ASX ANNOUNCEMENT

New Mineral Sands Discoveries at Bagamoyo

Strandline makes several large mineral sands discoveries at Bagamoyo, Tanzania

Outstanding exploration results establish Bagamoyo as a potential new mineral sands province, expanding the Company's pipeline of projects

HIGHLIGHTS

- Large heavy mineral sands discoveries at Bagamoyo tenement 40km north of Dar es Salaam
- Discoveries comprise a series of +1.5% total heavy mineral (THM) anomalies associated with topographic ridges, up to 11km long and up to 1km wide
- Higher grade THM results within the 4km long +3% THM anomalies include 14.2%, 12.5%, 12.0%, 7.1%, and 6.6% THM with low slimes <15%
- The value assemblage is also high, averaging 74.5% of the THM comprising 9.1% zircon, 4.2% rutile, 0.8% leucoxene and 60.4% Ilmenite
- Auger drilling currently underway to rapidly evaluate the potential of these discoveries

Strandline Resources (ASX: STA) is pleased to announce that it has made several large, higher grade mineral sands discoveries at its Bagamoyo tenements in Tanzania.

The outstanding results establish Bagamoyo as a new mineral sands target which will now form part of Strandline's pipeline of mineral sands projects. The Company already has the Fungoni Project, where it is finalising the Definitive Feasibility Study, the Tanga South Project (Tajiri), where it is in the process of updating the Mineral Resource estimate, and the joint venture with Rio Tinto in southern Tanzania, where aircore drilling is underway.

At Bagamoyo, Strandline has received the soil sampling results from its first exploration programme over the eastern Bagamoyo tenements. The program was designed to demonstrate sufficient scale, grade, continuity and mineral assemblage and focussing on the mapped radiometric anomalies associated with topographic ridges (20 and 30 metres above sea level).

The exploration results have exceeded the Company's expectation with the identification of significant zones of anomalism with surface footprints showing both size and grade potential. The Company believes the area is highly prospective and represents a major new mineral sands target in the Bagamoyo province.

The Company is now undertaking additional mapping and shallow auger drilling ahead of planning a future aircore (AC) drill programme at Bagamoyo.

Strandline Managing Director Luke Graham said: "These results show we have made a series of exciting mineral sands discoveries at Bagamoyo. These discoveries have size at surface, grade and comprise a high-value mineral assemblage, exceeding our expectations.

"They also show that Strandline's strategy of establishing a pipeline of mineral sands projects at various stages of advancement is well on track. This pipeline ranges from the Fungoni project, where the DFS is almost completed, through to large-scale exploration and now these new discoveries in a new region."

Summary of Results

The Company received laboratory assay and assemblage results from its first phase of soils sampling across the Bagamoyo tenements. A total of 505 soils samples were taken with 286 samples submitted for heavy mineral analysis based on the visual estimated THM grade and also coherent zones of panned surface mineralisation. The samples were gathered on a first pass 800 x 250m spaced grid specifically targeting topographic features and radiometric anomalies.

In addition, some earlier surface samples and composite samples were submitted for mineral characterisation using the SEM-EDX/WRA-XRF method. A total of 9 samples were submitted for mineral assemblage testwork. Samples Bag_Th_1 – 5 were single point samples collected from peak thorium anomalies as part of the initial ground verification phase. Samples SS1-001 - 004 were composites samples from combining up to 5 surface soils samples from an anomalous zone. The results are presented in Table 1. The samples have consistently high VHM with associated high unit value rutile and zircon.

A total of 5 anomalies BG1-5 have been defined by the soil program with 4 of the anomalies overlying ridges that are likely to represent ancient backshoreline storm surge sand-banks or wave cut terraces. The sand at surface is generally medium grained to coarse grained with low slimes contents (<15%). The trash is also quite low and comprises garnet and kyanite/sillimanite combined to 25% of the heavy mineral assemblage. The soil anomalies are also related to thorium enriched zones that typically highlight mineral sand mineralisation.

The B2 THM anomaly is 4.5km long and between 200 and 400m wide. It has peak THM of 14.2% and 6.7% THM. The B4 anomaly extends along a 4km strike and is 100 to 300m wide with peak THM values of 12.1%, 3.68% and 3.45%.

The Company is currently undertaking additional mapping and shallow auger drilling ahead of planning a future AC drill program. The manual auger drilling program has recently commenced over BG2 and completed some broad spaced drilling (800 x 200) over the area containing the higher grade THM.

The drilling completed to date shows mineralisation open at depths of up to 11m, with depth of drilling only limited by ground conditions and the manual auger drilling constraints. Significantly, the field results have not encountered any limestone basement nor identified limestone outcrops in the anomalous areas. The visual panned estimates have identified consistent zones of enriched heavy mineral through the hole, essentially reflecting the range and grades of the surface soil HM grades. Additional targeted auger drilling will continue for the next few weeks across the BG3 and BG4 anomalies.

Sample ID	East WGS84	North WGS84	THM %	Ilmenite	Rutile	Zircon	Leucoxene	Total VHM
SS1-001	503590	9278900	4.1%	67.0	4.1	8.1	0.7	79.8
SS1-002	504250	9274980	3.0%	66.8	4.3	8.1	1.3	80.5
SS1-003	505020	9280280	3.0%	63.4	5.2	8.2	0.5	77.3
SS1-004	482796	9277090	1.6%	67.0	5.2	13.3	0.7	86.2
Bag_Th_1	507220	9273120	6.4%	43.3	3.4	8.3	1.1	56.1
Bag_Th_2	509440	9277900	12.5%	31.2	1.4	4.2	0.3	37.1
Bag_Th_3	503500	9277970	5.5%	64.0	4.0	9.1	0.6	77.7
Bag_Th_4	499850	9280460	14.2%	72.4	6.3	12.6	0.7	91.9
Bag_Th_5	498800	9282541	6.7%	68.6	3.7	9.7	1.0	83.1
Averages		6.3%	60.4	4.2	9.1	0.8	74.5	

Table 1. Mineral Assemblage data for Bagamoyo East composite and single point samples determined using SEM/EDX with WRA-XRF

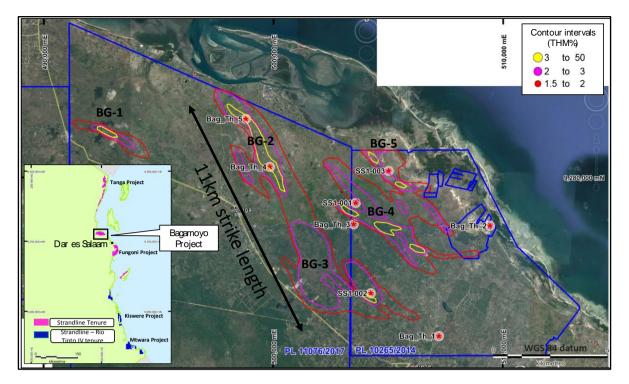


Figure 1. Bagamoyo east soil sample contours and mineral assemblage locations.

Figure 2. Pan sample picture from Bag_Th_04 that contained 14% THM

Refer Annexure 1 for Table 1 JORC and Annexure 2 Soil samples results from Bagamoyo east below.

For further enquiries, please contact: **Luke Graham** CEO and Managing Director Strandline Resources Limited T: +61 8 9226 3130 E: enquiries@strandline.com.au For media and broker enquiries: **Paul Armstrong and Nicholas Read** Read Corporate T: +61 8 9388 1474 E: nicholas@readcorporate.com.au

About Strandline

Strandline Resources Limited (ASX: STA) is a Tanzanian-focused mineral sands developer positioned within the world's major zircon and titanium producing corridor in South East Africa. Strandline has a dominant mineral sands position with a series of 100% owned projects spread along 350km of the Tanzanian coastline.

Strandline's strategy is to develop and operate quality, low cost, high margin, expandable mining assets with market differentiation. Leveraging off the exploration success in recent years, the Company's focus is to continue its aggressive exploration and development strategy to progress economically attractive projects based on high unit value titanium and zircon products.

Forward Looking Statements

This report contains certain forward looking statements. Forward looking statements are only predictions and are subject to risks, uncertainties and assumptions which are outside of the control of Strandline. These risks, uncertainties and assumptions include commodity prices, currency fluctuations, economic and financial market conditions, environmental risks and legislative, fiscal or regulatory developments, political risks, project delay, approvals and cost estimates. Actual values, results or events may be materially different to those contained in this announcement. Given these uncertainties, readers are cautioned not to place reliance on forward looking statements. Any forward looking statements in this announcement reflect the views of Strandline only at the date of this announcement. Subject to any continuing obligations under applicable laws and ASX Listing Rules, Strandline does not undertake any obligation to update or revise any information or any of the forward looking statements in this announcement to reflect changes in events, conditions or circumstances on which any forward looking statements is based.

Competent Person Statement

The information in this report that relates to Exploration Results is based on, and fairly represents, information and supporting documentation prepared by Mr Brendan Cummins, a part time employee of Strandline. Mr Cummins is a member of the Australian Institute of Geoscientists and he has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which has been undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Cummins consents to the inclusion in this release of the matters based on the information in the form and context in which they appear. Mr Cummins is a shareholder of Strandline Resources.

Annexure 1 - Table 1 JORC

Section 1 Sampling Techniques and Data

• · · ·							
Critaria	in thic	coction	annly	/ + o oll	succeeding	r coctione \	
Criteria i	in inis	section	addiv	/ 10 All	SUCCEEDINE	2 Sections.1	

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Panned samples were taken from shallow holes dug with a spade to a depth of 30cm A small cap of sand was scooped from the side of the hole The same cap is used for every pan sample The standard sized cap sample is to ensure visual calibration is maintained for consistency in visual estimation The samples were split down to 200g for dispatch to the processing laboratory
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 No drilling undertaken
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 No drilling undertaken
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	 The surface sample was wet panned and logged for lithology, colour, grainsize, rounding, sorting, visual THM, slimes and any relevant comments - such as slope and vegetation

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation	 The total length and percentage of the relevant intersections logged. If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 determination of Slimes (-45µm) and Oversize (+1mm), then the sample was analysed for total heavy mineral (-1mm to +45µm) content by heavy liquid separation The laboratory used TBE as the heavy liquid medium – with density

Criteria	JORC Code explanation	Commentary
		equipped with Tescan Integrated Mineral Analyser (TIMA) and Oxford INCA Feature software capable of searching and quantifying the elemental composition of a statistically representative number of Ti- species including rutile, ilmenite, Ti-magnetite, pseudo-rutile and leucoxene
		Mineral assemblage and Characterisation comprise:
		 Total oxide geochemistry on a grain-by-grain basis Mineral species determination by chemical analysis Mineral species mass % calculated from the grain spherical volume (derived from exposed grain surface area) multiplied by the mineral density Approximately 2000-3000 grain counts, sizing and probing for mineral chemistry analysis for each sample Titanium deportment for each titanium species Zircon – total oxide mineral geochemistry for zircon analysis A separate sub-sample of each was analysed by standard XRF techniques to ensure quality control of the SEM analysis by comparing actual XRF whole rock analysis with the SEM calculated whole rock analysis for each sample The SEM-EDX method provides detailed grain chemistry in conjunction with a modal mineral mass balance to 100%. The method is constrained when the heavy mineral is coarse grained and the XRF determination is required to assist in allocating modal mineral abundances.
Verification o sampling and assaying		 All results are checked by the Chief Geologist No secondary lab checks have been completed with the sample samples The data has been manually updated into a master spreadsheet which is appropriate for this early stage in the exploration program
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 No drilling completed. A handheld GPS was used to identify the positions of the pan sample in the field The handheld GPS has an accuracy of +/- 5m The datum used is WGS84 Zone 37s The accuracy of the locations is sufficient for this early stage exploration

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Various grid spacing was used in the soil program approximating 800 x 250 The 250m spaced samples are sufficient to provide a moderate degree of geological and grade continuity Sample compositing was only applied the THM concentrates for mineral assemblage test work.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The soil sampling was oriented perpendicular to the current coast line which approximates the potential orientation of the palaeo-strandline or dunal structures
Sample security	The measures taken to ensure sample security.	 Soil samples remained in the custody of Company representatives while they were transported from the field to Dar es Salaam for final packaging and securing The samples were then sent using a commercial transport company (Deugro) to Perth and delivered directly to the laboratory after quarantine inspection The laboratory inspected the packages and did not report tampering of the samples
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	No audits or reviews have been undertaken

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The exploration work was completed on tenements that are 100%owned by the Company in Tanzania The tenement from which surface sampling has been mentioned in this release include PL 11076/2017 and PL 10265/2014 All granted tenements have a four year term Landowners and Chiefs of the affected villages were supportive of the pan sampling program.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Historic exploration work was completed by Tanganyika Gold in 1998 and 1999 The Company has obtained the hardcopy reports and maps in

Criteria	JORC Code explanation	Commentary
		 relation to this information The historic data comprises surface sampling, limited AC drilling and mapping The historic results are not reportable under JORC 2012
Geology	Deposit type, geological setting and style of mineralisation.	 Two types of heavy mineral sand style are possible in Tanzania Thin but high grade strandlines which may be related to marine or fluvial influences Large but lower grade deposits related to windblown sands The coastline of Tanzania is not well known for massive dunal systems such as those developed in Mozambique however some dunes are known to occur and cannot be discounted as an exploration model. Palaeo strandlines are more likely and will be related to ancient shorelines or terraces in a marine or fluvial setting. In Tanzania three terraces have been documented and include the Mtoni terrace (1-5m ASL), Tanga (20-40m ASL) and Sakura Terrace (40 to 60m ASL). Strandline mineral sand accumulations related to massive storm events are thought to be preserved at these terraces above the current sea level.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 No drilling was undertaken.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values 	•

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 should be clearly stated. These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	No drilling was undertaken
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 A contour map is provided in Figure 1.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All raw data is presented and available for review in Appendix 2
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 No other material exploration information has been gathered by Strandline resources for this stage of exploration.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further field work will include Auger drilling and mapping Should sufficient targets be generated an AC drill program is planned Additional mineral and assemblage analysis will also be undertaken on future AC samples generated from drilling. As the project advances TiO2 and contaminant test work will also be undertaken

Zone 37 Zone 37 0.97 4.12 3.77 9.87 2.31 3.42 1.37 2.07 2.64 1.35 2.26 2.33 1.42 1.64 2.48 1.99 7.67 3.58 1.26 15.69 3.69 13 84 3 63 1.45 6.01 4.01 1.11 8.19 4.58 1.99 2.37 2.05 1.85 10.08 2.83 1.18 10.76 3.96 1.76 8.29 3.63 1.79 7.88 3.56 1.46 8.98 3.26 29.52 0.48 9.93 1.18 10.46 5.25 1.22 3.8 2.99 1.72 1.29 5.61 1.24 4.59 3.35 1.73 10.62 3.73 0.71 9.68 2.62 1.53 3.95 2.28 1.54 4.52 2.45 2.93 1.28 6.36 1.43 3.89 3.44 0.84 6.26 4.06 1.67 7.32 3.65 3.44 2.7 13.73 2.45 6.75 3.9 2.45 6.14 3.83 2.23 6.7 4.93 1.98 8.5 4.33 2.18 7.83 3.38 1.95 7.29 3.72 15.64 1.09 4.66 5.82 8.87 0.62 33.08 4.88 0.86 0.93 22.56 0.4 0.68 4.57 38.35 1.19 23.35 4.69 2 23 15.76 3.43 2.87 9.11 2.28 3.76 9.78 4.58 1.6 7.49 2.71 1.78 6.64 1.18 14.81 7.23 2.69 7.1 16.16 1.62 4.73 2.37 3.45 8.95 1.23

Annexure 2 - Soil samples results from Bagamoyo east

RI

тнм

SLIMES

os

North WGS84

East WGS84

SAMPLE ID

1.3

2.48

0.51

2.16

17.61

11.83

16.01

10.29

1.06

2.25

17.67

5.92

SAMPLE ID	East WGS84 Zone 37	North WGS84 Zone 37	Rİ	тнм	SLIMES	OS
17031891	501396	9275677	44	2.24	9.72	3.95
17031892	501225	9275504	45	2.45	9.55	3.89
17031893	501043	9275330	46	1.53	13.29	4.89
17040474	505398	9277245	22	2.62	8.37	1.48
17040475	505217	9277065	26	1.95	6.42	3.09
17040476	505036	9276896	27	1.32	5.5	3.18
17040477	504858	9276714	24	1.67	9.41	3.72
17040478	504681	9276549	25	0.71	8.61	4.18
17040478	504081	9276356	23	3.72	10.68	3.78
			_	1.28	-	4.99
17040480	504325	9276203	28	-	7.35	
17040481	504142	9276027	31	0.91	4.41	5.09
17040482	503959	9275850	32	2.6	9.91	4.19
17040483	503788	9275672	30	2.52	10.53	3.58
17040484	503590	9275450	28	2.6	16.13	3.4
17040485	503424	9275329	31	1.3	7.9	7.9
17040486	503254	9275182	29	2.79	8.68	0.24
17040510	505594	9277418	22	1.82	24.85	10.92
17040511	505753	9277596	20	2.29	7.36	5.53
17040512	505921	9277772	21	2.18	10.38	3.27
17040513	506128	9277927	18	0.48	33.93	4.32
17040514	506299	9278116	14	1.1	36.98	5.26
17040515	506479	9278282	14	1.81	25.87	1.42
		9278282	-			3.27
17040516	506656		12 9	1.95	8.07	
17040517	506844	9278639	-	2.33	4.21	2.97
17040518	506844	9278639	9	2.49	3.92	2.79
17040519	507015	9278800	8	0.7	15.79	6.44
17041874	500527	9275961	33	1.07	12.95	6.14
17041875	500711	9276137	33	1.59	9.11	4.84
17041876	500891	9276316	33	1.2	8.93	4.65
17041877	501067	9276484	33	1.39	6.13	5.61
17041878	501245	9276658	35	2.41	8	4.78
17041879	501427	9276834	36	2.22	8.67	4.23
17041880	501608	9277005	35	2.99	7.51	3.95
17041880	501008	9277179	34	2.55	9.09	5.92
			-			
17041884	503046	9278406	28	1.05	13.53	5.51
17050487	503654	9276727	24	0.94	7.72	7.38
17050488	503845	9276907	27	0.78	7.93	6.54
17050489	504027	9277077	26	1.79	4.44	4.92
17050490	504201	9277254	25	0.7	9.4	3.71
17050491	504387	9277424	22	1.52	4.89	3.37
17050492	504566	9277598	22	1.28	4.06	2.9
17050493	504745	9277773	24	3.68	6.34	1.92
17050494	504917	9277940	20	3.01	7.24	1.85
17050495	504917	9277940	20	2.96	7.2	1.59
17050502	506543	9279508	11	1.66	3.19	3.03
17050503	506367	9279317	10	1.28	8.62	7.23
17050504	506192	9279164	12	1.57	6.62	1.82
17050505	5060152	9278966	14	1.57	2.74	2.27
17050506	505828	9278808	13	1.68	4.31	4.15
17050507	505645	9278654	15	2.04	6.1	4.76
17050508	505462	9278467	16	1.91	6.23	2.99
17050509	505281	9278294	19	1.5	5.81	4.25
17050520	505100	9278117	21	1.89	8.86	2.44
17051909	500963	9277512	32	2.27	8	3.9
17051910	501141	9277687	31	2.08	6.69	4.41
17051916	502577	9279075	24	0.93	9.92	7.27
17051917	502761	9279249	24	1.19	11.69	5.09
17060496	505000	9279150	14	0.86	2.81	4.11
17060497	505173	9279324	12	1.68	6.69	4.46
17060498	505363	9279515	11	1.00	1.8	4.27
17060498	505534	9279671	11	3.64	7.05	4.43
					-	
17060500	505714	9279844	9	0.63	24.29	4.2
17060501	505896	9280019	11	0	0	0
17060521	504818	9278976	19	1.63	4.54	3.08
17060522	504639	9278797	24	1.69	4.48	2.51
17060522	504457	9278623	23	2.53	6.73	2.38
17060522			22	1.71	4.49	2.55
	504276	9278457	22	1./1	4.49	2.55
17060523 17060524			_			
17060523 17060524 17060525	504090	9278277	21	2.03	5.47	4.64
17060523 17060524			_			

SAMPLE ID	East WGS84 Zone 37	North WGS84 Zone 37	Rİ	тнм	SLIMES	OS
17031891	501396	9275677	44	2.24	9.72	3.95
17060529	503378	9277578	25	0	0	0
17061919	502466	9280126	28	1.32	4.2	3.42
17061920	502647	9280303	30	2.75	7.33	5.01
17061921	502829	9280478	24	1.54	3.73	4.12
17061941	501383	9279090	23	1.73	6.73	6.44
17061942	501565	9279277	24	1.3	8.69	4.13
17070530	503229	9278562	24	12.07	7.2	3.41
17070531	503409	9278743	18	1.57	4.08	4.98
17070532	503585	9278911	22	1.92	5.89	2.37
17070532	503762	9279082	32	2.48	3.99	2.62
			-			-
17070534	503939	9279261	24	2.36	7.11	2.31
17070535	504092	9279436	25	1.53	8.35	2.47
17070536	504310	9279609	15	1.73	4.34	3.24
17070537	504486	9279781	12	0	0	0
17070538	504666	9279964	10	0	0	0
17070539	504840	9280126	9	2.07	4.67	3.91
17070540	505011	9280296	7	1.62	4.37	2.37
17070541	505204	9280476	8	1.75	7.8	2.64
17070542	505390	9280653	7	1.55	3.51	2.27
17071928	502358	9281158	22	1.3	4.02	4.54
17071929	502336	9280983	24	1.5	6.32	4.65
17071929	500919	9279772	19	1.1	4.64	4.03
17071960	500735		19	1.63	6.37	4.19
		9279600			-	-
17071963	500195	9279075	19	1.13	6.48	5.88
17071964	500019	9278908	23	1.34	4.75	5.01
17080543	504743	9281163	9	2.02	4	2.77
17080544	504743	9281163	9	2.06	4.17	2.43
17080545	504561	9280988	9	1.76	2.91	2.79
17080546	504379	9280810	10	3.68	4.45	2.93
17080547	504201	9280637	10	0	0	0
17080548	504017	9280461	10	0	0	0
17080549	503847	9280290	10	0.92	9.61	2.6
17081952	500351	9280341	20	1.58	2.68	2.52
17081953	500171	9280167	20	7.14	5.27	4.98
17081955	499992	9279998	18	2.42	7.48	5.12
17081954			21	1.44	-	
	499630	9279648			11.19	3.91
17081957	499449	9279473	18	1.72	6.98	6.49
17081958	499267	9279293	21	1.35	4.36	5.26
17082124	496214	9276351	36	0.72	20.53	2.93
17082125	496395	9276520	33	0.66	22.28	3.38
17090563	488966	9275046	55	0	0	0
17090564	489138	9275222	48	0	0	0
17090565	489323	9275395	46	0	0	0
17090566	490579	9276614	38	0	0	0
17090567	490764	9276785	41	0	0	0
17090568	490764	9276785	41	0	0	0
17090569	490939	9276960	37	0	0	0
17090570	491112	9277140	38	0	0	0
17090585	489857	9275918	45	0	0	0
			45		1	0
17090586	489681	9275747	44	0	0	
17090587	489491	9275589	-	0	0	0
17090588	490402	9276438	38	1.11	11.18	2.6
17090589	490223	9276294	54	0.79	26.87	4.67
17090590	490223	9276294	54	0.81	19.68	4.65
17090591	490043	9276092	46	0	0	0
17091968	498628	9279810	25	1.36	17.37	5.85
17091969	498804	9279982	25	2.01	6.09	3.56
17091971	499164	9280329	26	1.87	8.26	4.67
17091972	499164	9280329	26	1.87	8.97	4.53
17091973	499346	9280501	22	2.45	8.55	3.07
17091974	499528	9280680	22	3.66	6.5	3.9
17091975	499705	9280849	23	5.53	3.75	5.93
17091975	499886	9281023	23	2.19	4.01	5.35
			-		-	
17092157	495027	9276335	45	0.86	10.83	6.41
17092158	495207	9276509	45	1.11	9.62	2.73
17092159	495380	9276674	37	0.92	28.19	3.69
17092160	495558	9276859	33	0.57	1.81	5.49
17092161	495735	9277017	34	0.78	17.69	7.83
47400550	488664	9275937	38	0	0	0
17100550	400004	5275557	50	Ũ	•	0

SAMPLE ID	East WGS84	North WGS84	RI	тнм	SLIMES	OS
	Zone 37	Zone 37				
17031891	501396	9275677	44	2.24	9.72	3.95
17100552	489024	9276289	41	1.48	5.81	3.76
17100553	489204	9276451	41	1.32	6.21	5.75
17100554	489386	9276636	40	1.49	6.63	3.65
17100555	489563	9276805	39	1.69	9.15	3.29
17100556	489745	9276981	37	0	0	0
17100557	489925	9277155	43	0	0	0
17100558	490103	9277322	44	0	0	0
17100559	490288	9277498	51	0	0	0
17100560 17100561	490460 490641	9277656 9277843	34 34	0	0	0
17100561	490841	9277843	34	0	0	0
17100582	490822	9275070	57	0	0	0
17100580	487951	9275256	56	0	0	0
17100581	487931	9275419	50	0	0	0
17100582	488124	9275590	45	0	0	0
17100583	488462	9275754	45	0	0	0
17100384	499767	9282077	20	1.62	3.26	4.72
17101981	499587	9281901	20	2.01	3.53	4.72
17101982	499407	9281701	24	4.4	3.61	6.12
17101983	499222	9281559	24	3.99	6.44	4.19
17101984	499222	9281359	18	1.12	38.99	8.95
17101985	499048	9281211	18	1.12	28.53	5.74
17101980	498686	9281035	18	1.87	11.6	4.06
17101987	498505	9280861	18	2.18	6.69	4.00
17101588	495459	9277908	31	0.78	33.2	4.53
17102140	495276	9277728	29	0.73	26.83	3.78
17110571	488032	9276426	37	0	0	0
17110572	487854	9276251	36	0	0	0
17110573	487671	9276079	38	0	0	0
17110574	487494	9275908	38	0	0	0
17110575	487312	9275728	39	0	0	0
17110576	487121	9275551	42	0	0	0
17110577	486959	9275383	48	0	0	0
17110578	486779	9275208	47	0	0	0
17110579	486586	9275031	47	0	0	0
17110592	488214	9276604	37	0	0	0
17110593	488390	9276770	37	1.23	7.41	4.19
17110594	488571	9276946	37	1.4	6.42	3.82
17110595	488750	9277118	39	1.84	7.26	3.3
17110596	488946	9277301	38	0	0	0
17110597	489111	9277468	40	0	0	0
17110598	489291	9277641	38	0	0	0
17110599	489471	9277817	41	0	0	0
17110600	489671	9278007	37	0	0	0
17110601	489828	9278163	36	0	0	0
17110795	491091	9279383	29	0	0	0
17110796	490911	9279205	27	0	0	0
17111992	500003	9280573	21	3.44	4.02	4.22
17120602	488688	9278200	37	0	0	0
17120603	488504	9278024	38	0	0	0
17120604	488324	9277854	37	0	0	0
17120605	488143	9277677	38	0	0	0
17120606	487969	9277507	36	0	0	0
17120607	487784	9277332	36	0	0	0
17120608	487605	9277156	34	0	0	0
17120609	487426	9276991	34	0	0	0
17120610	487255	9276802	36	0	0	0
17120611	487065	9276634	36	0	0	0
17120612	486886	9276465	34	0	0	0
17120613	486704	9276289	33	0	0	0
17120614	486525	9276114	38	0	0	0
17120615	486525	9276114	38	0	0	0
17120616	486345	9275934	38	0	0	0
17120617	486174	9275770	35	0	0	0
17120618	486001	9275589	38	0	0	0
17120619	485804	9275415	42	0	0	0
17120620	485626	9275247	39	0	0	0
17120797	491020	9280452	34	0	0	0
17120798	490844	9280280	30	0	0	0
17120799	490663	9280108	29	0	0	0

SAMPLE ID	East WGS84 Zone 37	North WGS84 Zone 37	Rİ	тнм	SLIMES	OS
17031891	501396	9275677	44	2.24	9.72	3.95
17120800	490484	9279934	28	0	0	0
17120801	490321	9279764	28	0	0	0
17120802	490124	9279586	27	0	0	0
17120803	489943	9279414	29	0	0	0
17121993	499484	9282928	13	0.95	3.57	4.51
17121994	499295	9282755	14	1.86	3.9	2.72
17121995	499116	9282585	25	1.61	3.82	5.67
17121996	498941	9282410	21	6.6	4.08	5.49
17121997	498941	9282410	21	6.49	4.23	7.16
17121998	498757	9282234	22	1.53	5.35	7.09
17121999	498582	9282063	15	0.62	50.52	4.43
17122000	498397	9281886	22	0.51	50.77	3.28
17130621	484784	9275610	37	0	0	0
17130622	484967	9275772	36	0	0	0
17130623	485151	9275943	38	0	0	0
17130624	485333	9276110	36	0	0	0
17130625	485509	9276292	37	0	0	0
17130626	485688	9276466	32	0	0	0
17130627	485866	9276638	33	0	0	0
17130628	486046	9276805	33	0	0	0
17130629	486230	9276986	37	0	0	0
17130630	486410	9277154	38	0	0	0
17130631	486585	9277327	36	0	0	0
17130632	486769	9277500	41	0	0	0
17130633	486951	9277672	42	0	0	0
17130634	487130	9277848	36	0	0	0
17130635	487312	9278019	37	0	0	0
17130636	487487	9278197	34	0	0	0
17130781	491093	9281668	27	0	0	0
17130782 17130783	490908 490730	9281490	39 37	0	0	0
		9281323	26	0	0	0
17130784 17130785	490528 490371	9281138 9280970	32	0	0	0
			-	0	0	0
17130786 17130787	490188 490013	9280797 9280620	29 26	0	0	0
17130788	489830	9280020	20	0	0	0
17130789	489648	9280275	27	0	0	0
17130790	489648	9280275	27	0	0	0
17130791	489469	9280101	36	0	0	0
17130792	489288	9279930	30	0	0	0
17130793	489105	9279757	36	0	0	0
17130794	488927	9279582	30	0	0	0
17132019	497170	9281831	23	0	0	0
17132024	498609	9283217	15	2.44	6.27	2.95
17132025	498430	9283043	17	2.07	4.11	5.75
17132026	498248	9282871	16	4.76	6.04	6.2
17132027	498064	9282716	16	2.6	24.77	9.02
17132028	497888	9282526	19	0.85	3.74	6.57
17140637	485233	9277143	40	1.25	7.64	6.71
17140638	485056	9276969	40	1.62	7.91	4.55
17140639	484876	9276800	44	0	0	0
17140640	484876	9276800	44	0	0	0
17140641	484696	9276620	36	0	0	0
17140642	484515	9276436	37	0	0	0
17140643	484334	9276276	35	0	0	0
17140644	484155	9276098	34	0	0	0
17140645	483974	9275924	33	0	0	0
17140646	483644	9276838	34	0	0	0
17140667	485416	9277316	34	1.53	7.17	6.39
17140668	485599	9277488	36	0	0	0
17140669	485773	9277664	35	0	0	0
17140670	485954	9277837	35	0	0	0
17140671	486143	9278011	36	0	0	0
17140672	486316	9278184	35	0	0	0
17140673	486495	9278362	35	0	0	0
17140674	487036	9278881	34	0	0	0
17140675	487213	9279054	35	0	0	0
17140743	491167	9282919	20	0	0	0
17140744	490987	9282710	24	0	0	0
17140745	490811	9282536	29	0	0	0

SAMPLE ID	East WGS84 Zone 37	North WGS84 Zone 37	Rİ	тнм	SLIMES	OS
17031891	501396	9275677	44	2.24	9.72	3.95
17140746	490634	9282363	27	0	0	0
17140747	490441	9282185	37	0	0	0
17140748	490271	9282011	28	0	0	0
17140749	490091	9281839	30	0	0	0
17140750	489907	9281665	26	0	0	0
17140751	489725	9281491	24	0	0	0
17140752	489550	9281316	26	0	0	0
17140753	489366	9281134	23	0	0	0
17140754	489188	9280969	22	0	0	0
17140755	489007	9280791	22	0	0	0
17140756	488829	9280620	25	0	0	0
17140757	488648	9280445	31	0	0	0
17140758	491045	9283919	18	0	0	0
17140759	490863	9283749	18	0	0	0
17140760	490687	9283581	21	0	0	0
17142037	495076	9280931 9283554	23	1.11	16.82	2.73
17142148	497784		13 21	2.07	5.05	6.52
17142231	494004	9279911	37	2.28	5.54	3.85
17150647 17150648	483828	9276994		0	0	0
17150648	483999 484184	9277181 9277360	26 27	0.99	10.41	3.45 7.17
17150649	484184	9277360	27	0	19.07	0
17150650	484364	9277526	23	0	0	0
17150651	484544 484729	9277872	31	0	0	0
17150652	484901	9278049	33	0	0	0
17150654	485086	9278218	31	0	0	0
17150655	485266	9278392	33	0	0	0
17150676	485989	9279083	34	0	0	0
17150677	486171	9279255	33	0	0	0
17150678	486346	9279429	32	0	0	0
17150679	486529	9279603	31	0	0	0
17150680	486710	9279776	32	0	0	0
17150681	486891	9279948	31	0	0	0
17150682	487072	9280119	30	0	0	0
17150683	487251	9280291	32	0	0	0
17150762	488694	9281677	28	0	0	0
17150763	488879	9281847	24	0	0	0
17150764	489054	9282021	25	0	0	0
17150765	489054	9282021	25	0	0	0
17150766	489238	9282195	27	0	0	0
17150767	489414	9282359	24	0	0	0
17150768	489597	9282541	24	0	0	0
17150769	489780	9282715	26	0	0	0
17150770	489963	9282887	25	0	0	0
17150771	490145	9283057	26	0	0	0
17150772	490317	9283234	26	0	0	0
17150773	490502	9283403	23	0	0	0
17152075	494236	9281321	23	1.93	7.3	4.69
17152147	496944	9283916	12	0.91	4.64	7.13
17160656	484242	9278476	26	0	0	0
17160657	484063	9278301	25	0	0	0
17160658	483878	9278128	24	0	0	0
17160659	483698	9277981	18	0	0	0
17160660	483526	9277778	27	0	0	0
17160661	483338	9277623	34	0	0	0
17160662	483161	9277435	37	0	0	0
17160663	482980	9277259	28	0.87	8.7	5.91
17160664	482796	9277090	32	2.04	5.55	5.14
17160665	482796	9277090	32	2	5.96	5.19
17160666	482616	9276914	32	0	0	0
17160684	487127	9281249	33	0	0	0
17160685	486946	9281085	33	0	0	0
17160686	486759	9280906	34	0	0	0
1710007	486579 486402	9280724	31	0	0	0
17160687	11×6/1117	9280564	30	0	0	0
17160688		0200200	20	<u>^</u>		<u>^</u>
17160688 17160689	486216	9280389	28	0	0	0
17160688 17160689 17160690	486216 486216	9280389	28	0	0	0
17160688 17160689	486216					-

SAMPLE ID	East WGS84 Zone 37	North WGS84 Zone 37	Rİ	тнм	SLIMES	OS
17031891	501396	9275677	44	2.24	9.72	3.95
17160694	485497	9279688	29	0	0	0
17160695	485323	9279518	29	0	0	0
17160696	485135	9279346	34	0	0	0
17160751	490181	9284202	23	0	0	0
17160752	489978	9284030	22	0	0	0
17160753	489822	9283844	21	0	0	0
17160754	489640	9283682	19	0	0	0
17160755	489461	9283507	21	0	0	0
17160756	489270	9283334	23	0	0	0
17160757	489098	9283334	23	0	0	0
				-	-	
17160758	488919	9282986	23	0	0	0
17160759	488746	9282815	23	0	0	0
17160760	488558	9282642	25	0	0	0
17160761	488379	9282466	24	0	0	0
17162063	493794	9281993	6	1.43	5.46	4.02
17162064	493608	9281811	14	1.6	2.62	3.36
17162065	493422	9281641	15	2.4	3.53	3.97
17162066	493247	9281469	16	1.3	24.57	4.02
17162145	495944	9284068	10	1.33	2.15	7.36
17162146	496122	9284244	9	0.63	1.39	9.83
17170697	484856	9280165	16	0	0	0
17170698	485052	9280369	26	0	0	0
17170699	485215	9280548	28	0	0	0
17170700	485402	9280708	29	0	0	0
17170700	485576	9280708	30	0	0	0
17170701	485764	9280882	30	0	0	0
17170703	485942	9281227	28	0	0	0
17170704	486121	9281404	28	0	0	0
17170705	486301	9281581	23	0	0	0
17170706	486480	9281753	25	0	0	0
17170707	486666	9281923	26	0	0	0
17170708	486838	9282110	28	0	0	0
17170709	487020	9282272	25	0	0	0
17170710	487200	9282449	24	0	0	0
17170711	487558	9282794	26	0	0	0
17170712	487740	9282966	26	0	0	0
17170713	487920	9283143	25	0	0	0
17170714	488102	9283329	20	0	0	0
17170715	488102	9283329	20	0	0	0
17170716	488279	9283489	24	0	0	0
17170717	488451	9283665	22	0	0	0
17170718	488647	9283828	26	0	0	0
			-		-	
17170719	488821	9284011	24	0	0	0
17170720	488994	9284187	13	0	0	0
17172044	492462	9281845	33	1.13	5.69	2.39
17172045	492636	9282017	21	5.52	3.06	2.55
17172046	492856	9282151	18	0.63	47.97	3.81
17172047	492856	9282151	18	0.65	48.04	4.22
17172048	493006	9282367	18	1.06	5.76	4.44
17180724	483311	9279836	3	0	0	0
17180725	483498	9280034	4	0	0	0
17180726	483676	9280194	10	0	0	0
17180727	483844	9280374	28	0	0	0
17180728	486186	9282632	29	0	0	0
17180729	486365	9282804	30	0	0	0
17180730	486546	9282976	39	0	0	0
17180731	486728	9283154	23	0	0	0
17180731	486903	9283134	23	0	0	0
17180732	487085	9283503	11	0	0	0
			-			
17180734	487268	9283674	10	0	0	0
17180735	487439	9283850	12	0	0	0
17180736	487630	9284035	33	0	0	0
17180737	487808	9284201	23	0	0	0
17182077	491451	9282011	20	1.04	36.28	3.68
1/1020//	491630	9282183	27	1.52	6.79	7.42
17182078		0202257	32	1.55	6.09	5.18
	491818	9282357	52			
17182078	491818 491998	9282357 9282519	27	1.21	5.38	5.33
17182078 17182079 17182080	491998	9282519	27	1.21		
17182078 17182079			_		5.38 19.52 22.11	5.33 2.84 6.82

SAMPLE ID	East WGS84 Zone 37	North WGS84 Zone 37	Rİ	тнм	SLIMES	OS
17031891	501396	9275677	44	2.24	9.72	3.95
17182091	493992	9284442	8	0.62	27.96	9.55
17182092	494153	9284608	12	0.68	4.07	8.12
17190738	486084	9283660	11	0	0	0
17190739	486264	9283831	17	0	0	0
17190740	486264	9283831	17	0	0	0
17190741	486444	9284008	24	0	0	0
17190742	486612	9284179	16	0	0	0
17192095	491344	9283041	15	0.77	45.76	4.89
17192100	492066	9283749	14	0.83	24.4	4.55
17192101	492243	9283924	14	1.42	9.9	6.73
17192102	492422	9284095	14	0.43	42.23	5.44
17192103	492606	9284269	18	1.17	7.31	3.32
17192104	492778	9284432	23	0.95	3.79	1.76
17192105	492957	9284614	17	0.8	4.26	4.82
17192106	493141	9284793	21	1.64	4.96	5.79
17202108	491947	9284791	22	0.88	5.61	3.52
17202109	491805	9284649	17	1.11	6.88	3.86
17202110	491587	9284442	17	0.59	41.52	6.35
17202111	491402	9284268	21	0.78	39.83	4.32
17202112	491227	9284099	17	1.04	3.93	4.57
17212094	491260	9285249	21	0.52	8.13	5.11