	0.3	24						99.19	0.12	0.2	0.09	0.07	99.72
PLT109	8339886	309285	67.1	0°	-90°	1	39	0.3	39						99.02	0.17	0.25	0.09	0.09	99.7
PLT110	8339786	309472	69.8	0°	-90°	1	42	0.3	42						99.2	0.14	0.19	0.09	0.08	99.78
PLT111	8339677	309648	51.2	0°	-90°	1	23.5	0.3	23.5						99.24	0.09	0.1	0.08	0.13	99.71
PLT112	8339537	309796	50.1	0°	-90°	1	22	0.3	22						99.36	0.08	0.08	0.07	0.13	99.79
PLT113	8339410	309957	41.8	0°	-90°	1	14.5	0.3	14.5						99.22	0.1	0.15	0.09	0.08	99.7
PLT114	8339282	310121	44.5	0°	-90°	1	17.5	0.3	17						99.17	0.13	0.2	0.11	0.11	99.78
PLT115	8339163	310331	56.2	0°	-90°	1	29	0.3	29						98.86	0.24	0.36	0.12	0.1	99.77
PLT116	8339016	310475	48.1	0°	-90°	1	22	0.3	22						99.36	0.1	0.14	0.08	0.11	99.84
PLT117	8338868	310614	44	0°	-90°	1	18.5	0.3	18.5						99.26	0.13	0.16	0.11	0.1	99.85
PLT118	8338620	310478	53.3	0°	-90°	1	28	0.3	25						99.41	0.07	0.06	0.08	0.08	99.72
PLT119	8338746	310316	63	0°	-90°	1	37	0.3	35						99.36	0.07	0.07	0.07	0.12	99.72
PLT120	8338882	310170	55.3	0°	-90°	1	29.5	0.3	29.5						99.39	0.08	0.11	0.07	0.12	99.81

Page 32 of 49

Unit 8, 55–61 Holdsworth St

		Collar Information						Mineralise	ed Interval	0	Grain Size Fracti	ons	<0.71mm >0.1	L06mm Grade			Head	d Grade		
	Northing	Easting	RL				Depth	From	То	<0.71mm	<0.71mm >0.106mm	>0.106mm	Al ₂ O ₃	Fe ₂ O ₃	SiO ₂	Fe ₂ O ₃	TiO ₂	Al ₂ O ₃	LOI	Total
Hole ID	GDA 2020 Zone 55	GDA 2020 Zone 55	m	Azimuth	Dip	Notes	m	m	m	%	%	%	%	%	%	%	%	%	%	%
PLT121	8339029	310024	51.1	0°	-90°	1	25	0.3	25						99.17	0.12	0.17	0.09	0.21	99.81
PLT122	8339171	309871	54.5	0°	-90°	1	29	0.3	29						99.45	0.08	0.1	0.07	0.12	99.86
PLT123	8339299	309731	56.5	0°	-90°	1	32	0.3	31						99.5	0.07	0.09	0.07	0.12	99.87
PLT124	8339449	309604	62.5	0°	-90°	1	40	0.3	40						99.1	0.19	0.31	0.11	0.16	99.94
PLT125	8339606	309477	59.1	0°	-90°	1	34	0.3	34						99.49	0.07	0.11	0.07	0.1	99.89
PLT126	8339726	309306	68.2	0°	-90°	1	42	0.3	42						99.43	0.12	0.17	0.08	0.09	99.97
PLT127	8339622	309236	62.5	0°	-90°	1	30	0.3	29						99.31	0.17	0.25	0.08	0.11	100.03
PLT128	8338612	310261	44.8	0°	-90°	1	12	0.3	10						99.48	0.06	0.08	0.08	0.13	99.89
PLT129	8338772	310109	59.5	0°	-90°	1	31	0.3	29						99.54	0.07	0.09	0.08	0.09	99.93
PLT130	8338278	310236	50.5	0°	-90°	1	21	0.3	18						99.5	0.07	0.1	0.1	0.07	99.89
PLT131	8338413	310091	54.9	0°	-90°	1	21	0.3	19						99.17	0.1	0.14	0.07	0.09	99.61
PLT132	8338566	309971	59	0°	-90°	1	31	0.3	23						99.19	0.12	0.18	0.09	0.08	99.7
PLT133	8338763	309885	63.5	0°	-90°	1	36.8	0.3	29						99.03	0.14	0.21	0.11	0.09	99.65
PLT134	8338903	309742	66.7	0°	-90°	1	44.5	0.3	38						99.17	0.09	0.11	0.1	0.11	99.62
PLT135	8339045	309590	62.6	0°	-90°	1	33	0.3	29						99.21	0.08	0.11	0.11	0.11	99.66
PLT136	8339160	309427	62.7	0°	-90°	1	25	0.3	22						99.38	0.05	0.09	0.08	0.11	99.74
PLT137	8339287	309276	57.1	0°	-90°	1, 3	2	0.3	2						99.73	0.06	0.2	0.09	0.16	100.25
PLT243	8342658	307200	47.2	0°	-90°	1, 3	9	0.3	9						99.42	0.05	0.05	0.06	0.1	99.73
PLT244	8340676	307226	54.8	0°	-90°	1	23	0.3	23						99.28	0.06	0.1	0.07	0.1	99.67
PLT245	8340880	307340	61.3	0°	-90°	1	30	0.3	30						99.28	0.09	0.12	0.06	0.13	99.75
PLT246	8340772	307531	49.6	0°	-90°	1	17.7	0.3	17.7						99.31	0.08	0.13	0.08	0.14	99.8
PLT247	8341060	307196	59.8	0°	-90°	1	33	0.3	32						99.55	0.04	0.08	0.07	0.12	99.9
SI20001	8340578	308145	56.9	0°	-90°	1	21	0.3	19						99.13	0.17	0.23	0.12	0.08	99.85
SI20002	8340437	308281	58	0°	-90°	1	30	0.3	16						99.15	0.13	0.15	0.14	0.12	99.77
SI20003	8340267	308422	56.4	0°	-90°	1	15	0.3	13						99.09	0.17	0.19	0.16	0.1	99.8
SI20004	8340152	308572	59.7	0°	-90°	1	28	0.3	19						99.25	0.12	0.13	0.11	0.17	99.84
SI20005	8340039	308705	58.4	0°	-90°	1	31	0.3	19						99.31	0.11	0.12	0.14	0.21	99.95

Page **33** of **49**

AUSTRALIAN SANDS. UNIVERSAL DEMAND.

Unit 8, 55–61 Holdsworth St

		Col	lar Inforn	nation				Mineralise	ed Interval	(Grain Size Fractio	ons	<0.71mm >0.3	106mm Grade	Head Grade SiO2 Fe2O3 TiO2 Al2O3 LOI Total % % % % % % % 99.2 0.15 0.2 0.16 0.17 99.99 99.26 0.13 0.22 0.12 0.19 99.99						
	Northing	Easting	RL				Depth	From	То	<0.71mm	<0.71mm >0.106mm	>0.106mm	Al ₂ O ₃	Fe ₂ O ₃	SiO ₂	Fe ₂ O ₃	TiO ₂	Al_2O_3	LOI	Total	
Hole ID	GDA 2020 Zone 55	GDA 2020 Zone 55	m	Azimuth	Dip	Notes	m	m	m	%	%	%	%	%	%	%	%	%	%	%	
SI20006	8339894	308832	52.3	0°	-90°	1	18	0.3	16						99.2	0.15	0.2	0.16	0.17	99.95	
SI20007	8339714	308948	56.1	0°	-90°	1	21	0.3	12						99.26	0.13	0.22	0.12	0.19	99.99	
SI20008	8339610	308940	63.3	0°	-90°	1	24	0.3	23						99.18	0.14	0.16	0.17	0.23	99.95	
SI20009	8339410	309149	64.6	0°	-90°	1	24	0.3	21						99.43	0.08	0.13	0.09	0.16	99.96	
SI20010	8339299	309268	58.2	0°	-90°	1	21	0.3	16						99.37	0.06	0.08	0.1	0.13	99.8	
SI20011	8339687	308773	44.4	0°	-90°	1	21	0.3	10						99.56	0.06	0.07	0.11	0.15	100.02	
SI20012	8339815	308551	59.3	0°	-90°	1	36	0.3	22						99.43	0.07	0.12	0.12	0.12	99.94	
SI20013	8339940	308175	62.6	0°	-90°	1	30	0.3	30						99.55	0.04	0.05	0.08	0.08	99.86	
SI20014	8340021	308100	66	0°	-90°	1	39	0.3	36						99.55	0.07	0.09	0.07	0.09	99.94	
SI20015	8340179	307848	56.3	0°	-90°	1	30	0.3	30						99.34	0.08	0.12	0.14	0.13	99.88	
SI20016	8340356	307613	59.3	0°	-90°	1	30	0.3	30						99.27	0.11	0.15	0.1	0.13	99.86	
SI20017	8340427	307511	61.8	0°	-90°	1	30	0.3	30						99.23	0.1	0.17	0.09	0.14	99.82	
SI20018	8340566	307373	55.3	0°	-90°	1	27	0.3	27						99.41	0.06	0.1	0.09	0.14	99.86	
SI20019	8336235	310064	107.4	0°	-90°	1	54	0.3	54						99.09	0.19	0.24	0.12	0.17	99.88	
SI20020	8336619	309877	99.6	0°	-90°	1	40	0.3	37						99.34	0.1	0.11	0.12	0.19	99.94	
SI20021	8336915	309662	79	0°	-90°	1	21	0.3	18						99.23	0.12	0.16	0.14	0.17	99.91	
SI20022	8337162	309350	74	0°	-90°	1	21	0.3	18						99.42	0.08	0.11	0.09	0.11	99.9	
SI20023	8337451	309132	75.9	0°	-90°	1	36	0.3	31						99.38	0.08	0.12	0.14	0.12	99.93	
SI20024	8337756	308905	63.8	0°	-90°	1	27	0.3	25						99.19	0.11	0.19	0.17	0.2	99.95	
SI20025	8338022	308704	74.9	0°	-90°	1	39	0.3	36						99.25	0.12	0.2	0.12	0.16	99.95	
SI20026	8338229	308519	53.3	0°	-90°	1	21	0.3	18						99.36	0.11	0.15	0.13	0.18	100	
SI20027	8338466	308283	57.1	0°	-90°	1	27	0.3	27						99.41	0.11	0.15	0.1	0.14	99.98	
SI20028	8338754	308278	68.5	0°	-90°	1	36	0.3	36						99.4	0.09	0.13	0.1	0.13	99.94	
SI20029	8338998	308085	51.9	0°	-90°	1	21	0.3	21						99.36	0.12	0.2	0.1	0.12	99.97	
SI20030	8339382	307940	48.9	0°	-90°	1	18	0.3	18						99.35	0.1	0.17	0.09	0.11	99.88	
SI20031	8339727	307770	60.7	0°	-90°	1	30	0.3	30						99.39	0.08	0.11	0.08	0.17	99.92	
SI20032	8339539	308204	50.3	0°	-90°	1	30	0.3	30						99.31	0.08	0.12	0.08	0.17	99.85	

Page **34** of **49**

Unit 8, 55–61 Holdsworth St

AUSTRALIAN SANDS. UNIVERSAL DEMAND.

Coorparoo, Qld, 4151 diatreme.com.au

		Collar Information						Mineralis	ed Interval	(Grain Size Fracti	ons	<0.71mm >0.	106mm Grade			Head	d Grade		
	Northing	Easting	RL				Depth	From	То	<0.71mm	<0.71mm >0.106mm	>0.106mm	Al ₂ O ₃	Fe ₂ O ₃	SiO ₂	Fe ₂ O ₃	TiO ₂	Al ₂ O ₃	LOI	Total
Hole ID	GDA 2020 Zone 55	GDA 2020 Zone 55	m	Azimuth	Dip	Notes	m	m	m	%	%	%	%	%	%	%	%	%	%	%
SI20033	8339245	308496	44.1	0°	-90°	1	9	0.3	5						99.16	0.07	0.11	0.08	0.15	99.64
SI20034	8338987	308770	42.3	0°	-90°	1	9	0.3	3						99.29	0.09	0.16	0.15	0.19	99.93
SI20035	8338649	309044	62.2	0°	-90°	1	21	0.3	19						99.62	0.05	0.06	0.08	0.11	99.98
SI20036	8338378	309266	77.5	0°	-90°	1	34	0.3	33						99.41	0.11	0.15	0.09	0.1	99.95
SI20037	8338154	309315	96.3	0°	-90°	1	48	0.3	48						99.26	0.11	0.14	0.11	0.18	99.89
SI20038	8337961	309689	67.5	0°	-90°	1	36	0.3	29						99.2	0.12	0.18	0.1	0.16	99.84
SI20039	8337728	309931	61.4	0°	-90°	1	21	0.3	19						99.34	0.07	0.11	0.1	0.12	99.82
SI20040	8337442	310118	71.7	0°	-90°	1	21	0.3	20						99.06	0.18	0.25	0.13	0.15	99.87
SI20041	8337128	310338	78.7	0°	-90°	1	21	0.3	18						99.3	0.1	0.15	0.11	0.18	99.92
SI20042	8336831	310528	108.2	0°	-90°	1	51	0.3	49						99.18	0.16	0.19	0.11	0.12	99.87
SI20043	8336887	310178	69.8	0°	-90°	1, 2	6													
SI20044	8337151	310050	69.7	0°	-90°	1	9	0.3	7						98.88	0.24	0.37	0.13	0.18	99.91
SI20045	8337344	309807	68.2	0°	-90°	1	12	0.3	6						99.24	0.16	0.2	0.13	0.16	99.99
SI20046	8337584	309566	75.5	0°	-90°	1	18	0.3	16						98.15	0.33	0.49	0.15	0.5	99.77
SI20047	8337817	309357	58.3	0°	-90°	1	9	0.3	6						99.18	0.11	0.19	0.13	0.28	99.96
SI20048	8338117	309141	58.2	0°	-90°	1	12	0.3	9						99.41	0.08	0.16	0.09	0.2	100.01
SI20049	8337505	309932	61.4	0°	-90°	1	24	0.3	14						99.34	0.12	0.15	0.11	0.2	99.98
SI20050	8337744	309606	66.9	0°	-90°	1	18	0.3	15						99.23	0.12	0.15	0.14	0.14	99.86
SI20051	8338361	308937	67.2	0°	-90°	1	21	0.3	19						99.17	0.14	0.2	0.13	0.16	99.89
SI20052	8338547	308608	60.6	0°	-90°	1	24	0.3	22						99.15	0.13	0.21	0.12	0.15	99.88
SI20053	8338149	308189	47.8	0°	-90°	1	18	0.3	16						99.19	0.07	0.13	0.12	0.15	99.82
SI20054	8339986	307709	40.4	0°	-90°	1	12	0.3	12						99.16	0.05	0.1	0.15	0.23	99.78
SI20055	8339588	308408	34.3	0°	-90°	1	15	0.3	6						99.3	0.09	0.18	0.08	0.15	99.93
SI20056	8339043	308921	44.1	0°	-90°	1	21	0.3	17						99.35	0.09	0.17	0.13	0.15	99.96
SI20057	8338544	309577	41.8	0°	-90°	1, 2	17													
SI20058	8337965	310117	38	0°	-90°	1, 2	15													
SI20059	8337465	310608	48.1	0°	-90°	1, 2	18													

Page 35 of 49

AUSTRALIAN SANDS. UNIVERSAL DEMAND.

Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151

DIATREME RESOURCES LIMITED | ABN 33 061 267 061 | ASX:DRX

		Collar Information						Mineralise	ed Interval	(Grain Size Fracti	ons	<0.71mm >0.3	106mm Grade			Head	d Grade		
	Northing	Easting	RL				Depth	From	То	<0.71mm	<0.71mm >0.106mm	>0.106mm	Al ₂ O ₃	Fe ₂ O ₃	SiO ₂	Fe ₂ O ₃	TiO ₂	Al ₂ O ₃	LOI	Total
Hole ID	GDA 2020 Zone 55	GDA 2020 Zone 55	m	Azimuth	Dip	Notes	m	m	m	%	%	%	%	%	%	%	%	%	%	%
SI20060	8337676	310388	38.4	0°	-90°	1,6	15	0.3	15						98.29	0.17	0.37	0.64	0.39	99.94
SI20061	8338299	309835	37.7	0°	-90°	1, 2	21													
SI20062	8338820	309305	35.6	0°	-90°	1	18	0.3	16						99.48	0.04	0.1	0.12	0.15	99.99
SI20063	8339308	308657	42.1	0°	-90°	1	21	0.3	19						98.46	0.09	0.17	0.32	0.71	99.87
SI20064	8339872	308425	49.9	0°	-90°	1	24	0.3	20						99.23	0.12	0.21	0.11	0.16	99.91
SI20065	8338040	310505	47.2	0°	-90°	1	21	0.3	13						99.37	0.08	0.14	0.11	0.18	99.99
SI20066	8337495	310852	67.7	0°	-90°	1	34	0.3	32						99.24	0.12	0.19	0.11	0.16	99.91
SI20067	8337770	310799	46.8	0°	-90°	1	15	0.3	10						99.2	0.17	0.31	0.14	0.16	100.06
SI20068	8338469	310389	39.7	0°	-90°	1	12	0.3	7						99.29	0.14	0.22	0.12	0.17	100.03
SI20069	8338015	310865	31.9	0°	-90°	1	12	0.3	11						99.15	0.05	0.1	0.14	0.28	99.84
SI20070	8337828	311098	30.4	0°	-90°	1, 2	12													
SI20071	8338238	310586	31	0°	-90°	1	15	0.3	9						99.18	0.05	0.07	0.11	0.3	99.83
SI20072	8338575	310881	35.2	0°	-90°	1	15	0.3	15						99.32	0.1	0.15	0.12	0.11	99.94
SI20073	8338123	311311	43.5	0°	-90°	1	24	0.3	24						98.62	0.33	0.47	0.17	0.14	99.89
SI20074	8338352	311101	38.2	0°	-90°	1	18	0.3	18						98.98	0.18	0.25	0.15	0.19	99.91
SI20075	8338727	310750	44.1	0°	-90°	1	21	0.3	21						99.08	0.17	0.23	0.14	0.14	99.89
SI20076	8341248	307662	46.2	0°	-90°	1	12	0.3	9						99.36	0.04	0.08	0.08	0.2	99.84
SI20077	8341375	307834	55.2	0°	-90°	1	27	0.3	26						99.41	0.07	0.1	0.08	0.08	99.79
SI20078	8341334	307879	53.5	0°	-90°	1	24	0.3	23						99.37	0.07	0.11	0.08	0.03	99.74
SI20079	8341608	308005	39.5	0°	-90°	1	12	0.3	12						99.11	0.04	0.07	0.13	0.16	99.56
SI20080	8341399	307996	39.9	0°	-90°	1	12	0.3	12						99.29	0.09	0.15	0.12	0.07	99.8
SI20081	8341278	307934	53.7	0°	-90°	1	21	0.3	19						99.33	0.07	0.1	0.1	0.05	99.72
SI20082	8341122	308130	44.4	0°	-90°	1	12	0.3	8						99.1	0.1	0.16	0.14	0.14	99.73
SI21001	8339979	309213	52.9	0°	-90°		30	0.3	30	0.1	95.3	4.6	0.07	0.108	99.27	0.17	0.2	0.12	0.14	99.99
SI21002	8339831	309383	60.8	0°	-90°		39	0.3	37	0.1	96.3	3.7	0.06	0.097	99.4	0.13	0.16	0.11	0.12	100
SI21003	8339731	309562	60.3	0°	-90°		36	0.3	36	0.2	97	2.8	0.065	0.105	99.32	0.14	0.17	0.11	0.17	99.98
SI21004	8339590	309728	51.6	0°	-90°		27	0.3	27	0.1	97.3	2.5	0.059	0.072	99.45	0.08	0.09	0.11	0.19	99.98

Page **36** of **49**

Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151

	Collar Information						Mineralis	ed Interval	C	Grain Size Fracti	ons	<0.71mm >0.3	106mm Grade			Неас	d Grade			
	Northing	Easting	RL			••••	Depth	From	То	<0.71mm	<0.71mm >0.106mm	>0.106mm	Al ₂ O ₃	Fe ₂ O ₃	SiO ₂	Fe_2O_3	TiO ₂	Al ₂ O ₃	LOI	Total
Hole ID	GDA 2020 Zone 55	GDA 2020 Zone 55	m	Azimuth	Ыр	Notes	m	m	m	%	%	%	%	%	%	%	%	%	%	%
SI21005	8339460	309875	50.7	0°	-90°		27	0.3	27	0.4	97.2	2.4	0.056	0.065	99.49	0.08	0.08	0.1	0.15	99.97
SI21006	8339317	310036	48.4	0°	-90°		24	0.3	24	0.1	97	3	0.067	0.092	99.39	0.12	0.13	0.12	0.15	99.97
SI21007	8339233	310245	44	0°	-90°		21	0.3	19	0.1	97.7	2.3	0.079	0.11	99.29	0.14	0.17	0.13	0.18	99.97
SI21008	8339094	310405	55.5	0°	-90°		33	0.3	33	0.1	96	4	0.093	0.176	99	0.25	0.34	0.14	0.16	99.98
SI21009	8338948	310535	44.5	0°	-90°		24	0.3	24	0.1	96.6	3.4	0.076	0.126	99.28	0.15	0.18	0.12	0.15	99.96
SI21010	8338784	310685	47.5	0°	-90°		30	0.3	29	0.1	97	2.9	0.092	0.124	99.28	0.13	0.14	0.13	0.2	99.95
SI21011	8338651	310818	40.1	0°	-90°		24	0.3	24	0.1	97.3	2.6	0.096	0.112	99.19	0.12	0.13	0.14	0.32	99.98
SI21012	8338525	310962	35.4	0°	-90°		15	0.3	15	0.1	97.3	2.6	0.101	0.13	99.32	0.13	0.14	0.15	0.18	99.98
SI21013	8338672	310392	65.8	0°	-90°		40	0.3	36	0.2	96.9	2.9	0.065	0.083	99.5	0.1	0.09	0.1	0.13	99.98
SI21014	8338826	310239	56.2	0°	-90°		33	0.3	33	0.1	95.6	4.3	0.106	0.091	99.41	0.11	0.13	0.16	0.14	99.98
SI21015	8338932	310086	58.1	0°	-90°		34	0.3	33	0.1	96.1	3.8	0.061	0.088	99.41	0.12	0.14	0.1	0.13	99.98
SI21016	8339096	309940	53	0°	-90°		30	0.3	29	0.3	96.5	3.2	0.155	0.069	99.16	0.14	0.18	0.16	0.17	99.87
SI21017	8339240	309811	56.4	0°	-90°		33	0.3	33	0.9	96.3	2.8	0.087	0.071	99.39	0.09	0.07	0.1	0.15	99.85
SI21018	8339370	309660	59.7	0°	-90°		42	0.3	40	0.2	95.9	4	0.072	0.087	99.4	0.09	0.1	0.09	0.13	99.87
SI21019	8339515	309541	58.2	0°	-90°		36	0.3	36	0.1	96.8	3.1	0.097	0.072	99.37	0.08	0.11	0.14	0.16	99.9
SI21020	8339650	309367	60	0°	-90°		36	0.3	36	0.2	96.6	3.2	0.061	0.098	99.44	0.11	0.16	0.09	0.13	99.97
SI21021	8339760	309253	69.3	0°	-90°		45	0.3	45	0.2	95.9	3.9	0.068	0.109	99.42	0.14	0.2	0.09	0.1	100.01
SI21022	8339691	309266	66.8	0°	-90°		42	0.3	39	0.2	96.1	3.7	0.062	0.086	99.48	0.11	0.13	0.08	0.1	99.95
SI21023	8339591	309216	63.3	0°	-90°		33	0.3	28	0.1	95.5	4.5	0.144	0.192	99.01	0.23	0.29	0.17	0.14	99.92
SI21024	8339643	309105	62.4	0°	-90°		27	0.3	24	0.1	92.9	7	0.082	0.119	99.21	0.16	0.2	0.12	0.12	99.86
SI21025	8339674	309035	58.8	0°	-90°		21	0.3	20	0.3	95.9	3.9	0.105	0.152	99.18	0.19	0.17	0.13	0.16	99.91
SI21026	8339818	308909	52.4	0°	-90°		15	0.3	13	0.1	97.3	2.8	0.545	0.228	99.26	0.15	0.15	0.11	0.15	99.88
SI21027	8339668	308894	64.2	0°	-90°		24	0.3	23	0.1	96.7	3.3	0.067	0.106	99.26	0.15	0.18	0.11	0.11	99.87
SI21028	8339552	308992	55.2	0°	-90°		30	0.3	15	0.2	95.7	4.1	0.079	0.087	99.38	0.11	0.12	0.13	0.17	99.96
SI21029	8339495	309084	60.3	0°	-90°		21	0.3	16	0.1	97.6	2.4	0.085	0.064	99.31	0.08	0.1	0.11	0.1	99.82
SI21030	8339360	309205	59	0°	-90°		21	0.3	16	0.1	98	2	0.063	0.045	99.35	0.05	0.06	0.11	0.11	99.86
SI21031	8339223	309323	49	0°	-90°		9	0.3	6	0.1	97.9	2	0.081	0.054	99.47	0.07	0.08	0.13	0.14	100.09

+61733972222

Page **37** of **49**

Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151

	Collar Information							Mineralis	ed Interval	C	Grain Size Fracti	ons	<0.71mm >0.3	106mm Grade			Неас	d Grade		
	Northing	Easting	RL				Depth	From	То	<0.71mm	<0.71mm >0.106mm	>0.106mm	Al ₂ O ₃	Fe ₂ O ₃	SiO ₂	Fe ₂ O ₃	TiO ₂	AI_2O_3	LOI	Total
Hole ID	GDA 2020 Zone 55	GDA 2020 Zone 55	m	Azimuth	Dip	Notes	m	m	m	%	%	%	%	%	%	%	%	%	%	%
SI21032	8339093	309504	55.3	0°	-90°		24	0.3	18	0.1	97.7	2.3	0.071	0.059	99.56	0.07	0.08	0.11	0.1	100.08
SI21033	8338969	309674	59.3	0°	-90°		32	0.3	27	0.1	97.9	2.1	0.066	0.054	99.5	0.07	0.07	0.1	0.11	99.96
SI21034	8338808	309776	61	0°	-90°		30	0.3	30	0.1	98.2	1.7	0.073	0.049	99.39	0.07	0.07	0.11	0.13	99.84
SI21035	8338897	309851	70.5	0°	-90°		45	0.3	42	0.1	97.8	2.1	0.072	0.085	99.28	0.1	0.13	0.15	0.11	99.84
SI21036	8339158	309562	56	0°	-90°		27	0.3	25	0.1	96.8	3.2	0.087	0.131	98.84	0.17	0.28	0.14	0.17	99.69
SI21037	8339224	309498	55.7	0°	-90°		36	0.3	36	0.2	96.5	3.3	0.186	0.167	98.61	0.21	0.24	0.24	0.2	99.81
SI21038	8339305	309438	56.6	0°	-90°		27	0.3	23	0.1	97.4	2.6	0.098	0.138	99.06	0.18	0.27	0.13	0.15	99.88
SI21039	8339386	309386	60.3	0°	-90°		27	0.3	23	0.2	98.1	1.7	0.082	0.086	99.29	0.11	0.14	0.11	0.13	99.86
SI21040	8339452	309303	63.2	0°	-90°		30	0.3	26	0.1	97.3	2.7	0.072	0.081	99.45	0.1	0.14	0.11	0.11	100.02
SI21041	8339512	309259	64.3	0°	-90°		30	0.3	28	0.1	96.7	3.3	0.107	0.155	99	0.23	0.33	0.16	0.14	99.96
SI21042	8338756	309887	62.9	0°	-90°		33	0.3	29	0.1	97.4	2.6	0.092	0.111	99.1	0.16	0.22	0.15	0.13	99.86
SI21043	8338846	309829	66.6	0°	-90°		39	0.3	36	0.1	97.3	2.7	0.076	0.096	99.31	0.12	0.17	0.13	0.05	99.9
SI21044	8338660	309909	58.9	0°	-90°		24	0.3	20	0.1	96.3	3.7	0.07	0.095	99.36	0.16	0.26	0.12	0.04	100.06
SI21045	8338489	310044	56.1	0°	-90°		21	0.3	20	0.1	97.6	2.4	0.064	0.055	99.44	0.07	0.1	0.1	0.11	99.94
SI21046	8338336	310171	52.8	0°	-90°		24	0.3	21	0.2	97.6	2.1	0.054	0.046	99.5	0.07	0.09	0.08	0.11	100
SI21047	8338217	310321	49	0°	-90°		15	0.3	13	0.1	98	2	0.062	0.045	99.54	0.06	0.07	0.09	0.13	99.98
SI21048	8338146	310386	49	0°	-90°		15	0.3	14	0.1	98.7	1.2	0.063	0.033	99.46	0.05	0.06	0.1	0.14	99.91
SI21049	8338099	310439	47.9	0°	-90°		15	0.3	10	0.1	98.6	1.4	0.075	0.063	99.32	0.08	0.13	0.13	0.18	99.94
SI21050	8338869	309942	62.2	0°	-90°		39	0.3	34	0.1	96.9	3.1	0.09	0.104	99.03	0.14	0.22	0.15	0.13	99.78
SI21051	8338673	310174	53.5	0°	-90°		24	0.3	20	0.1	97	2.9	0.078	0.067	99.36	0.08	0.11	0.13	0.14	99.89
SI21052	8338533	310327	40.3	0°	-90°		12	0.3	7	0.4	94.2	5.6	0.068	0.077	98.99	0.14	0.15	0.1	0.17	99.71
SI21053	8338390	310455	38.2	0°	-90°		18	0.3	18	0.4	95.6	4	0.223	0.114	98.84	0.13	0.14	0.27	0.27	99.8
SI21054	8338324	310529	33.3	0°	-90°		12	0.3	12	0.2	94.8	5.1	0.071	0.046	99.28	0.04	0.08	0.1	0.18	99.8
SI21055	8338577	310556	43.5	0°	-90°		21	0.3	20	0.2	98.2	1.6	0.065	0.035	99.3	0.03	0.06	0.09	0.15	99.73
SI21056	8338516	310650	38.5	0°	-90°		16	0.3	15	0.1	98.3	1.7	0.103	0.076	99.17	0.09	0.15	0.16	0.19	99.87
SI21057	8338450	310720	36.4	0°	-90°		15	0.3	12	0.1	98	2	0.084	0.072	99.57	0.1	0.15	0.14	0.15	100.24
SI21058	8338406	310764	34.5	0°	-90°		15	0.3	12	0.1	98.2	1.8	0.143	0.044	99.19	0.06	0.1	0.22	0.23	99.9

+61733972222

Page 38 of 49

Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151

	Collar Information							Mineralise	ed Interval	(Grain Size Fracti	ons	<0.71mm >0.	106mm Grade			Неас	d Grade		
	Northing	Easting	RL				Depth	From	То	<0.71mm	<0.71mm >0.106mm	>0.106mm	Al ₂ O ₃	Fe ₂ O ₃	SiO ₂	Fe ₂ O ₃	TiO ₂	Al ₂ O ₃	LOI	Total
Hole ID	GDA 2020 Zone 55	GDA 2020 Zone 55	m	Azimuth	Dip	Notes	m	m	m	%	%	%	%	%	%	%	%	%	%	%
SI21059	8338236	311235	40.9	0°	-90°		21	0.3	21	0.1	96.5	3.5	0.148	0.142	98.83	0.18	0.19	0.21	0.2	99.76
SI21060	8338109	310272	36.4	0°	-90°	2	12													
SI21061	8338036	310205	38.1	0°	-90°	2	18													
SI21062	8337830	310250	37.3	0°	-90°	4	15	0.3	Excluded	0.5	97.5	2	0.834	0.06	97.9	0.07	0.1	0.94	0.74	99.86
SI21063	8337561	310510	47	0°	-90°	2	16													
SI21064	8338092	309981	37.3	0°	-90°	2	15													
SI21065	8338406	309721	39.6	0°	-90°	2	14													
SI21066	8338656	309418	38.1	0°	-90°	2	18													
SI21067	8338951	309137	33.2	0°	-90°		12	0.3	7	0.1	96.4	3.5	0.076	0.037	99.82	0.06	0.1	0.12	0.1	100.3
SI21068	8339158	308966	31.7	0°	-90°		9	0.3	3	0.3	92.1	7.6	0.096	0.052	98.79	0.08	0.14	0.18	0.48	99.75
SI21069	8339209	309117	34.7	0°	-90°	2	14													
SI21070	8339087	309240	33.8	0°	-90°	2	12													
SI21071	8338926	309406	34.9	0°	-90°	2	12													
SI21072	8339428	309014	43.9	0°	-90°		9	0.3	8	0.1	98.6	1.3	0.087	0.035	99.3	0.05	0.06	0.13	0.16	99.78
SI21073	8339307	308981	37.3	0°	-90°		9	0.3	8	0.2	97.1	2.7	0.071	0.033	99.36	0.05	0.07	0.14	0.18	99.9
SI21074	8339415	308835	34.6	0°	-90°		12	0.3	7	0.3	98	1.7	0.096	0.028	99.29	0.04	0.08	0.19	0.18	99.87
SI21075	8339516	308716	31.9	0°	-90°		12	0.3	11	0.4	96.9	2.7	0.109	0.03	99.18	0.05	0.1	0.19	0.22	99.84
SI21076	8339450	308535	32.3	0°	-90°		12	0.3	11	0.6	96.2	3.3	0.121	0.054	99.13	0.07	0.13	0.2	0.23	99.85
SI21077	8339192	308783	42.3	0°	-90°		23	0.3	15	0.1	97.5	2.5	0.112	0.075	99.34	0.08	0.14	0.14	0.15	99.95
SI21078	8339080	308633	45.9	0°	-90°		19	0.3	10	0.3	97.2	2.5	0.087	0.057	99.5	0.1	0.09	0.12	0.17	100.03
SI21079	8339386	308370	43.7	0°	-90°		9	0.3	6	0.1	97.6	2.4	0.086	0.078	99.45	0.07	0.09	0.11	0.16	99.98
SI21080	8339651	308002	59.4	0°	-90°		30	0.3	27	0.1	98.5	1.5	0.072	0.088	99.26	0.1	0.13	0.1	0.13	99.82
SI21081	8339574	307851	49.7	0°	-90°		18	0.3	18	0.1	97.5	2.4	0.086	0.1	99.09	0.13	0.21	0.11	0.17	99.83
SI21082	8339444	307858	51.1	0°	-90°		21	0.3	21	0.1	97.6	2.4	0.066	0.09	99.21	0.12	0.17	0.09	0.12	99.81
SI21083	8339206	307991	43.3	0°	-90°		15	0.3	15	0.2	97.6	2.3	0.065	0.057	99.35	0.08	0.1	0.09	0.08	99.82
SI21084	8338858	308178	57.1	0°	-90°		24	0.3	24	0.1	95.7	4.2	0.074	0.155	98.86	0.21	0.31	0.1	0.16	99.76
SI21085	8338615	308194	57.6	0°	-90°		27	0.3	27	0.2	97.7	2.1	0.063	0.059	99.41	0.08	0.11	0.09	0.14	99.89

Page **39** of **49**

Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151

	Collar Information							Mineralise	ed Interval	C	Grain Size Fraction	ons	<0.71mm >0.1	L06mm Grade			Head	d Grade		
	Northing	Easting	RL				Depth	From	То	<0.71mm	<0.71mm >0.106mm	>0.106mm	Al ₂ O ₃	Fe ₂ O ₃	SiO ₂	Fe_2O_3	TiO ₂	AI_2O_3	LOI	Total
Hole ID	GDA 2020 Zone 55	GDA 2020 Zone 55	m	Azimuth	Dip	Notes	m	m	m	%	%	%	%	%	%	%	%	%	%	%
SI21086	8338361	308383	52.6	0°	-90°		21	0.3	21	0.1	96.8	3.1	0.058	0.052	99.44	0.07	0.11	0.08	0.16	99.93
SI21087	8338160	308619	62.6	0°	-90°		27	0.3	23	0.3	97.7	2.1	0.062	0.068	99.25	0.09	0.13	0.11	0.13	99.79
SI21088	8337859	308773	62.3	0°	-90°		30	0.3	27	0.3	97.6	2.2	0.067	0.055	99.27	0.07	0.12	0.11	0.11	99.78
SI220001	8339318	308084	40.7	0°	-90°		12	0.3	12	0.4	94.6	5	0.093	0.042	98.78	0.07	0.11	0.12	0.22	99.41
SI220002	8339166	308293	40.4	0°	-90°	2	15													
SI220003	8338973	308474	38.2	0°	-90°	2	15													
SI220004	8338777	308633	40.3	0°	-90°	2	15													
SI220005	8338609	308836	44.3	0°	-90°	2	12													
SI220006	8338468	308983	48.8	0°	-90°		9	0.3	4	0.3	94.7	4.9	0.085	0.049	98.84	0.07	0.1	0.08	0.15	99.33
SI220007	8338405	309170	84.3	0°	-90°		39	0.3	37	0.1	95.6	4.3	0.061	0.086	99.04	0.15	0.18	0.07	0.12	99.67
SI220008	8338323	309232	79.4	0°	-90°		34	0.3	32	0.2	96.6	3.2	0.066	0.058	98.96	0.09	0.09	0.07	0.14	99.43
SI220009	8338050	309348	85.2	0°	-90°		42	0.3	42	0.2	96.5	3.3	0.153	0.087	98.97	0.13	0.15	0.13	0.14	99.63
SI220010	8337920	309457	78.4	0°	-90°		36	0.3	36	0.1	95.8	4	0.248	0.103	98.7	0.15	0.18	0.32	0.21	99.67
SI220011	8337643	309751	67.8	0°	-90°		23	0.3	16	0.3	97.2	2.6	0.08	0.058	98.91	0.08	0.07	0.09	0.13	99.37
SI220012	8338099	309451	79.3	0°	-90°		41	0.3	33	0.1	95.6	4.3	0.073	0.08	98.83	0.1	0.11	0.1	0.15	99.39
SI220013	8338051	309572	79	0°	-90°		57	0.3	36	0.1	95.3	4.7	0.073	0.097	98.87	0.12	0.15	0.09	0.15	99.49
SI220014	8337894	309758	70.5	0°	-90°		39	0.3	36	0.4	94.5	5.1	0.261	0.135	98.04	0.18	0.2	0.52	0.34	99.41
SI220015	8337808	309872	64.7	0°	-90°		30	0.3	24	0.2	95.8	4	0.182	0.106	98.67	0.13	0.14	0.2	0.18	99.43
SI220016	8337577	310047	55.4	0°	-90°		30	0.3	10	0.1	95.4	4.5	0.084	0.057	98.94	0.08	0.12	0.09	0.16	99.47
SI220017	8337361	310196	65.5	0°	-90°		27	0.3	13	0.1	95.6	4.3	0.087	0.11	98.21	0.31	0.49	0.16	0.19	99.55
SI220018	8337241	310271	66.4	0°	-90°		27	0.3	9	0.1	95.6	4.4	0.113	0.125	98.35	0.18	0.28	0.17	0.15	99.25
SI220019	8336999	310463	71.7	0°	-90°		24	0.3	13	0.1	93.3	6.7	0.101	0.131	98.49	0.21	0.33	0.14	0.12	99.43
SI220020	8337049	310199	72.6	0°	-90°		18	0.3	9	0.1	96.4	3.5	0.085	0.084	98.78	0.12	0.13	0.14	0.15	99.42
SI220021	8337242	309926	67.6	0°	-90°		12	0.3	3	0.5	92.3	7.2	0.178	0.126	98.73	0.21	0.29	0.24	0.2	99.83
SI220022	8337487	309632	73.7	0°	-90°		24	0.3	15	0.1	94.4	5.5	0.115	0.168	98.52	0.27	0.36	0.19	0.16	99.66
SI220023	8337653	309480	77.5	0°	-90°		24	0.3	18	0.3	93.9	5.9	0.112	0.113	98.72	0.17	0.24	0.17	0.16	99.61
SI220024	8337951	309252	54.6	0°	-90°		18	0.3	5	0.3	93	6.8	0.168	0.089	98.62	0.14	0.18	0.2	0.19	99.46

Page **40** of **49**

Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151

	Collar Information							Mineralise	ed Interval	C	Grain Size Fractio	ons	<0.71mm >0.2	106mm Grade			Head	d Grade		
	Northing	Easting	RL				Depth	From	То	<0.71mm	<0.71mm >0.106mm	>0.106mm	Al ₂ O ₃	Fe ₂ O ₃	SiO ₂	Fe ₂ O ₃	TiO ₂	AI_2O_3	LOI	Total
Hole ID	GDA 2020 Zone 55	GDA 2020 Zone 55	m	Azimuth	Dip	Notes	m	m	m	%	%	%	%	%	%	%	%	%	%	%
SI220025	8338024	309192	53.7	0°	-90°		12	0.3	5	0.5	93.5	5.9	0.127	0.049	98.68	0.08	0.13	0.23	0.4	99.66
SI220026	8338197	309096	64.4	0°	-90°		18	0.3	15	0.1	95.2	4.8	0.092	0.067	98.81	0.08	0.11	0.11	0.18	99.39
SI220027	8338232	309163	69.7	0°	-90°		24	0.3	21	0.2	95.7	4.1	0.076	0.064	99.25	0.08	0.1	0.11	0.14	99.78
SI220028	8338290	309034	70.7	0°	-90°		25	0.3	23	0.4	95.7	3.9	0.14	0.136	98.81	0.15	0.12	0.15	0.21	99.55
SI220029	8338420	308852	64.8	0°	-90°		21	0.3	17	0.1	94.6	5.3	0.105	0.13	98.81	0.17	0.25	0.13	0.13	99.61
SI220030	8338495	308740	60.6	0°	-90°		21	0.3	17	0.2	95.4	4.4	0.074	0.077	99.01	0.11	0.16	0.12	0.13	99.63
SI220031	8338576	308518	56.3	0°	-90°		24	0.3	18	0.1	96.8	3.1	0.105	0.07	98.78	0.09	0.09	0.13	0.15	99.32
SI220032	8338662	308383	58.9	0°	-90°		30	0.3	28	1.6	95.6	2.9	0.082	0.059	99.18	0.08	0.08	0.1	0.2	99.71
SI220033	8338423	308200	44.9	0°	-90°		15	0.3	15	0.1	97.2	2.7	0.134	0.083	98.66	0.13	0.19	0.16	0.17	99.46
SI220034	8338292	308189	48.3	0°	-90°		18	0.3	18	0.1	95.1	4.9	0.06	0.075	99.01	0.11	0.18	0.07	0.15	99.62
SI220035	8338027	308260	42	0°	-90°		15	0.3	9	0.1	93.9	6	0.072	0.073	98.73	0.12	0.21	0.07	0.16	99.41
SI220036	8337638	308916	57	0°	-90°		26	0.3	18	0.1	96.6	3.4	0.062	0.061	99.06	0.08	0.11	0.06	0.09	99.49
SI220037	8337514	309002	63.7	0°	-90°		29	0.3	23	0.1	97.9	2.1	0.135	0.08	98.86	0.09	0.13	0.2	0.13	99.6
SI220038	8337218	309270	80.3	0°	-90°		29	0.3	27	0.1	97.7	2.3	0.084	0.117	99.02	0.13	0.16	0.1	0.08	99.58
SI220039	8337085	309487	80.6	0°	-90°		25	0.3	23	0.2	98.2	1.7	0.117	0.145	98.94	0.18	0.22	0.12	0.14	99.7
SI220040	8337003	309581	82.1	0°	-90°		24	0.3	23	0.1	98.3	1.6	0.096	0.096	99.17	0.11	0.13	0.12	0.11	99.73
SI220041	8336837	309779	77.1	0°	-90°		15	0.3	14	0.1	97.6	2.4	0.096	0.197	98.87	0.21	0.28	0.12	0.12	99.71
SI220042	8336705	309834	91.2	0°	-90°		32	0.3	32	0.3	97.6	2	0.123	0.134	98.92	0.15	0.16	0.15	0.12	99.6
SI220043	8336511	309912	99.7	0°	-90°		39	0.3	38	0.3	96.6	3.1	0.12	0.168	98.74	0.21	0.25	0.14	0.11	99.61
SI220044	8336362	310033	102.7	0°	-90°		45	0.3	43	0.1	98	1.9	0.108	0.128	99	0.17	0.18	0.12	0.12	99.68
SI220045	8336255	309897	78.5	0°	-90°		25	0.3	21	0.1	97.6	2.4	0.088	0.095	99.08	0.12	0.13	0.1	0.12	99.63
SI220046	8336384	309832	80.5	0°	-90°		27	0.3	24	0.1	97.8	2.1	0.08	0.116	99.07	0.14	0.15	0.09	0.12	99.68
SI220047	8336480	309782	73.4	0°	-90°		15	0.3	12	0.1	96.9	3.1	0.072	0.111	98.98	0.16	0.24	0.08	0.09	99.65
SI220048	8336537	309692	67.2	0°	-90°		21	0.3	7	0.1	95	5	0.078	0.08	99.42	0.12	0.19	0.11	0.13	100.03
SI220049	8336148	310186	92.1	0°	-90°		37	0.3	30	0.1	98.3	1.6	0.096	0.077	99.24	0.09	0.08	0.1	0.14	99.72
SI220050	8336097	310298	89.6	0°	-90°		29	0.3	27	0.1	98.5	1.4	0.101	0.102	99.05	0.11	0.11	0.11	0.13	99.58
SI220051	8335844	310372	79.9	0°	-90°		12	0.3	9	0.5	96.9	2.6	0.072	0.103	99.1	0.1	0.16	0.09	0.14	99.69

Page **41** of **49**

Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151

	Collar Information							Mineralise	ed Interval	C	Grain Size Fracti	ons	<0.71mm >0.1	06mm Grade			Head	d Grade		
	Northing	Easting	RL		<u> </u>		Depth	From	То	<0.71mm	<0.71mm >0.106mm	>0.106mm	Al ₂ O ₃	Fe ₂ O ₃	SiO ₂	Fe_2O_3	TiO ₂	AI_2O_3	LOI	Total
Hole ID	GDA 2020 Zone 55	GDA 2020 Zone 55	m	Azimuth	Ыр	Notes	m	m	m	%	%	%	%	%	%	%	%	%	%	%
SI220052	8335856	310487	96.4	0°	-90°		26	0.3	25	0.1	97.4	2.6	0.094	0.148	98.86	0.18	0.21	0.12	0.11	99.59
SI220053	8335631	310681	102.7	0°	-90°		34	0.3	30	0.1	97.8	2.2	0.109	0.109	98.99	0.13	0.13	0.13	0.12	99.57
SI220054	8335499	310848	97	0°	-90°		17	0.3	15	0.1	99.1	0.9	0.101	0.106	98.99	0.12	0.08	0.12	0.12	99.5
SI220055	8335342	311025	91.8	0°	-90°	2	6													
SI220056	8335186	311129	105.3	0°	-90°		18	0.3	16	0.2	98.6	1.3	0.12	0.126	98.97	0.14	0.12	0.13	0.17	99.62
SI220057	8335336	311180	86.5	0°	-90°	2	6													
SI220058	8335488	311282	81.4	0°	-90°	2	6													
SI220059	8335670	311292	99.4	0°	-90°		24	0.3	21	0.2	98.4	1.4	0.057	0.07	99.27	0.09	0.12	0.06	0.09	99.7
SI220060	8335844	311127	101.7	0°	-90°		26	0.3	24	0.3	98.3	1.5	0.058	0.046	99.27	0.06	0.08	0.08	0.1	99.65
SI220061	8336009	311028	101.1	0°	-90°		30	0.3	27	0.1	98.8	1.1	0.061	0.043	99.31	0.06	0.07	0.09	0.09	99.69
SI220062	8336165	310905	103	0°	-90°		28	0.3	27	0.1	98.4	1.6	0.077	0.048	99.31	0.07	0.09	0.11	0.07	99.72
SI220063	8336345	310815	101.5	0°	-90°		25	0.3	24	0.4	97.5	2.1	0.067	0.084	99.05	0.11	0.16	0.11	0.18	99.7
SI220064	8336508	310705	95.4	0°	-90°		30	0.3	28	0.4	97.3	2.3	0.056	0.062	99.13	0.08	0.13	0.1	0.1	99.63
SI220065	8336656	310579	101.7	0°	-90°		33	0.3	31	0.1	98.1	1.9	0.063	0.08	98.94	0.11	0.16	0.1	0.13	99.54
SI220066	8336735	310751	82.5	0°	-90°		21	0.3	20	0.1	97.4	2.6	0.068	0.097	98.95	0.13	0.19	0.12	0.09	99.57
SI220067	8336645	310831	78.4	0°	-90°		15	0.3	13	0.1	97.6	2.4	0.074	0.084	99.28	0.11	0.17	0.12	0.08	99.83
SI220068	8337667	309333	63.6	0°	-90°		10	0.3	9	0.1	96	3.9	0.057	0.069	99.18	0.1	0.17	0.1	0.16	99.77
SI220069	8337873	308951	57.8	0°	-90°		15	0.3	13	0.5	97.7	1.8	0.06	0.056	99.42	0.09	0.13	0.1	0.91	100.71
SI220070	8337875	308705	70.2	0°	-90°		39	0.3	36	0.3	98	1.7	0.079	0.051	99.23	0.06	0.07	0.11	0.14	99.68
SI220071	8337736	308764	55.5	0°	-90°		21	0.3	19	0.1	97.3	2.7	0.081	0.073	99.21	0.09	0.14	0.12	0.1	99.73
SI220072	8337694	308690	44.2	0°	-90°		10	0.3	8	0.1	94.3	5.5	0.07	0.034	99.25	0.06	0.11	0.09	0.08	99.66
SI220073	8337716	308589	47.4	0°	-90°		10	0.3	8	0.1	97.3	2.7	0.071	0.053	98.99	0.07	0.11	0.1	0.06	99.41
SI220074	8337890	308439	45.8	0°	-90°		9	0.3	8	0.1	96.8	3.2	0.081	0.064	99.07	0.09	0.13	0.11	0.14	99.62
SI220075	8338521	309283	54.5	0°	-90°		18	0.3	16	0.4	96.6	3.1	0.072	0.057	99.27	0.07	0.11	0.12	0.16	99.81
SI220076	8338593	309190	54.1	0°	-90°		15	0.3	14	0.1	97.3	2.6	0.095	0.066	99.3	0.08	0.11	0.16	0.15	99.9
SI220077	8338784	308903	51.3	0°	-90°		9	0.3	8	0.1	98.6	1.3	0.076	0.043	99.6	0.06	0.07	0.09	-0.02	99.9
SI220078	8338848	308824	54.8	0°	-90°		18	0.3	15	0.2	99	0.8	0.076	0.045	99.49	0.06	0.06	0.1	0.06	99.86

Page **42** of **49**

Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151

	Collar Information							Mineralise	ed Interval	C	Grain Size Fractio	ons	<0.71mm >0.3	106mm Grade			Head	l Grade		
	Northing	Easting	RL				Depth	From	То	<0.71mm	<0.71mm >0.106mm	>0.106mm	Al ₂ O ₃	Fe ₂ O ₃	SiO ₂	Fe ₂ O ₃	TiO₂	Al_2O_3	LOI	Total
Hole ID	GDA 2020 Zone 55	GDA 2020 Zone 55	m	Azimuth	Dip	Notes	m	m	m	%	%	%	%	%	%	%	%	%	%	%
SI220079	8338486	309441	49.3	0°	-90°		12	0.3	10	0.4	95.8	3.9	0.137	0.095	99.21	0.11	0.16	0.16	0.17	99.93
SI220080	8338350	309474	62.4	0°	-90°		30	0.3	27	0.1	98.5	1.5	0.082	0.086	99.24	0.23	0.12	0.12	0.07	99.87
SI220081	8338269	309653	43.6	0°	-90°		6	2	4	0.2	92.7	7.1	0.102	0.11	98.93	0.17	0.26	0.18	0.15	99.8
SI220082	8338130	309791	44.8	0°	-90°		15	0.3	9	0.2	96.3	3.5	0.076	0.066	99.13	0.08	0.13	0.1	0.12	99.66
SI220083	8337991	309892	47.4	0°	-90°		12	0.3	9	0.2	97.2	2.6	0.136	0.074	99.03	0.09	0.14	0.16	0.18	99.69
SI220084	8337835	310018	46.6	0°	-90°		12	0.3	11	0.3	95.3	4.4	0.071	0.046	99.15	0.06	0.11	0.12	0.08	99.61
SI220085	8337754	310074	46.4	0°	-90°		12	0.3	9	0.8	94.1	5	0.098	0.063	99.18	0.09	0.14	0.12	0.09	99.71
SI220086	8337838	310249	37.5	0°	-90°	2	9													
SI220087	8337688	310386	37.6	0°	-90°		15	0.3	15	1.1	94	4.9	0.145	0.038	99.41	0.05	0.1	0.15	0.13	99.94
SI220088	8337657	310877	47.8	0°	-90°		24	0.3	24	0.3	95.9	3.8	0.059	0.057	99.4	0.08	0.12	0.09	0.15	99.92
SI220089	8337857	310710	46.8	0°	-90°		9	0.3	7	0.1	96.1	3.8	0.062	0.054	99.44	0.09	0.13	0.09	0.11	99.92
SI220090	8337957	310603	48.2	0°	-90°		12	0.3	9	0.1	98.3	1.6	0.072	0.052	99.44	0.06	0.08	0.11	0.21	99.98
SI220091	8337451	310960	65.7	0°	-90°		36	0.3	33	0.1	97.5	2.4	0.066	0.125	98.91	0.18	0.26	0.11	0.09	99.65
SI220092	8337381	311166	53.5	0°	-90°		24	0.3	23	0.1	97	3	0.063	0.068	99.19	0.1	0.14	0.1	0.14	99.73
SI220093	8337528	311211	37.4	0°	-90°	6	6	0.3	3											
SI220094	8337921	310968	32.5	0°	-90°	2	6													
SI220095	8338800	309865	65.1	0°	-90°		39	0.3	36	0.1	97	3	0.113	0.092	99.11	0.12	0.15	0.15	0.11	99.72
SI220096	8338754	309357	37.7	0°	-90°		15	0.3	15	0.3	94	5.7	0.362	0.07	98.57	0.09	0.2	0.42	0.39	99.74
SI220097	8338159	309307	96.4	0°	-90°		48	0.3	48	0.2	96.7	3.1	0.081	0.085	99.23	0.11	0.13	0.13	0.1	99.77
SI220098	8341223	307482	70.1	0°	-90°		35	0.3	32	0.1	95.9	4.1	0.081	0.144	98.89	0.21	0.34	0.13	0.12	99.81
SI220099	8341307	307393	64	0°	-90°		33	0.3	30	0.1	96.9	3.1	0.074	0.109	99.19	0.14	0.18	0.1	0.12	99.82
SI220100	8341389	307463	54.9	0°	-90°		28	0.3	23	0.1	97	2.9	0.054	0.059	99.17	0.08	0.13	0.08	0.15	99.68
SI220101	8341425	307273	52.3	0°	-90°		24	0.3	22	0.2	96.4	3.4	0.066	0.084	98.93	0.13	0.21	0.09	0.16	99.62
SI220102	8341578	307074	49.9	0°	-90°		21	0.3	21	0.1	97.8	2.1	0.081	0.051	99.34	0.08	0.12	0.11	0.18	99.91
SI220103	8341484	307048	48.3	0°	-90°		22	0.3	21	0.5	96.2	3.3	0.065	0.086	99.24	0.13	0.21	0.09	0.14	99.91
SI220104	8341329	307238	43.5	0°	-90°		14	0.3	11	0.1	97.5	2.5	0.05	0.035	99.24	0.06	0.1	0.08	0.11	99.64
SI220105	8341109	307242	52.1	0°	-90°		30	0.3	30	0.3	96.6	3.1	0.063	0.07	99.25	0.1	0.17	0.09	0.12	99.8

Page **43** of **49**

Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151

	Collar Information							Mineralise	ed Interval	G	Grain Size Fractio	ons	<0.71mm >0.3	106mm Grade			Head	d Grade		
	Northing	Easting	RL				Depth	From	То	<0.71mm	<0.71mm >0.106mm	>0.106mm	Al ₂ O ₃	Fe ₂ O ₃	SiO ₂	Fe ₂ O ₃	TiO ₂	AI_2O_3	LOI	Total
Hole ID	GDA 2020 Zone 55	GDA 2020 Zone 55	m	Azimuth	Dıp	Notes	m	m	m	%	%	%	%	%	%	%	%	%	%	%
SI220106	8341143	307143	54.6	0°	-90°		30	0.3	29	0.3	97	2.7	0.053	0.05	99.42	0.06	0.1	0.07	0.12	99.83
SI220107	8341136	307386	71	0°	-90°		45	0.3	45	0.5	97.2	2.4	0.102	0.054	99.28	0.07	0.09	0.11	0.06	99.69
SI220108	8341322	307039	52.3	0°	-90°		26	0.3	24	0.2	93.5	6.3	0.056	0.053	99.3	0.1	0.17	0.07	0.13	99.85
SI220109	8341192	306978	57.9	0°	-90°		33	0.3	31	0.1	95.8	4.2	0.053	0.047	99.29	0.09	0.13	0.06	0.12	99.76
SI220110	8341010	306927	71	0°	-90°		45	0.3	45	0.3	96	3.7	0.051	0.049	99.44	0.07	0.1	0.06	0.1	99.86
SI220111	8340846	307027	58.9	0°	-90°		33	0.3	29	0.5	96.3	3.3	0.058	0.089	99.39	0.12	0.19	0.08	0.2	100.06
SI220112	8340717	307163	55.7	0°	-90°		27	0.3	27	0.3	96.7	3.1	0.059	0.07	99.36	0.09	0.14	0.08	0.15	99.88
SI220113	8340212	307727	50.5	0°	-90°		21	2	21	0.1	96.5	3.4	0.055	0.051	99.51	0.07	0.11	0.09	0.16	100.01
SI220114	8340071	307759	49.9	0°	-90°		20	0.3	19	0.1	96.6	3.4	0.062	0.082	99.09	0.09	0.15	0.08	0.12	99.6
SI220115	8339952	307918	49.5	0°	-90°		21	0.3	21	0.1	96.7	3.3	0.059	0.09	99.45	0.11	0.17	0.08	0.13	100.02
SI220116	8339799	308045	46	0°	-90°		15	0.3	13	0.2	93.1	6.8	0.061	0.071	99.43	0.09	0.16	0.09	0.11	99.95
SI220117	8339874	307734	51.8	0°	-90°		24	0.3	21	0.1	97.2	2.8	0.069	0.105	99.27	0.12	0.19	0.09	0.06	99.81
SI220118	8340085	307959	50.6	0°	-90°		22	0.3	22	0.2	96.8	3	0.077	0.048	99.36	0.07	0.08	0.11	0.16	99.86
SI220119	8339958	308131	63	0°	-90°		33	0.3	33	0.6	97.1	2.3	0.071	0.041	99.34	0.06	0.08	0.13	0.22	99.89
SI220120	8339709	308323	35.1	0°	-90°		9	0.3	9	0.3	93.8	5.9	0.456	0.065	98.47	0.1	0.2	0.57	0.31	99.73
SI220121	8339887	308343	54.2	0°	-90°		29	0.3	29	0.1	97	3	0.131	0.062	99.38	0.08	0.12	0.17	0.17	99.99
SI220122	8339912	308511	66.8	0°	-90°		30	0.3	25	0.1	98	2	0.071	0.055	99.52	0.07	0.1	0.08	0.14	99.97
SI220123	8339664	308677	37.7	0°	-90°		11	0.3	8	0.1	97.2	2.8	0.167	0.05	99.42	0.07	0.09	0.21	0.16	100.03
SI220124	8339802	308848	47.5	0°	-90°		7	0.3	4	0.6	94.7	4.7	0.079	0.097	99.02	0.14	0.22	0.11	0.12	99.73
SI220125	8339911	308710	44.5	0°	-90°		9	0.3	8	0.8	95.8	3.5	0.068	0.071	99.35	0.1	0.18	0.09	0.19	100
SI220126	8340032	308571	44.1	0°	-90°	2	6													
SI220127	8339971	308762	55.1	0°	-90°		18	0.3	15	0.1	97.9	2	0.084	0.117	99.44	0.14	0.19	0.13	0.09	100.08
SI220128	8340104	308637	57.6	0°	-90°		24	0.3	18	0.1	97.9	2	0.097	0.109	99.25	0.14	0.11	0.13	0.23	99.94
SI220129	8340221	308473	56.2	0°	-90°		15	0.3	12	0.2	97.6	2.2	0.105	0.12	98.74	0.13	0.14	0.12	0.12	99.35
SI220130	8340368	308353	57	0°	-90°		15	0.3	14	0.1	98	2	0.09	0.102	99.19	0.11	0.12	0.13	0.2	99.83
SI220131	8340505	308200	55.5	0°	-90°		18	0.3	16	0.2	97	2.8	0.085	0.088	99.02	0.1	0.12	0.09	0.22	99.67
SI220132	8340638	308072	59.3	0°	-90°		24	0.3	21	0.1	96.8	3.1	0.099	0.097	99.05	0.13	0.2	0.12	0.14	99.76

Page **44** of **49**

Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151

	Collar Information							Mineralise	ed Interval	C	Grain Size Fraction	ons	<0.71mm >0.1	106mm Grade			Head	l Grade		
	Northing	Easting	RL				Depth	From	То	<0.71mm	<0.71mm >0.106mm	>0.106mm	Al ₂ O ₃	Fe ₂ O ₃	SiO ₂	Fe_2O_3	TiO ₂	Al_2O_3	LOI	Total
Hole ID	GDA 2020 Zone 55	GDA 2020 Zone 55	m	Azimuth	Dip	Notes	m	m	m	%	%	%	%	%	%	%	%	%	%	%
SI220133	8340710	307902	64.5	0°	-90°		28	0.3	28	0.1	97.7	2.3	0.082	0.056	99.24	0.07	0.1	0.1	0.14	99.74
SI220134	8340805	307743	61.6	0°	-90°	5	6	0.3	6	0.1	96.6	3.4	0.084	0.162	98.53	0.21	0.37	0.13	0.16	99.55
SI220134A	8340805	307743	61.6	0°	-90°		36	0.3	35	0.1	95.4	4.5	0.072	0.093	99.23	0.12	0.19	0.1	0.1	99.83
SI220135	8340996	307650	66.6	0°	-90°		39	0.3	37	0.1	97.4	2.5	0.069	0.075	99.33	0.09	0.14	0.09	0.08	99.81
SI220136	8341180	307598	57.8	0°	-90°		21	0.3	19	0.1	97.6	2.3	0.089	0.068	99.22	0.09	0.14	0.12	0.13	99.79
SI220137	8341147	307539	67.9	0°	-90°		33	0.3	30	0.1	95.8	4.1	0.077	0.123	98.82	0.16	0.26	0.11	0.17	99.64
SI220138	8340987	307400	45.9	0°	-90°		27	0.3	27	0.1	96.3	3.7	0.057	0.037	99.35	0.05	0.07	0.08	0.17	99.79
SI220139	8340895	307543	39.3	0°	-90°		9	0.3	9	0.5	94.7	4.8	0.059	0.047	99.34	0.07	0.13	0.08	0.15	99.87
SI220140	8340767	307622	41.4	0°	-90°		12	0.3	10	0.7	94	5.4	0.052	0.04	99.15	0.07	0.11	0.09	0.2	99.7
SI220141	8340667	307791	41.8	0°	-90°	6	9	0.3	7											
SI220142	8340850	307438	54.8	0°	-90°		27	0.3	27	0.1	97.8	2.1	0.052	0.051	99.27	0.39	0.1	0.09	0.08	99.99
SI220143	8340997	307070	68.9	0°	-90°		42	0.3	42	0.3	96.9	2.8	0.062	0.06	99.38	0.07	0.11	0.07	0.1	99.79
SI220144	8340939	307143	59.6	0°	-90°		33	0.3	31	0.1	96.4	3.6	0.056	0.054	99.43	0.07	0.11	0.06	0.1	99.82
SI220145	8340884	307240	49.5	0°	-90°		21	0.3	21	0.3	96.9	2.9	0.098	0.048	99.38	0.06	0.1	0.12	0.15	99.89
SI220146	8341320	306842	37.5	0°	-90°		12	0.3	12	0.8	94.9	4.3	0.082	0.033	99.49	0.05	0.09	0.09	0.36	100.12
SI220147	8341281	307725	50.4	0°	-90°		15	0.3	14	0.2	96.5	3.4	0.078	0.078	99.25	0.11	0.11	0.1	0.23	99.86
SI220148	8340892	307953	44.1	0°	-90°		9	0.3	7	0.1	96.6	3.4	0.069	0.039	99.74	0.06	0.08	0.07	0.15	100.15
SI220149	8341289	307928	53.6	0°	-90°		20	0.3	18	0.2	97.9	1.9	0.058	0.036	99.4	0.05	0.06	0.07	0.12	99.74
SI220150	8340776	308387	47	0°	-90°		12	0.3	10	0.2	97.2	2.6	0.065	0.066	99.43	0.09	0.12	0.07	0.14	99.92
SI220151	8340519	308622	60.4	0°	-90°		36	0.3	34	0.3	97.7	2	0.06	0.037	99.64	0.05	0.05	0.07	0.16	100.02
SI220152	8340075	308907	44.4	0°	-90°		15	0.3	14	0.8	96.2	3	0.242	0.103	98.95	0.13	0.12	0.27	0.33	99.86
SI220153	8340363	308572	34.9	0°	-90°	1, 2	3													
SI23001H	8336702	309510	65.1	0°	-90°		4.7	0.3	4.7											
SI23013H	8340280	308917	31.4	0°	-90°		3	0.3	3											
SI23065H	8340512	308470	35.6	0°	-90°		3	0.3	2											
SI23066H	8340704	308357	41.9	0°	-90°	1, 2, 7	2													
SI23067H	8340260	308694	35.2	0°	-90°	1, 2, 7	1													

Page **45** of **49**

Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151

AUSTRALIAN SANDS. UNIVERSAL DEMAND.

	Collar Information							Mineralise	ed Interval	0	Grain Size Fracti	ons	<0.71mm >0.3	106mm Grade			Неас	l Grade		
	Northing	Easting	RL				Depth	From	То	<0.71mm	<0.71mm >0.106mm	>0.106mm	Al ₂ O ₃	Fe ₂ O ₃	SiO ₂	Fe ₂ O ₃	TiO ₂	Al_2O_3	LOI	Total
Hole ID	GDA 2020 Zone 55	GDA 2020 Zone 55	m	Azimuth	Dip	Notes	m	m	m	%	%	%	%	%	%	%	%	%	%	%
SI23080H	8341004	308005	29.5	0°	-90°		5	0.3	5											
SI23081H	8341042	307964	33.4	0°	-90°		3	0.3	2											
SI23106H	8336824	309552	62.3	0°	-90°		5	0.3	4											
SI23123H	8336882	309830	65.8	0°	-90°		3.2	0.3	3											
SI23124H	8336761	309970	67.1	0°	-90°	1, 2, 7	1.5													
SI23125H	8336621	310083	68.3	0°	-90°		3.4	0.3	3											
SI23129H	8336109	309975	74.6	0°	-90°	1, 3, 7	5	0.3	5											
SI23130H	8335006	310646	78.5	0°	-90°	1, 2, 7	1													
SI23130H_A	8335082	310648	82.3	0°	-90°		5.3	0.3	5.3											
SI2HA0002	8342276	306183	31.9	0°	-90°		3	0.3	3						99.05	0.05	0.09	0.11	0.17	99.64
SI2HA0003	8341048	307372	55.6	0°	-90°	1, 3	5	0.3	5						99.22	0.18	0.33	0.1	0.21	100.17
SI2HA0004	8340668	307609	40.8	0°	-90°	1, 3	5	0.3	5						99.37	0.06	0.12	0.09	0.16	99.87
SI2HA0005	8340076	308415	42.7	0°	-90°	1, 2	5													
SI2HA0006	8340489	307874	35.3	0°	-90°	1, 2	3													
SI2HA0007	8340256	308150	37.3	0°	-90°	1, 2	3													
SI2HA0008	8341095	307854	42.2	0°	-90°		5	0.3	4						99.23	0.08	0.17	0.21	0.23	100
SI2HA0009	8340942	308052	33.1	0°	-90°		5	0.3	4						99.3	0.02	0.07	0.07	0.27	99.83
SI2HA0010	8340739	308233	41.4	0°	-90°	1, 2, 7	4													
SI2HA0011	8340610	308388	37.3	0°	-90°	1, 2, 7	4													
SI2HA0012	8340632	306914	37.3	0°	-90°		5	0.3	5						99.4	0.08	0.16	0.1	0.09	99.96
SI2HA0013	8339375	308842	32.5	0°	-90°		5	0.3	5						99.37	0.03	0.09	0.07	0.13	99.77
SI2HA0014	8339858	309116	34.2	0°	-90°		5	0.3	4						98.69	0.06	0.11	0.07	0.17	99.19
SI2HA0015	8339388	309409	57.4	0°	-90°	1, 3	5	0.3	5						98.29	0.21	0.34	0.11	0.1	99.15
SI2HA0016	8339183	309660	38	0°	-90°	1, 3	5	0.3	5						98.77	0.07	0.11	0.08	0.09	99.16
SI2HA0017	8338934	309877	64	0°	-90°	1, 3	5	0.3	5						98.08	0.26	0.45	0.11	0.12	99.16
SI2HA0018	8339088	310165	29.1	0°	-90°	1	3	0.3	3						98.89	0.07	0.16	0.12	0.1	99.41
SI2HA0019	8338815	310448	30.1	0°	-90°	1	4	0.3	4						98.9	0.07	0.13	0.07	0.08	99.32

Page **46** of **49**

AUSTRALIAN SANDS. UNIVERSAL DEMAND.

Coorparoo, Qld, 4151 diatreme.com.au

Unit 8, 55–61 Holdsworth St

DIATREME RESOURCES LIMITED | ABN 33 061 267 061 | ASX:DRX

Collar Information								Mineralised Interval Grain Size Fractions			<0.71mm >0.	Head Grade								
	Northing	Easting	RL			Notes	Depth	From	То	<0.71mm	<0.71mm >0.106mm	>0.106mm	Al ₂ O ₃	Fe ₂ O ₃	SiO ₂	Fe_2O_3	TiO ₂	AI_2O_3	LOI	Total
Hole ID	GDA 2020 Zone 55	GDA 2020 Zone 55	m	Azimuth	Dip		m	m	m	%	%	%	%	%	%	%	%	%	%	%
SI2HA0020	8339232	310443	29.2	0°	-90°	1	2	0.3	2						99.27	0.09	0.18	0.1	0.07	99.78
SI2HA0021	8339124	310534	29.9	0°	-90°	1	3	0.3	3						98.99	0.14	0.26	0.12	0.09	99.69
SI2HA0022	8339032	310600	28.3	0°	-90°	1	2	0.3	2						99.17	0.04	0.07	0.08	0.16	99.59
SI2HA0023	8339368	310180	29.1	0°	-90°	1	2	0.3	2						99.23	0.06	0.14	0.08	0.11	99.7
SI2HA0024	8339445	310039	29	0°	-90°	1	2	0.3	2						98.98	0.15	0.4	0.12	0.17	100.05
SI2HA0025	8341172	308363	33.6	0°	-90°	1	4	0.3	3						97.48	0.16	0.18	0.55	0.58	99.03
SI2HA0026	8341097	308456	33.7	0°	-90°	1	3	0.3	3						99.11	0.06	0.12	0.08	0.17	99.59
SI2HA0027	8341032	308569	34.2	0°	-90°	1	3	0.3	3						98.88	0.1	0.17	0.1	0.13	99.44
SI2HA0028	8340974	308518	32	0°	-90°	1	2	0.3	2						99.37	0.07	0.15	0.13	0.1	99.99
SI2HA0029	8341345	308240	33.7	0°	-90°	1	3	0.3	3						99.25	0.09	0.19	0.09	0.18	99.9
SI2HA0030	8341255	308289	33.4	0°	-90°	1	3	0.3	3						99.18	0.06	0.14	0.07	0.15	99.67
SI2HA0031	8340835	308613	30.5	0°	-90°	1, 7	1	0.3	1											
SI2HA0032	8340748	308702	30.8	0°	-90°	1	2	0.3	2						99.33	0.03	0.08	0.05	0.12	99.67
SI2HA0033	8340689	308770	30.8	0°	-90°	1	2	0.3	2						99.72	0.04	0.1	0.09	0.07	100.1
SI2HA0034	8340556	308727	48.7	0°	-90°	1, 3	4	0.3	4						99.26	0.12	0.22	0.09	0.09	99.86
SI2HA0035	8340585	308862	30.8	0°	-90°	1	2	0.3	2						99.3	0.07	0.18	0.08	0.06	99.75
SI2HA0036	8340476	308933	30.1	0°	-90°	1	2	0.3	2						99.22	0.09	0.24	0.09	0.11	99.84
SI2HA0037	8340361	309025	30.6	0°	-90°	1	2	0.3	2						99.19	0.1	0.27	0.09	0.17	99.94
SI2HA0038	8340269	309118	29.7	0°	-90°	1, 7	1	0.3	1											
SI2HA0039	8340168	309210	30.1	0°	-90°	1	2	0.3	2						99.59	0.05	0.12	0.07	0.08	99.98
SI2HA0040	8340054	309310	30.2	0°	-90°	1	2	0.3	2						99.38	0.04	0.1	0.05	0.08	99.7
SI2HA0041	8339991	309410	29.7	0°	-90°	1	2	0.3	2						99.55	0.05	0.12	0.07	0.19	100.05
SI2HA0042	8339907	309574	30.7	0°	-90°	1	3	0.3	3						99.33	0.09	0.2	0.07	0.11	99.85
SI2HA0043	8339818	309677	30	0°	-90°	1	2	0.3	2						99.18	0.05	0.14	0.06	0.18	99.68
SI2HA0044	8339698	309791	30	0°	-90°	1	2	0.3	2						99.04	0.09	0.22	0.08	0.12	99.63
SI2HA0045	8339576	309916	30.1	0°	-90°	1	2	0.3	2						99.52	0.09	0.22	0.09	0.07	100.05
SI2HA0046	8339300	310316	29.6	0°	-90°	1	3	0.3	3						99.26	0.14	0.28	0.12	0.11	100

+61733972222

Page **47** of **49**

AUSTRALIAN SANDS. UNIVERSAL DEMAND.

DIATREME RESOURCES LIMITED | ABN 33 061 267 061 | ASX:DRX

Collar Information							Mineralised Interval Grain Size Fractions			<0.71mm >0.106mm Grade			Head Grade							
	Northing	Easting	RL	Azimuth Dip			Depth	From	То	<0.71mm	<0.71mm >0.106mm	>0.106mm	Al ₂ O ₃	Fe ₂ O ₃	SiO ₂	Fe ₂ O ₃	TiO ₂	Al ₂ O ₃	LOI	Total
Hole ID	GDA 2020 Zone 55	GDA 2020 Zone 55	m		Dip	Notes	m	m	m	%	%	%	%	%	%	%	%	%	%	%
SI2HA0047	8338234	311372	23.6	0°	-90°	1	2	0.3	2						98.48	0.04	0.1	0.2	1.07	100
SI2HA0048	8338318	311280	23.9	0°	-90°	1	3	0.3	3						97.7	0.04	0.09	0.26	1.56	99.77
SI2HA0049	8338390	311189	25.2	0°	-90°	1	3	0.3	3						98.7	0.15	0.27	0.13	0.11	99.47
SI2HA0050	8338463	311115	23.8	0°	-90°	1	2	0.3	2						98.77	0.04	0.1	0.08	0.5	99.59
SI2HA0051	8338549	311032	25.3	0°	-90°	1	3	0.3	3						97.81	0.55	1.05	0.17	0.13	99.95
SI2HA0052	8338679	310919	26.2	0°	-90°	1	3	0.3	3						99.06	0.23	0.42	0.14	0.09	100.05
SI2HA0053	8338816	310811	26.7	0°	-90°	1	2	0.3	2						98.77	0.06	0.11	0.08	0.05	99.13
SI2HA0054	8338903	310719	27.5	0°	-90°	1	3	0.3	5						99.12	0.14	0.27	0.11	0.12	99.83
SI2HA0055	8338594	310546	44.6	0°	-90°	1, 3	5	0.3	5						99.17	0.13	0.22	0.1	0.17	99.88
SI2HA0056	8339574	309625	42.2	0°	-90°	1, 3	5	0.3	5						99.52	0.06	0.09	0.07	0.05	99.91
SI2HA0057	8339481	309721	42.9	0°	-90°	1, 3	5	0.3	5						99.09	0.14	0.24	0.11	0.09	99.77
SI2HA0058	8339402	309794	41.1	0°	-90°	1, 3	5	0.3	5						99.33	0.05	0.08	0.08	0.04	99.64
SI2HA0059	8339335	309875	38.7	0°	-90°	1, 3	5	0.3	5						99.3	0.09	0.14	0.08	0.03	99.7
SI2HA0060	8339257	309955	35.5	0°	-90°	1, 3	5	0.3	5						99.5	0.06	0.08	0.08	0.06	99.84
SI2HA0061	8339171	310060	30.5	0°	-90°	1	4	0.3	4						99.46	0.06	0.11	0.08	0.06	99.84

Notes

- 1 No Sizing or ICP Data undertaken
- 2 Drillhole did not intersect significant mineralisation
- 3 Drillhole is considered open at depth
- 4 Excluded on quality control grounds, drillhole was later twinned
- 5 Excluded due to drilling issues
- 6 Contaminated assay samples, geology suitable for constraining model.
- 7 Hand auger geology was used to identify mineralised intercept

Page **48** of **49**

Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151

AUSTRALIAN SANDS. UNIVERSAL DEMAND.

	308000	31000		5122054 51220055 651220057 651220050 751220050 751220050 751220050 751220050	312000
Orill Holes					
Mineral Resource Estimate: Inferred Category				Drill Lo	cations
Mineral Resource Estimate: Indicated Category				Mineral Reso	urce Estimate
Mineral Resource Estimate: Measured Category			\land	(June	2025)
				Document #: DRX_NSP_CP_MRE25_01	Scale: 1:25000
		500	1,000 m	Version: 1.0	CRS: GDA2020 / MGA Zone 55
Note: Refer to Table of Material Drillholes for status				Author: Frazer Watson	Date Created: 01/06/2025
				Approved: Frazer Watson	Date Approved: 01/06/2025