

ASX ANNOUNCEMENT

29 July 2024

ASX: DEG

Crow and Aquila extensions support Hemi production upside Brolga continues to impress

Highlights

- Diamond drilling targeting extensions at Crow and specifically the higher grade McLeod Lodes, has been conducted. Results from this drilling include:
 - o 6.4m @ 4.7g/t Au from 288m in HERC918D
 - 6.8m @ 4.1g/t Au from 128.9m in HERC920D
 - o 23.8m @ 8.7g/t Au from 689.2m in HERC013D
 - o 23.6m @ 7.3g/t Au from 602.0m in HERC209D
- At Aquila, diamond drilling has extended mineralisation approximately 200m down dip and over a strike length of approximately 400m:
 - **9.4m @ 5.3g/t Au** from 537m in HEDD264
 - o 24m @ 1.1g/t Au from 583.8m in HERC395D
 - 8.3m @ 2.4g/t Au from 597.7m in HERC748D
- To the East of Aquila diamond drilling has extended mineralisation by approximately 500m down dip and approximately 200m along strike, including:
 - o **35.4m @ 2.8g/t Au** from 616m in HEDD316
 - o 27.3m @ 1.0g/t Au from 833m in HEDD324
 - 69m @ 0.8g/t Au from 464m in HERC209D
- All results listed above are outside of the current Hemi Mineral Resource Estimate¹ ("**MRE**").
- Pre-collars through Brolga into Aquila intersected 71.3m @ 3.2g/t Au (HEDD316) and 35.3m @ 4.2g/t Au (HEDD265) supporting the previous Hemi MRE block model.
- Diamond and Reverse circulation ("RC") drilling are ongoing at Aquila, Falcon and Antwerp and planned for Scooby, seeking to further add to the MRE and provide potential upside to the Hemi Definitive Feasibility Study² ("DFS") production profile.
- Discovery and Mineral Resource extension drilling is continuing within the Greater Hemi area and regional targets including West Yule and the Egina Joint Venture.
- The Company is preparing an updated Hemi MRE incorporating these results, anticipated for release before the end of 2024.

² Refer to ASX Announcement dated 28 September 2023, DFS Announcement and Executive Summary (Combined)

¹ Refer to ASX Announcement dated 21 November 2023, Hemi Gold Project Resource Update – November 2023

De Grey General Manager Exploration, Phil Tornatora, commented:

"Drilling beneath the DFS pit shells and below the current Mineral Resource at Aquila-Crow demonstrates that a large mineralised system extends to depth and is still open. The McLeod Lodes in the south of Crow continue to return high grade intercepts and it is exciting to see similar style mineralisation persists in deeper holes below Aquila. This extension drilling has strong potential to add to the Hemi MRE, in addition to supporting conceptual studies into potential future underground mining."

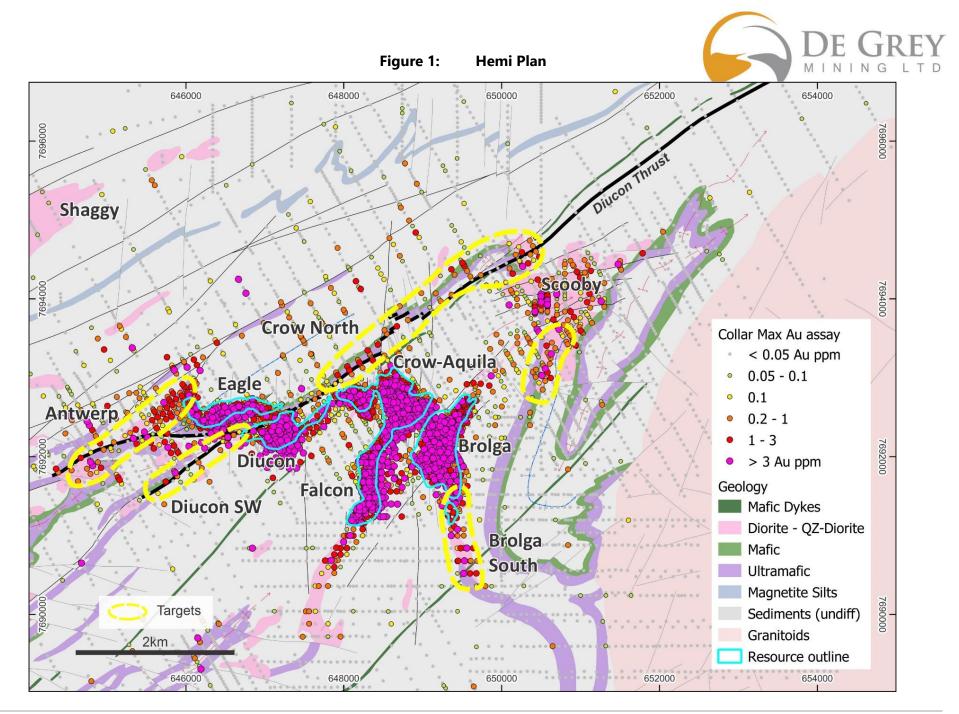
De Grey Mining Limited (ASX: DEG, **De Grey** or the **Company**) is pleased to report on recent drill results from the Aquila and Crow deposits at Hemi, including the high grade McLeod Lodes within Crow. Hemi is located approximately 85km south of the town of Port Hedland in the Pilbara region of Western Australia. Aquila and Crow are in the north of the Hemi deposits (Figure 1).

This release provides an update on drilling since the previous announcement on Eagle extensional drilling released to the ASX on 26 June 2024. Recent drilling has continued to target extensions to the November 2023 MRE at Eagle, Aquila, Crow and Antwerp.

The Hemi DFS, based on the June 2023 MRE³, demonstrates a robust, Tier 1 project with outstanding financial metrics. The new extensional drill results in this release represent further potential upside to the DFS outcomes and support the Hemi underground mining concept.

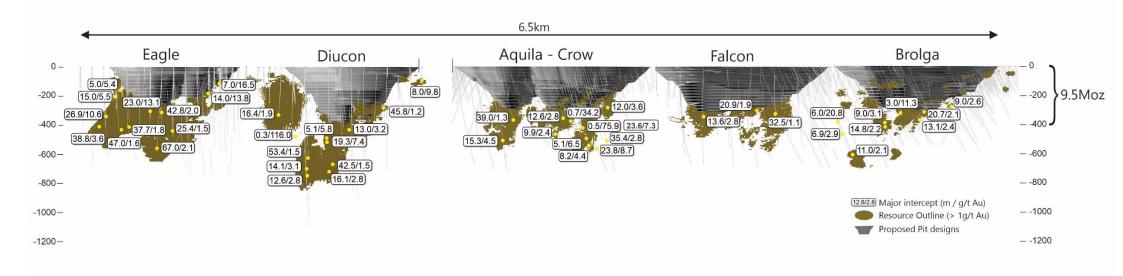
The schematic long section of the 6.5km strike of the Hemi deposits (Figure 2) shows significant intersections below the DFS pit designs. Limited drilling to date beneath the Hemi DFS pit designs represents an opportunity to significantly increase the MRE and Hemi production potential. Drilling above 400 metres depth occurs at an intensity of 40 drill holes every 10 vertical metres, while drilling below 400 metres depth occurs at only 4 drill holes every 10 vertical metres.

New drill results are provided in Table 1 at the end of the announcement.


Aquila-Crow drill programs

The Aquila-Crow intrusive body currently extends up to 1km east-west and 0.7km north-south. The intrusive body was originally interpreted to pinch out at depth below Aquila. More recent interpretation suggested the intrusive continues at depth.

Testing the potential for deeper mineralisation at Aquila, three holes targeting down dip extensions (HERC178D, HERC395D and HERC011D) were drilled in late 2023. These holes were spaced approximately 200-300m apart along strike and approximately 200-500m down dip of previous drilling.


The three deeper holes confirmed that mineralised intrusive does extend at depth, with the easternmost hole (HERC011D) intersecting over 300m of intrusive, including 146m @ 0.5g/t Au from 877m (at a 0.3g/t Au lower cut). The wide zones of mineralisation, associated with alteration and deformation, confirmed that a large mineralised system extends to depth at Aquila-Crow.

³ Refer to ASX Announcement, 16 June 2023, Mallina Gold Project Resource Statement – 2023

Figure 2: Hemi Schematic Long Section

All Deposits Open at Depth

Average gold endowment top 400m approximately 25,000 ounces per vertical metre Drill density to 400m depth approximately 40 drill holes every 10 vertical metres Drill density 400m to 800m below surface approximately 4 drill holes every 10 vertical metres Significant upside beneath existing Mineral Resource

Follow up programs targeting Aquila/Crow were completed, comprising:

- 1. Closer spaced holes targeting the high grade McLeod Lodes at shallower depth. Some of the deeper holes targeting Aquila footwall mineralisation were extended beneath the intrusive intersecting high grade, McLeod-style zones in sediments adjacent to the intrusive body.
- 2. Drilling targeting the main zone of Aquila mineralisation, which occurs mainly in the hanging wall of the Aquila intrusive and is best developed in the west of Aquila.
- **3.** Drilling targeting mineralisation towards the eastern end of Aquila. This mineralisation forms part of the Crow Mineral Resource model and is better developed in the footwall of the Aquila-Crow intrusive where it narrows to the east.

Drill results at Aquila and Crow, not included in previous announcements but included in the November 2023 MRE, are reported in Table 1.

Crow – McLeod Lode drilling

The McLeod Lodes refer to high grade lodes that occur in the southeast of the Crow deposit (Figure 2). The lodes show different characteristics to the bulk of the Hemi mineralisation and are generally associated with smokey quartz veining with visible gold. Understanding of the orientation of these lodes and their relationship to other Crow mineralisation continues to advance. Eight relatively shallow diamond tails were completed with significant intercepts including:

- 15m @ 1.3g/t Au from 268m in HERC642D
- 12.1m @ 1.5g/t Au from 265.0m including 4.1m @ 2.6g/t Au from 273.0m in HERC688D
- 16.7m @ 0.9g/t Au from 166m and 37.5m @ 2.4g/t Au from 190m in HERC916DW1
- 6.4m @ 4.7g/t Au from 288m including 1.9m @ 14.3g/t Au from 292.1m in HERC918D
- 6.8m @ 4.1g/t Au from 128.9m in HERC920D

High grade McLeod Lode-style mineralisation was intersected in sediments beneath and adjacent to the Aquila intrusion. These results highlight the potential for additional high grade McLeod Lode-style mineralisation at depth and include:

- 23.8m @ 8.7g/t Au from 689.2m in HERC013D
- 23.6m @ 7.3g/t Au from 602.0m in HERC209D

Aquila West

Mineral Resources in the west of Aquila are open at depth. Thirteen holes were drilling into the Aquila hanging wall zone, intersecting mineralisation up to 200m below the current Mineral Resource model over a strike length of more than 400m. Drilling at depth throughout Aquila shows a large mineralised system.

Intercepts are provided in Table 1 and include:

- 0.9m @ 16.4g/t Au from 686.0m in HEDD217
- 8.6m @ 1.2g/t Au from 489.2m in HEDD263
- 9.4m @ 5.3g/t Au from 537m in HEDD264 (incl 1m @ 44.8g/t Au from 538m)
- 24m @ 1.1g/t Au from 583.8m in HERC395D
- 8.3m @ 2.4g/t Au from 597.7m in HERC748D

Other lodes were intersected below the main mineralised zone in the intrusion (Figure 6) including:

- 9.2m @ 2.2g/t Au from 731.5m in HEDD324
- 12.7m @ 1.9g/t Au from 91.3m and 14.4m @ 1.7g/t Au from 109.0m in HERC918D

Narrow, high grade zones were intersected, including:

- 1.8m @ 86.7g/t Au from 673.4m in HEDD001
- 1.0m @ 22g/t Au from 653.0m in HERC395D

Drilling is currently widely spaced and the orientation and continuity of these narrow high grade structures are yet to be determined. However, they provide encouragement for future drilling targeting underground Mineral Resources.

Aquila East

Another mineralised zone occurs in the footwall in the east of the Aquila intrusive and was targeted in recent diamond drilling. Drilling intersected mineralisation up to approximately 500m down dip of the November 2023 MRE over a strike length of approximately 200m. Strike appears to be limited to the east where the intrusive pinches out, possibly due to a fault (Figure 5), although mineralisation is still open at depth. HEDD316 intersected 35.4m @ 2.8g/t Au from 616m associated with strong sulphide development (Figure 7). Significant intercepts are provided in (Table 1) and include:

- 15.2m @ 0.9g/t Au from 889m in HEDD217
- 11.1m @ 1.2g/t Au from 666.94m in HEDD265
- 35.4m @ 2.8g/t Au from 616m in HEDD316
- 27.3m @ 1.0g/t Au from 833m in HEDD324
- 16.4m @ 0.8g/t Au from 652m in HERC013D
- 69m @ 0.8g/t Au from 464m in HERC209D
- 15m @ 1.3g/t Au from 268m in HERC642D

The pre-collars of HEDD265 and HEDD316 required to intersect Aquila East at depth also intersected the Brolga orebody, returning 35.3m @ 4.2g/t Au and 71.3m @ 3.2g/t Au respectively from within the proposed Brolga DFS starter pit, providing further support to the Mineral Resource model in this area and confirming the quality of the Brolga starter pit.

Current exploration at Hemi includes RC drilling at Antwerp and Frillback. RC and diamond drilling is also planned for the Scooby area. Diamond drilling is currently targeting extensions at Falcon and Antwerp.

Regionally, one aircore rig is drilling in the Lowe area on the Egina JV, with additional aircore, RC and diamond drilling planned for West Yule and the Egina Joint Venture.

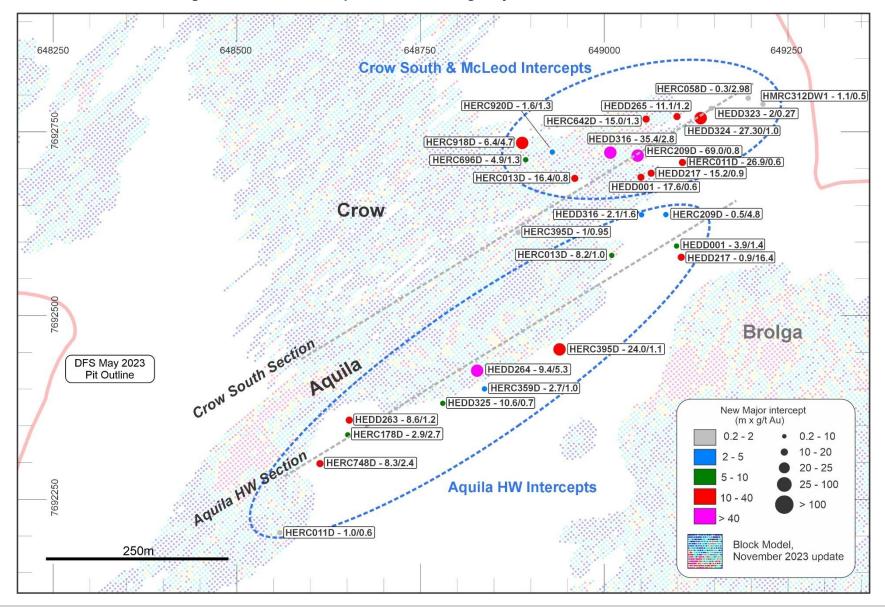


Figure 3: Plan of Aquila-Crow showing only new extensional drill results

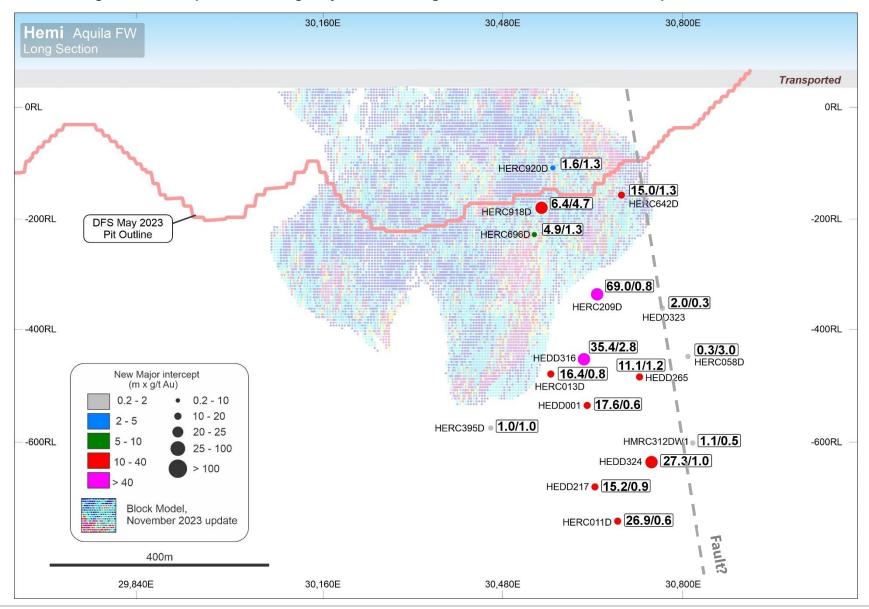
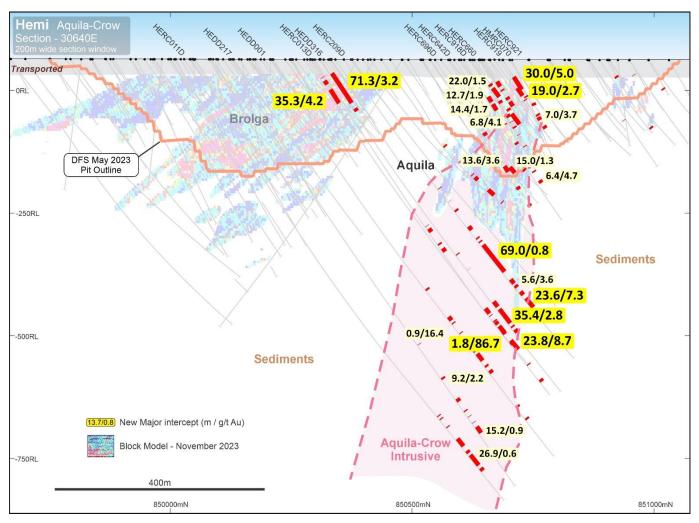



Figure 5: Aquila-Crow Long Projection showing new drill intersections in the Aquila Footwall zone

Figure 6: Cross Section 30640E – Aquila-Crow (200m wide panel search width)

Figure 7: Strong sulphide (arsenopyrite and pyrite) development in mineralised core – HEDD316, 630m (from interval of 35.4m @ 2.8g/t Au)

This announcement has been authorised for release by the De Grey Board.

For further information, please contact:

michael.vaughan@fivemark.com.au

Competent Person's Statement

The information in this report that relates to exploration results is based on, and fairly represents information and supporting documentation prepared by Mr. Philip Tornatora, a Competent Person who is a member of The Australasian Institute of Mining and Metallurgy. Mr. Tornatora is an employee of De Grey Mining Limited. Mr. Tornatora has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resource and Ore Reserves". Mr. Tornatora consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

Previously released ASX Material References that relates to Hemi Prospect includes:

Mineral Resources and Studies:

- Hemi Gold Project Resource Update November 2023, 21 November 2023
- Hemi Gold Project DFS Outstanding Financial Metrics, 28 September 2023
- Mallina Gold Project Resource Statement 2023, 16 June 2023
- Feasibility Study Outcomes Mallina Gold Project, 8 September 2022
- De Grey Mining Mallina Gold Project Scoping Study, 5 October 2021
- 6.8Moz Hemi Maiden Mineral Resource drives Mallina Gold Project, 23 June 2021
- 2020 Mallina Gold Project Resource update, 2 April 2020

Exploration results at Greater Hemi, announced since beginning of financial year 2022-23:

- Eagle High Grades and Extensions support Hemi DFS upside and Hemi Underground Mining Concept, 26 June 2024
- Greater Hemi and Regional Exploration Update, 13 February 2024
- Major extensions to Eagle and Diucon, 14 November 2023
- Major strike and depth extensions to Eagle and Diucon, 8 August 2023
- Resource definition and extensional drilling at Brolga, 16 March 2023
- Major strike and depth extensions at Diucon, 15 February 2023
- New AC and RC results in intrusion at Antwerp, 22 November 2022
- Major gold intersection 200m below Diucon, 01 August 2022

Forward looking statements disclaimer

This announcement has been prepared by De Grey Mining Ltd (**Company**) and contains forward-looking statements. Forward-looking statements include those containing words such as "anticipate", "estimates", "forecasts", "indicative", "should", "will", "would", "expects", "plans" or similar expressions.

Such forward-looking statements are based on information available as at the date of this announcement and are not guarantees of future performance and involve known and unknown risks, uncertainties, assumptions and other important factors, many of which are beyond the control of the Company, and which could cause actual results or trends to differ materially from those expressed in this announcement.

Relevant factors include risks associated with exploring for gold, project development and construction and the mining, processing and sale of gold, including without limitation, changes in commodity prices, foreign exchange fluctuations and general economic conditions, increased costs and demand for production inputs, the speculative nature of exploration and project development, including the risks of obtaining necessary licenses and permits and diminishing quantities or grades of reserves, political and social risks, changes to the regulatory framework within which the Company operates or may in the future operate, environmental conditions including extreme weather conditions, recruitment and retention of personnel, industrial relations issues and litigation.

Readers of this announcement are cautioned not to place undue reliance on forward-looking statements included in it.

Forward looking statements in this announcement only apply at the date of issue. Subject to any continuing obligations under applicable law or any relevant securities exchange listing rules, in providing this information the Company does not undertake any obligation to publicly update or revise any of the forward-looking statements or to advise of any change in events, conditions or circumstances on which any such statement is based.

Table 1: Significant new results (>2 gram x m Au) - Intercepts - 0.5g/t Au lower cut, 4m maximum internal waste,>2gm.

HoleID	Zone	Depth From (m)	Depth To (m)	Down hole Width	Au (g/t)	Collar East (GDA94)	Collar North (GDA94)	Collar RL (GDA94)	Dip (deg rees)	Azimuth (GDA94)	Hole Depth (m)	Hole Type
				(m)								
HEDD001	Aquila West	562.0	565.9	3.9	1.4	649260	7692315	69	-56	326	984	DD
HEDD001	Aquila	634.0	643.0	9.0	1.1	649260	7692315	69	-56	326	984	DD
HEDD001	Aquila	648.5	650.9	2.4	6.2	649260	7692315	69	-56	326	984	DD
HEDD001	Aquila	673.4	675.3	1.8	86.7	649260	7692315	69	-56	326	984	DD
HEDD001	Aquila	719.1	722.4	3.2	0.6	649260	7692315	69	-56	326	984	DD
HEDD001	Aquila FW	727.4	745.0	17.6	0.6	649260	7692315	69	-56	326	984	DD
HEDD001	Aquila	756.0	760.0	4.0	0.7	649260	7692315	69	-56	326	984	DD
HEDD001	Aquila	769.0	776.0	7.0	0.5	649260	7692315	69	-56	326	984	DD
HEDD001	Crow	858.0	862.6	4.6	0.5	649260	7692315	69	-56	326	984	DD
HEDD001	Crow	889.0	893.0	4.0	1.8	649260	7692315	69	-56	326	984	DD
HEDD014	Crow	64.8	69.6	4.8	2.4	648524	7692710	67	-60	332	150	DD
HEDD014	Crow	80.9	83.2	2.2	1.7	648524	7692710	67	-60	332	150	DD
HEDD014	Crow	95.0	102.0	7.0	2.6	648524	7692710	67	-60	332	150	DD
HEDD014	Crow	118.0	119.0	1.0	16.7	648524	7692710	67	-60	332	150	DD
HEDD014	Crow	133.8	134.8	1.0	4.5	648524	7692710	67	-60	332	150	DD
HEDD015	Crow	44.1	46.5	2.4	1.6	648779	7692741	67	-56	332	230	DD
HEDD015	Crow	88.0	100.9	12.9	0.5	648779	7692741	67	-56	332	230	DD
HEDD015	Crow	112.0	118.0	6.0	2.7	648779	7692741	67	-56	332	230	DD
incl	Crow	112.0	113.0	1.0	15.2	648779	7692741	67	-56	332	230	DD
HEDD016	Aquila	85.1	98.0	12.9	2.2	648889	7692553	68	-56	330	360	DD
HEDD016	Aquila	106.0	107.0	1.0	3.5	648889	7692553	68	-56	330	360	DD
HEDD016	Aquila	113.8	115.0	1.2	2.9	648889	7692553	68	-56	330	360	DD
HEDD016	Crow	269.0	275.0	6.0	0.8	648889	7692553	68	-56	330	360	DD
HEDD016	Crow	322.3	334.5	12.2	1.1	648889	7692553	68	-56	330	360	DD
HEDD017	Aquila	76.9	117.0	40.1	3.3	648560	7692329	68	-70	330	161	DD
HEDD047	Crow	86.0	97.3	11.3	0.7	648546	7692675	67	-76	231	207	DD
HEDD049	Crow	35.0	36.0	1.0	5.3	648503	7692910	67	-56	332	182	DD
HEDD049	Crow	77.9	81.0	3.2	1.6	648503	7692910	67	-56	332	182	DD
HEDD076	Crow	43.0	48.0	5.0	0.8	648648	7692648	68	-55	331	320	DD
HEDD076	Crow	53.0	58.0	5.0	1.7	648648	7692648	68	-55	331	320	DD
HEDD076	Crow	67.1	68.0	0.9	6.4	648648	7692648	68	-55	331	320	DD
HEDD076	Crow	113.0	120.0	7.0	1.0	648648	7692648	68	-55	331	320	DD
HEDD076	Crow	124.4	146.0	21.6	0.8	648648	7692648	68	-55	331	320	DD
HEDD076	Crow	172.0	176.2	4.2	0.6	648648	7692648	68	-55	331	320	DD
HEDD076	Crow	204.4	208.2	3.8	1.4	648648	7692648	68	-55	331	320	DD
HEDD076	Crow	215.6	218.0	2.4	3.1	648648	7692648	68	-55	331	320	DD
HEDD076	Crow	270.0	272.0	2.0	27.5	648648	7692648	68	-55	331	320	DD
HEDD076	Crow	279.5	285.9	6.4	1.2	648648	7692648	68	-55	331	320	DD
HEDD076	Crow	297.1	298.3	1.2	1.8	648648	7692648	68	-55	331	320	DD
HEDD077	Crow	24.0	44.1	20.1	1.2	648608	7692970	67	-57	330	159	DD
HEDD077	Crow	69.2	73.7	4.5	0.8	648608	7692970	67	-57	330	159	DD
HEDD079	Crow	97.6	102.1	4.5	0.7	648100	7692810	67	-56	332	128	DD
HEDD081	Crow	51.0	54.0	3.0	0.7	648237	7692570	68	-55	335	342	DD
HEDD081	Crow	149.1	157.0	7.9	1.0	648237	7692570	68	-55	335	342	DD

HoleID	Zone	Depth From	Depth To (m)	Down hole	Au (g/t)	Collar East	Collar North	Collar RL (GDA94)	Dip (deg	Azimuth (GDA94)	Hole Depth	Hole Type
		(m)		Width (m)		(GDA94)	(GDA94)		rees)		(m)	
HEDD147	Crow	77.1	93.2	16.1	1.2	648702	7692727	67	-56	330	264	DD
incl	Crow	86.0	88.0	2.0	7.0	648702	7692727	67	-56	330	264	DD
HEDD147	Crow	148.9	153.5	4.5	1.7	648702	7692727	67	-56	330	264	DD
HEDD147	Crow	172.0	186.0	14.0	0.5	648702	7692727	67	-56	330	264	DD
HEDD147	Crow	191.3	204.0	12.8	1.7	648702	7692727	67	-56	330	264	DD
HEDD147	Crow	226.2	227.8	1.5	1.9	648702	7692727	67	-56	330	264	DD
HEDD148	Crow	53.0	63.3	10.3	1.0	648593	7692756	67	-56	330	240	DD
HEDD148	Crow	113.0	114.0	1.0	2.3	648593	7692756	67	-56	330	240	DD
HEDD148	Crow	159.8	161.6	1.8	1.2	648593	7692756	67	-56	330	240	DD
HEDD148	Crow	198.4	212.0	13.6	2.0	648593	7692756	67	-56	330	240	DD
HEDD148	Crow	217.0	218.0	1.0	2.3	648593	7692756	67	-56	330	240	DD
HEDD166	Aquila	506.0	513.0	7.0	0.7	648700	7692009	68	-66	329	901	DD
HEDD166	Aquila	585.0	588.0	3.0	1.8	648700	7692009	68	-66	329	901	DD
HEDD166	Aquila	616.9	623.0	6.1	0.6	648700	7692009	68	-66	329	901	DD
HEDD187W1	Crow	120.0	125.0	5.0	1.4	648048	7692740	67	-56	333	345	DD
HEDD187W1	Crow	129.2	132.0	2.9	1.4	648048	7692740	67	-56	333	345	DD
HEDD187W1	Crow	153.0	162.0	9.0	1.0	648048	7692740	67	-56	333	345	DD
HEDD188	Crow	71.7	73.9	2.3	0.9	648267	7692678	68	-57	331	294	DD
HEDD188	Crow	220.8	224.3	3.5	0.9	648267	7692678	68	-57	331	294	DD
HEDD190	Crow	106.0	110.0	4.0	2.2	648014	7692722	67	-56	331	200	DD
HEDD190	Crow	117.0	134.0	17.1	4.0	648014	7692722	67	-56	331	200	DD
incl	Crow	124.0	130.0	6.0	10.1	648014	7692722	67	-56	331	200	DD
HEDD190	Crow	152.0	154.0	2.0	5.3	648014	7692722	67	-56	331	200	DD
HEDD190	Crow	171.0	175.0	4.0	0.7	648014	7692722	67	-56	331	200	DD
HEDD217	Aquila West	686.0	687.0	0.9	16.4	649260	7692234	69	-56	329	1032	DD
HEDD217	Aquila	768.0	772.0	4.0	0.8	649260	7692234	69	-56	329	1032	DD
HEDD217	Aquila	820.0	827.1	7.1	1.1	649260	7692234	69	-56	329	1032	DD
HEDD217	Aquila	848.6	851.0	2.5	1.1	649260	7692234	69	-56	329	1032	DD
HEDD217	Aquila	863.0	864.0	1.0	3.1	649260	7692234	69	-56	329	1032	DD
HEDD217	Aquila	878.0	879.0	1.0	4.4	649260	7692234	69	-56	329	1032	DD
HEDD217	Aquila FW	889.0	904.2	15.2	0.9	649260	7692234	69	-56	329	1032	DD
HEDD263	Aquila West	489.3	497.8	8.6	1.2	648777	7692118	68	-57	330	630	DD
HEDD264	Aquila West	537.0	546.4	9.4	5.3	648981	7692158	69	-56	326	720	DD
incl	Aquila West	538.0	539.0	1.0	44.8	648981	7692158	69	-56	326	720	DD
HEDD265	Brolga	46.0	47.0	1.0	3.4	649270	7692421	69	-55	331	858	DD
HEDD265	Brolga	54.0	89.3	35.3	4.2	649270	7692421	69	-55	331	858	DD
HEDD265	Brolga	102.0	104.0	2.1	1.2	649270	7692421	69	-55	331	858	DD
HEDD265	Brolga	109.0	112.0	3.0	1.7	649270	7692421	69	-55	331	858	DD
HEDD265	Brolga	119.0	120.5	1.5	1.7	649270	7692421	69	-55	331	858	DD
HEDD265	Aquila	613.3	626.1	12.9	0.6	649270	7692421	69	-55	331	858	DD
HEDD265	Aquila	630.5	631.7	1.3	1.9	649270	7692421	69	-55	331	858	DD
HEDD265	Aquila	647.0	653.8	6.8	0.8	649270	7692421	69	-55	331	858	DD
HEDD265	Aquila FW	666.9	678.1	11.1	1.2	649270	7692421	69	-55	331	858	DD
incl	Aquila FW	670.0	674.6	4.6	2.3	649270	7692421	69	-55	331	858	DD
HEDD265	Aquila	697.4	704.1	6.7	0.7	649270	7692421	69	-55	331	858	DD
HEDD265	Aquila	753.9	756.2	2.3	1.0	649270	7692421	69	-55	331	858	DD

HoleID	Zone	Depth From	Depth	Down hole	Au (g/t)	Collar East	Collar North	Collar RL (GDA94)	Dip	Azimuth (GDA94)	Hole Depth	Hole
		(m)	To (m)	Width	(g/t)	(GDA94)	(GDA94)	(GDA94)	(deg rees)	(GDA94)	(m)	Туре
				(m)								
HEDD265	Crow	793.0	798.9	5.9	0.8	649270	7692421	69	-55	331	858	DD
HEDD311	Crow	79.0	85.0	6.0	0.6	648191	7692728	67	-56	333	231	DD
HEDD311	Crow	90.0	95.2	5.2	1.3	648191	7692728	67	-56	333	231	DD
HEDD311	Crow	178.0	179.6	1.6	1.5	648191	7692728	67	-56	333	231	DD
HEDD316	Brolga	36.3	107.6	71.3	3.2	649187	7692401	69	-56	328	822	DD
incl	Brolga	37.0	40.0	3.0	20.0	649187	7692401	69	-56	328	822	DD
incl	Brolga	46.0	64.0	18.0	5.3	649187	7692401	69	-56	328	822	DD
HEDD316	Brolga	120.2	127.0	6.8	0.8	649187	7692401	69	-56	328	822	DD
HEDD316	Aquila West	476.5	478.6	2.1	1.6	649187	7692401	69	-56	328	822	DD
HEDD316	Aquila	514.9	515.2	0.3	10.5	649187	7692401	69	-56	328	822	DD
HEDD316	Aquila	597.0	610.0	13.0	0.6	649187	7692401	69	-56	328	822	DD
HEDD316	Aquila FW	616.0	651.4	35.4	2.8	649187	7692401	69	-56	328	822	DD
HEDD316	Crow	657.9	661.4	3.5	0.7	649187	7692401	69	-56	328	822	DD
HEDD316	Crow	667.2	674.7	7.4	0.7	649187	7692401	69	-56	328	822	DD
HEDD320	Crow	105.0	111.0	6.0	2.1	648964	7692718	68	-56	20	240	DD
HEDD320	Crow	105.0	111.0	6.0	2.1	648964	7692718	68	-56	20	240	DD
HEDD324	Aquila	721.0	725.0	4.0	1.4	649406	7692383	69	-57	329	912	DD
HEDD324	Aquila	731.5	740.7	9.2	2.2	649406	7692383	69	-57	329	912	DD
HEDD324	Aquila	762.5	767.6	5.1	1.4	649406	7692383	69	-57	329	912	DD
HEDD324	Aquila	795.7	810.5	14.8	0.9	649406	7692383	69	-57	329	912	DD
HEDD324	Aquila FW	833.0	860.3	27.3	1.0	649406	7692383	69	-57	329	912	DD
incl	Aquila	840.0	841.1	1.1	4.5	649406	7692383	69	-57	329	912	DD
incl	Aquila	845.7	847.0	1.4	6.3	649406	7692383	69	-57	329	912	DD
HEDD325	Aquila West	517.4	528.0	10.6	0.7	648903	7692135	69	-57	330	613	DD
HERC011D	Aquila	879.0	881.0	2.0	1.0	649341	7692176	69	-56	326	1096	DD
HERC011D	Aquila	886.8	889.0	2.2	8.8	649341	7692176	69	-56	326	1096	DD
HERC011D	Aquila	908.0	910.0	2.0	1.6	649341	7692176	69	-56	326	1096	DD
HERC011D	Aquila	940.0	959.4	19.4	0.5	649341	7692176	69	-56	326	1096	DD
HERC011D	Aquila	971.0	977.0	6.0	0.6	649341	7692176	69	-56	326	1096	DD
HERC011D	Aquila	982.1	1009.0	26.9	0.6	649341	7692176	69	-56	326	1096	DD
HERC011D	Aquila	1016.0	1023.0	7.0	1.1	649341	7692176	69	-56	326	1096	DD
HERC013D	Aquila	403.7	404.5	0.8	3.6	649142	7692358	68	-55	328	750	DD
HERC013D	Aquila	411.0	419.0	8.0	0.5	649142	7692358	68	-55	328	750	DD
HERC013D	Aquila	446.6	450.2	3.5	0.6	649142	7692358	68	-55	328	750	DD
HERC013D	Aquila West	459.0	467.2	8.2	1.0	649142	7692358	68	-55	328	750	DD
HERC013D	Aquila	637.0	640.0	3.0	1.0	649142	7692358	68	-55	328	750	DD
HERC013D	Aquila FW	652.0	668.4	16.4	0.8	649142	7692358	68	-55	328	750	DD
HERC013D	Crow (McLeod)	689.2	713.0	23.8	8.7	649142	7692358	68	-55	328	750	DD
incl	Crow	689.2	704.0	14.8	13.3	649142	7692358	68	-55	328	750	DD
HERC058D	Aquila	595.3	596.4	1.0	2.5	649366	7692453	69	-57	331	762	DD
HERC058D	Aquila	744.0	745.1	1.2	1.7	649366	7692453	69	-57	331	762	DD
HERC070D	Crow	347.0	348.0	1.0	3.6	648803	7692468	68	-56	331	502	DD
HERC093D	Crow	428.0	430.0	2.0	1.5	648615	7692313	68	-57	329	493	DD
HERC178D	Aquila West	650.4	653.3	2.9	2.7	648909	7691963	69	-55	330	919	DD
HERC178D	Crow	810.0	811.3	1.4	1.5	648909	7691963	69	-55	330	919	DD
HERC209D	Aquila	320.0	321.5	1.5	1.7	649180	7692453	68	-56	330	759	DD

HoleID	Zone	Depth From (m)	Depth To (m)	Down hole Width	Au (g/t)	Collar East (GDA94)	Collar North (GDA94)	Collar RL (GDA94)	Dip (deg rees)	Azimuth (GDA94)	Hole Depth (m)	Hole Type
				(m)								
HERC209D	Aquila West	353.3	353.7	0.5	4.8	649180	7692453	68	-56	330	759	DD
HERC209D	Aquila	374.3	378.5	4.1	1.2	649180	7692453	68	-56	330	759	DD
HERC209D	Aquila	417.0	426.0	9.0	0.7	649180	7692453	68	-56	330	759	DD
HERC209D	Aquila	445.0	448.0	3.0	1.3	649180	7692453	68	-56	330	759	DD
HERC209D	Aquila	454.1	456.8	2.8	1.2	649180	7692453	68	-56	330	759	DD
HERC209D	Aquila FW	464.0	533.0	69.0	0.8	649180	7692453	68	-56	330	759	DD
incl	Aquila	465.0	466.0	1.0	5.5	649180	7692453	68	-56	330	759	DD
incl	Aquila	481.8	486.0	4.3	1.6	649180	7692453	68	-56	330	759	DD
incl	Aquila	518.0	525.0	7.0	1.4	649180	7692453	68	-56	330	759	DD
HERC209D	Aquila	553.0	563.5	10.5	0.8	649180	7692453	68	-56	330	759	DD
HERC209D	Crow	568.0	573.6	5.6	3.6	649180	7692453	68	-56	330	759	DD
incl	Crow	572.5	573.6	1.1	12.1	649180	7692453	68	-56	330	759	DD
HERC209D	Crow	584.6	593.3	8.7	1.0	649180	7692453	68	-56	330	759	DD
HERC209D	Crow (McLeod)	602.0	625.6	23.6	7.3	649180	7692453	68	-56	330	759	DD
incl	Crow	622.1	625.6	3.5	43.2	649180	7692453	68	-56	330	759	DD
HERC347	Crow	30.0	39.0	9.0	0.6	648680	7692919	67	-56	332	204	RC
HERC353D	Crow	111.0	118.0	7.0	0.5	648823	7692516	68	-55	332	420	DD
HERC353D	Crow	246.0	260.0	14.0	4.8	648823	7692516	68	-55	332	420	DD
HERC353D	Crow	299.5	316.5	17.0	1.5	648823	7692516	68	-55	332	420	DD
incl	Crow	307.0	310.0	3.0	5.8	648823	7692516	68	-55	332	420	DD
HERC353D	Crow	345.3	346.8	1.5	2.4	648823	7692516	68	-55	332	420	DD
HERC353D	Crow	383.4	386.0	2.6	0.9	648823	7692516	68	-55	332	420	DD
HERC353D	Crow	391.8	396.0	4.3	1.1	648823	7692516	68	-55	332	420	DD
HERC359D	Aquila West	629.7	632.3	2.7	1.0	649036	7692063	69	-56	329	1007	DD
HERC367D	Aquila	177.9	180.8	2.9	0.7	648735	7692348	68	-56	330	358	DD
HERC367D	Aquila	185.0	191.0	6.0	0.8	648735	7692348	68	-56	330	358	DD
HERC367D	Aquila	203.1	218.7	15.6	2.0	648735	7692348	68	-56	330	358	DD
HERC367D	Crow	330.0	337.0	7.0	2.5	648735	7692348	68	-56	330	358	DD
HERC395D	Aquila West	583.8	607.8	24.0	1.1	649098	7692116	69	-56	331	906	DD
HERC395D	Aquila	653.0	654.0	1.0	22.0	649098	7692116	69	-56	331	906	DD
HERC395D	Aquila	760.6	761.6	0.9	19.1	649098	7692116	69	-56	331	906	DD
HERC565D	Aquila	222.4	224.1	1.7	1.5	648960	7692434	68	-56	331	485	DD
HERC565D	Aquila	232.0	234.5	2.5	0.8	648960	7692434	68	-56	331	485	DD
HERC565D	Crow	459.0	464.2	5.2	0.6	648960	7692434	68	-56	331	485	DD
HERC608D	Crow (McLeod)	290.0	294.0	4.0	1.9	649059	7692583	68	-56	330	360	DD
HERC624D	Crow	261.0	263.0	2.0	1.6	648713	7692619	67	-56	331	396	DD
HERC624D	Crow	295.1	312.9	17.8	0.9	648713	7692619	67	-56	331	396	DD
HERC639D	Crow	207.0	222.0	15.0	0.5	648671	7692613	68	-56	331	378	DD
HERC639D	Crow	262.0	273.0	11.0	2.4	648671	7692613	68	-56	331	378	DD
HERC639D	Crow	281.0	302.8	21.8	1.0	648671	7692613	68	-56	331	378	DD
HERC641D	Aquila	213.0	216.4	3.4	2.7	649073	7692478	68	-55	329	385	RC
HERC641D	Aquila	294.0	296.0	2.0	1.8	649073	7692478	68	-55	329	385	DD
HERC641D	Aquila	302.0	310.0	8.0	0.7	649073	7692478	68	-55	329	385	DD
HERC641D	Aquila	339.0	355.0	16.0	0.8	649073	7692478	68	-55	329	385	DD
HERC641D	Crow	376.1	378.0	1.9	2.0	649073	7692478	68	-55	329	385	DD
HERC642D	Aquila FW	268.0	283.0	15.0	1.3	649127	7692623	68	-55	329	360	DD

HoleID	Zone	Depth From (m)	Depth To (m)	Down hole Width	Au (g/t)	Collar East (GDA94)	Collar North (GDA94)	Collar RL (GDA94)	Dip (deg rees)	Azimuth (GDA94)	Hole Depth (m)	Hole Type
		(,		(m)					rees		(,	
HERC649	Crow	46.0	47.0	1.0	3.3	648603	7692412	68	-55	322	150	RC
HERC649	Crow	53.0	57.0	4.0	0.5	648603	7692412	68	-55	322	150	RC
HERC660	Aquila	62.0	67.0	5.0	0.7	648949	7692612	68	-56	327	162	RC
HERC660	Aquila	72.0	94.0	22.0	1.5	648949	7692612	68	-56	327	162	RC
incl	Aquila	86.0	90.0	4.0	5.2	648949	7692612	68	-56	327	162	RC
HERC660	Crow	123.0	128.0	5.0	0.5	648949	7692612	68	-56	327	162	RC
HERC660	Crow	136.0	162.0	26.0	0.7	648949	7692612	68	-56	327	162	RC
HERC688D	Crow (McLeod)	221.0	227.0	6.0	1.2	648801	7692549	68	-54	333	402	DD
HERC688D	Crow (McLeod)	265.0	277.1	12.1	1.5	648801	7692549	68	-54	333	402	DD
incl	Crow (McLeod)	273.0	277.1	4.1	2.6	648801	7692549	68	-54	333	402	DD
HERC688D	Crow	358.6	367.0	8.4	0.7	648801	7692549	68	-54	333	402	DD
HERC689D	Aquila	79.0	115.0	36.0	1.1	648841	7692480	68	-55	329	454	RC
HERC689D	Aquila	126.0	134.0	8.0	1.0	648841	7692480	68	-55	329	454	RC
HERC689D	Aquila	146.0	147.0	1.0	2.0	648841	7692480	68	-55	329	454	RC
HERC689D	Aquila	163.0	174.0	11.0	1.2	648841	7692480	68	-55	329	454	RC
HERC689D	Crow	205.0	221.0	16.0	0.9	648841	7692480	68	-55	329	454	RC
HERC689D	Crow	284.4	284.7	0.4	24.5	648841	7692480	68	-55	329	454	DD
HERC689D	Crow	308.0	309.0	1.0	5.8	648841	7692480	68	-55	329	454	DD
HERC689D	Crow	363.3	366.0	2.7	0.9	648841	7692480	68	-55	329	454	DD
HERC689D	Crow	371.0	378.0	7.0	0.7	648841	7692480	68	-55	329	454	DD
HERC690D	Aquila	108.0	111.0	3.0	1.9	648713	7692382	69	-56	330	288	RC
HERC690D	Aquila	116.0	121.0	5.0	1.3	648713	7692382	69	-56	330	288	RC
HERC690D	Aquila	165.0	179.0	14.0	1.0	648713	7692382	69	-56	330	288	RC
HERC690D	Aquila	186.0	192.0	6.0	1.1	648713	7692382	69	-56	330	288	RC
HERC690D	Crow	202.2	205.0	2.9	0.7	648713	7692382	69	-56	330	288	DD
HERC692	Aquila	186.0	197.0	11.0	0.5	648484	7692136	68	-55	333	216	RC
HERC693	Aquila	113.0	116.0	3.0	0.7	648442	7692131	68	-55	327	222	RC
HERC693	Aquila	124.0	128.0	4.0	0.6	648442	7692131	68	-55	327	222	RC
HERC696D	Aquila	181.0	188.0	7.0	2.0	648989	7692542	68	-55	328	420	RC
HERC696D	Crow	259.5	273.1	13.6	3.6	648989	7692542	68	-55	328	420	DD
incl	Crow	268.4	273.1	4.6	9.1	648989	7692542	68	-55	328	420	DD
HERC696D	Crow	308.4	314.5	6.2	0.7	648989	7692542	68	-55	328	420	DD
HERC696D	Aquila FW	350.4	355.3	4.9	1.3	648989	7692542	68	-55	328	420	DD
incl	Crow	350.4	351.5	1.1	5.4	648989	7692542	68	-55	328	420	DD
HERC748D	Aquila West	597.7	606.0	8.3	2.4	648784	7692007	69	-56	326	930	DD
HERC748D	Aquila	651.0	655.0	4.0	1.4	648784	7692007	69	-56	326	930	DD
HERC905	Crow	73.0	76.0	3.0	1.1	648780	7692906	68	-55	330	96	RC
HERC906	Crow	39.0	40.0	1.0	5.1	648799	7692874	68	-55	330	114	RC
HERC907	Crow	43.0	47.0	4.0	0.7	648818	7692840	68	-55	331	132	RC
HERC908	Crow	149.0	150.0	1.0	7.3	648840	7692803	68	-56	330	150	RC
HERC909	Crow	54.0	59.0	5.0	0.9	648600	7692735	68	-54	332	114	RC
HERC909	Crow	93.0	109.0	16.0	0.8	648600	7692735	68	-54	332	114	RC
HERC910	Crow	42.0	73.0	31.0	0.8	648622	7692698	68	-54	333	193	RC
HERC910	Crow	91.0	99.0	8.0	0.7	648622	7692698	68	-54	333	193	RC
HERC910	Crow	108.0	114.0	6.0	1.2	648622	7692698	68	-54	333	193	RC
HERC910	Crow	119.0	131.0	12.0	1.3	648622	7692698	68	-54	333	193	RC

HoleID	Zone	Depth	Depth	Down	Au	Collar	Collar	Collar RL	Dip	Azimuth	Hole	Hole
		From (m)	To (m)	hole Width	(g/t)	East (GDA94)	North (GDA94)	(GDA94)	(deg rees)	(GDA94)	Depth (m)	Туре
		(11)		(m)					1003)		(,	
HERC910	Crow	141.0	153.0	12.0	2.2	648622	7692698	68	-54	333	193	RC
HERC910	Crow	174.0	191.0	17.0	0.6	648622	7692698	68	-54	333	193	RC
HERC911	Crow	108.0	114.0	6.0	1.4	648661	7692631	68	-55	330	133	RC
HERC912	Crow	142.0	149.0	7.0	0.8	648702	7692561	68	-54	330	252	RC
HERC913	Crow	63.0	70.0	7.0	0.9	648721	7692528	68	-54	331	210	RC
HERC913	Crow	118.0	126.0	8.0	0.5	648721	7692528	68	-54	331	210	RC
HERC913	Crow	173.0	178.0	5.0	0.7	648721	7692528	68	-54	331	210	RC
HERC913	Crow	183.0	190.0	7.0	0.9	648721	7692528	68	-54	331	210	RC
HERC914	Crow	62.0	63.0	1.0	20.8	648754	7692713	68	-56	149	220	RC
HERC915	Crow	69.0	74.0	5.0	0.9	648800	7692631	68	-55	331	255	RC
HERC915	Crow	116.0	126.0	10.0	0.6	648800	7692631	68	-55	331	255	RC
HERC915	Crow	131.0	149.0	18.0	0.6	648800	7692631	68	-55	331	255	RC
HERC915	Crow	162.0	185.0	23.0	1.2	648800	7692631	68	-55	331	255	RC
HERC915	Crow	240.0	251.0	11.0	6.0	648800	7692631	68	-55	331	255	RC
HERC916DW1	Crow (McLeod)	166.0	182.7	16.7	0.9	648829	7692581	68	-52	332	354	DD
HERC916DW1	Crow (McLeod)	190.0	227.5	37.5	2.4	648829	7692581	68	-52	332	354	DD
HERC916DW1	Crow	268.0	271.1	3.1	0.7	648829	7692581	68	-52	332	354	DD
HERC917	Crow	55.0	67.0	12.0	1.0	648940	7692629	68	-56	331	114	RC
HERC917	Crow	74.0	77.0	3.0	0.7	648940	7692629	68	-56	331	114	RC
HERC917	Crow	92.0	98.0	6.0	0.7	648940	7692629	68	-56	331	114	RC
HERC917	Crow	103.0	114.0	11.0	1.4	648940	7692629	68	-56	331	114	RC
HERC918D	Aquila	91.3	104.0	12.7	1.9	648959	7692596	68	-56	332	318	DD
HERC918D	Aquila	109.0	123.4	14.4	1.7	648959	7692596	68	-56	332	318	DD
HERC918D	Crow	155.0	157.0	2.0	3.9	648959	7692596	68	-56	332	318	DD
HERC918D	Crow (McLeod)	198.3	203.0	4.7	0.6	648959	7692596	68	-56	332	318	DD
HERC918D	Crow (McLeod)	265.6	268.5	3.0	0.7	648959	7692596	68	-56	332	318	DD
HERC918D	Crow (McLeod)	288.0	294.4	6.4	4.7	648959	7692596	68	-56	332	318	DD
incl	Crow (McLeod)	292.1	293.9	1.9	14.3	648959	7692596	68	-56	332	318	DD
HERC919	Crow	72.0	91.0	19.0	2.7	648960	7692675	68	-56	327	190	RC
HERC919	Crow	100.0	102.0	2.0	1.3	648960	7692675	68	-56	327	190	RC
HERC919	Crow	165.0	171.0	6.0	1.4	648960	7692675	68	-56	327	190	RC
HERC920D	Aquila	72.0	74.0	2.0	1.4	648982	7692637	68	-58	329	257	RC
HERC920D	Crow	97.4	103.1	5.7	0.5	648982	7692637	68	-58	329	257	DD
HERC920D	Crow (McLeod)	128.9	135.7	6.8	4.1	648982	7692637	68	-58	329	257	DD
HERC920D	Crow (McLeod)	145.3	146.3	1.0	2.3	648982	7692637	68	-58	329	257	DD
HERC920D	Crow (McLeod)	156.6	160.0	3.4	1.4	648982	7692637	68	-58	329	257	DD
HERC920D	Crow (McLeod)	175.0	176.0	1.0	4.2	648982	7692637	68	-58	329	257	DD
HERC920D	Aquila FW	200.9	202.5	1.6	1.3	648982	7692637	68	-58	329	257	DD
HERC921	Crow	138.0	145.0	7.0	3.7	648989	7692703	68	-56	326	150	RC
HERC923	Crow	68.0	69.0	1.0	2.0	648657	7692557	68	-54	329	162	RC
HERC924	Crow	91.0	129.0	38.0	1.0	648597	7692663	68	-53	330	270	RC
HERC924	Crow	142.0	145.0	3.0	0.8	648597	7692663	68	-53	330	270	RC
HERC924	Crow	157.0	169.0	12.0	1.1	648597	7692663	68	-53	330	270	RC
HERC924	Crow	193.0	195.0	2.0	2.0	648597	7692663	68	-53	330	270	RC
HERC924	Crow	213.0	215.0	2.0	1.2	648597	7692663	68	-53	330	270	RC
HERC925	Crow	45.0	48.0	3.0	0.8	648578	7692696	67	-53	329	180	RC

HoleID	Zone	Depth From (m)	Depth To (m)	Down hole Width (m)	Au (g/t)	Collar East (GDA94)	Collar North (GDA94)	Collar RL (GDA94)	Dip (deg rees)	Azimuth (GDA94)	Hole Depth (m)	Hole Type
HERC925	Crow	57.0	63.0	6.0	1.0	648578	7692696	67	-53	329	180	RC
HERC925	Crow	73.0	74.0	1.0	4.5	648578	7692696	67	-53	329	180	RC
HERC925	Crow	99.0	102.0	3.0	3.0	648578	7692696	67	-53	329	180	RC
HERC925	Crow	121.0	150.0	29.0	3.3	648578	7692696	67	-53	329	180	RC
HERC926	Crow	82.0	83.0	1.0	3.3	648677	7692524	68	-54	329	198	RC
HERC926	Crow	96.0	102.0	6.0	2.0	648677	7692524	68	-54	329	198	RC
HERC927	Crow	35.0	40.0	5.0	0.6	648583	7692608	68	-56	334	222	RC
HERC927	Crow	181.0	196.0	15.0	0.5	648583	7692608	68	-56	334	222	RC
HERC927	Crow	202.0	204.0	2.0	1.5	648583	7692608	68	-56	334	222	RC
HERC928	Crow	91.0	92.0	1.0	3.4	648686	7692667	68	-56	326	168	RC
HERC928	Crow	106.0	111.0	5.0	0.7	648686	7692667	68	-56	326	168	RC
HERC928	Crow	139.0	150.0	11.0	1.2	648686	7692667	68	-56	326	168	RC
HERC929	Crow	25.0	48.0	23.0	0.7	648656	7692880	67	-56	335	162	RC
HERC929	Crow	61.0	64.0	3.0	2.6	648656	7692880	67	-56	335	162	RC
HERC930	Crow	30.0	44.0	14.0	0.8	648616	7692951	67	-55	330	90	RC
HERC930	Crow	59.0	63.0	4.0	1.6	648616	7692951	67	-55	330	90	RC
HERC930	Crow	86.0	90.0	4.0	2.0	648616	7692951	67	-55	330	90	RC
HERC931	Crow	32.0	43.0	11.0	0.7	648592	7692913	67	-55	329	162	RC
HERC931	Crow	67.0	83.0	16.0	0.9	648592	7692913	67	-55	329	162	RC
HERC931	Crow	89.0	91.0	2.0	1.1	648592	7692913	67	-55	329	162	RC
HERC932	Crow	51.0	55.0	4.0	1.0	648472	7692960	67	-56	329	102	RC
HERC934	Crow	60.0	73.0	13.0	2.0	648691	7692901	67	-56	330	96	RC
HERC935	Crow	40.0	55.0	15.0	0.7	648770	7692762	68	-57	330	186	RC
HERC935	Crow	62.0	66.0	4.0	1.0	648770	7692762	68	-57	330	186	RC
HERC935	Crow	72.0	100.0	28.0	1.0	648770	7692762	68	-57	330	186	RC
HERC935	Crow	127.0	128.0	1.0	3.4	648770	7692762	68	-57	330	186	RC
HERC936	Crow	41.0	47.0	6.0	1.4	648810	7692693	68	-54	331	222	RC
HERC936	Crow	63.0	66.0	3.0	2.5	648810	7692693	68	-54	331	222	RC
HERC936	Crow	89.0	111.0	22.0	1.8	648810	7692693	68	-54	331	222	RC
HERC936	Crow	164.0	166.0	2.0	1.7	648810	7692693	68	-54	331	222	RC
HERC936	Crow	183.0	198.0	15.0	1.8	648810	7692693	68	-54	331	222	RC
HERC936	Crow	203.0	207.0	4.0	4.2	648810	7692693	68	-54	331	222	RC
HERC937	Crow	61.0	63.0	2.0	1.2	648711	7692705	68	-56	330	246	RC
HERC937	Crow	153.0	154.0	1.0	2.1	648711	7692705	68	-56	330	246	RC
HERC937	Crow	169.0	171.0	2.0	1.4	648711	7692705	68	-56	330	246	RC
HERC937	Crow	204.0	213.0	9.0	0.8	648711	7692705	68	-56	330	246	RC
HERC938	Crow	40.0	44.0	4.0	2.5	648752	7692635	68	-56	331	108	RC
HERC939	Crow	35.0	42.0	7.0	0.6	648775	7692835	67	-55	329	186	RC
HERC940	Crow	45.0	54.0	9.0	0.7	648753	7692873	67	-56	331	216	RC
HERC940	Crow	146.0	149.0	3.0	3.2	648753	7692873	67	-56	331	216	RC
HERC940	Crow	163.0	170.0	7.0	1.7	648753	7692873	67	-56	331	216	RC
HERC940	Crow	181.0	185.0	4.0	5.6	648753	7692873	67	-56	331	216	RC
HERC941	Crow	40.0	50.0	10.0	1.3	648665	7693024	67	-61	332	162	RC
HERC941	Crow	66.0	69.0	3.0	1.1	648665	7693024	67	-61	332	162	RC
HERC943	Crow	99.0	104.0	5.0	0.6	648749	7692958	67	-56	328	162	RC
HERC943	Crow	109.0	113.0	4.0	0.6	648749	7692958	67	-56	328	162	RC

HoleID	Zone	Depth From	Depth To (m)	Down hole	Au (g/t)	Collar East	Collar North	Collar RL (GDA94)	Dip (deg	Azimuth (GDA94)	Hole Depth	Hole Type
		(m)	10 (11)	Width	(g/t)	(GDA94)	(GDA94)	(GDA94)	rees)	(GDA94)	(m)	Type
				(m)								
HERC944	Crow	168.0	172.0	4.0	1.8	648854	7692857	67	-57	328	180	RC
HMRC056	Aquila	172.0	179.0	7.0	0.6	648907	7692455	68	-57	330	246	RC
HMRC056	Aquila	186.0	188.0	2.0	1.0	648907	7692455	68	-57	330	246	RC
HMRC056	Aquila	232.0	242.0	10.0	0.6	648907	7692455	68	-57	330	246	RC
HMRC070	Crow	44.0	74.0	30.0	5.0	648920	7692663	68	-56	329	222	RC
HMRC070	Crow	89.0	92.0	3.0	1.0	648920	7692663	68	-56	329	222	RC
HMRC070	Crow	132.0	136.0	4.0	0.8	648920	7692663	68	-56	329	222	RC
HMRC071	Aquila	43.0	47.0	4.0	1.0	648779	7692507	68	-52	329	192	RC
HMRC071	Crow	82.0	83.0	1.0	3.1	648779	7692507	68	-52	329	192	RC
HMRC072	Aquila	53.0	90.0	37.0	1.0	648751	7692473	68	-55	331	252	RC
HMRC072	Crow	156.0	162.0	6.0	0.5	648751	7692473	68	-55	331	252	RC
HMRC072	Crow	193.0	203.0	10.0	0.7	648751	7692473	68	-55	331	252	RC
HMRC072	Crow	210.0	252.0	42.0	1.1	648751	7692473	68	-55	331	252	RC
HMRC312DW	Brolga	166.0	170.0	4.0	0.5	649488	7692321	69	-56	332	513	DD
HMRC312DW	Brolga	235.5	247.0	11.6	0.6	649488	7692321	69	-56	332	513	DD
HMRC312DW	Aquila	792.0	793.0	1.0	9.8	649488	7692321	69	-56	330	948	DD
HMRC431	Crow	48.0	58.0	10.0	0.8	647972	7692786	67	-55	332	142	RC
HMRC431	Crow	72.0	84.0	12.0	0.8	647972	7692786	67	-55	332	142	RC
HMRC434	Crow	93.0	94.0	1.0	4.0	648026	7692771	67	-56	333	100	RC
HMRC436	Crow	57.0	61.0	4.0	1.9	648074	7692846	67	-57	327	102	RC
HMRC438	Crow	109.0	120.0	11.0	1.9	648115	7692778	67	-56	331	147	RC
HMRC438	Crow	125.0	130.0	5.0	1.7	648115	7692778	67	-56	331	147	RC
HMRC438	Crow	136.0	146.0	10.0	1.7	648115	7692778	67	-56	331	147	RC
HMRC439	Crow	42.0	52.0	10.0	0.7	648041	7692827	67	-57	330	102	RC
HMRC440	Crow	39.0	40.0	1.0	5.1	648110	7692865	67	-56	329	102	RC
HMRC441	Crow	84.0	88.0	4.0	1.0	648150	7692796	67	-57	328	150	RC
HMRC441	Crow	100.0	105.0	5.0	0.9	648150	7692796	67	-57	328	150	RC
HMRC441	Crow	113.0	132.0	19.0	0.6	648150	7692796	67	-57	328	150	RC
HMRC442	Crow	119.0	125.0	6.0	0.8	648269	7692750	67	-57	329	204	RC
HMRC442	Crow	201.0	202.0	1.0	2.6	648269	7692750	67	-57	329	204	RC
HMRC443	Crow	60.0	62.0	2.0	1.5	648312	7692676	67	-55	329	222	RC
HMRC443	Crow	69.0	81.0	12.0	0.7	648312	7692676	67	-55	329	222	RC
HMRC443	Crow	88.0	100.0	12.0	0.7	648312	7692676	67	-55	329	222	RC
HMRC443	Crow	114.0	119.0	5.0	2.5	648312	7692676	67	-55	329	222	RC
HMRC444	Crow	90.0	98.0	8.0	5.1	648334	7692719	67	-56	327	204	RC
HMRC444	Crow	127.0	129.0	2.0	3.3	648334	7692719	67	-56	327	204	RC
HMRC445	Crow	97.0	100.0	3.0	1.3	648355	7692684	67	-56	329	132	RC
HMRC447	Crow	164.0	166.0	2.0	2.9	648066	7692703	67	-57	329	204	RC
HMRC448	Crow	104.0	118.0	14.0	4.5	648086	7692668	67	-56	331	234	RC
incl	Crow	109.0	114.0	5.0	11.6	648086	7692668	67	-56	331	234	RC
HMRC448	Crow	140.0	141.0	1.0	3.3	648086	7692668	67	-56	331	234	RC
HMRC449	Crow	225.0	227.0	2.0	1.4	648106	7692633	67	-56	332	264	RC
HMRC449	Crow	235.0	246.0	11.0	0.6	648106	7692633	67	-56	332	264	RC
HMRC535	Crow	50.0	51.0	1.0	8.4	648329	7692807	67	-56	332	132	RC
HMRC536	Crow	87.0	92.0	5.0	0.9	648369	7692737	67	-57	330	204	RC
HMRC538	Crow	70.0	74.0	4.0	1.6	648294	7692788	67	-57	328	123	RC

HoleID	Zone	Depth	Depth	Down	Au	Collar	Collar	Collar RL	Dip	Azimuth	Hole	Hole
		From (m)	To (m)	hole Width	(g/t)	East (GDA94)	North (GDA94)	(GDA94)	(deg rees)	(GDA94)	Depth (m)	Туре
		(,		(m)		(,	(,		,		(,	
HMRC539	Crow	43.0	48.0	5.0	0.8	648314	7692753	67	-55	332	168	RC
HMRC539	Crow	87.0	90.0	3.0	7.1	648314	7692753	67	-55	332	168	RC
HMRC540	Crow	34.0	35.0	1.0	2.9	648145	7692887	67	-56	332	102	RC
HMRC542	Crow	32.0	38.0	6.0	0.5	648186	7692817	67	-55	329	149	RC
HMRC542	Crow	76.0	82.0	6.0	0.5	648186	7692817	67	-55	329	149	RC
HMRC543	Crow	38.0	51.0	13.0	1.3	648203	7692783	67	-55	329	192	RC
incl	Crow	50.0	51.0	1.0	10.3	648203	7692783	67	-55	329	192	RC
HMRC543	Crow	79.0	90.0	11.0	1.5	648203	7692783	67	-55	329	192	RC
incl	Crow	88.0	89.0	1.0	10.4	648203	7692783	67	-55	329	192	RC
HMRC543	Crow	167.0	172.0	5.0	1.6	648203	7692783	67	-55	329	192	RC
HMRC544	Crow	77.0	87.0	10.0	1.0	648224	7692748	67	-56	332	234	RC
HMRC544	Crow	182.0	192.0	10.0	0.7	648224	7692748	67	-56	332	234	RC
HMRC545	Crow	61.0	62.0	1.0	4.5	648244	7692712	67	-56	332	228	RC
HMRC545	Crow	147.0	151.0	4.0	0.7	648244	7692712	67	-56	332	228	RC
HMRC545	Crow	165.0	174.0	9.0	0.6	648244	7692712	67	-56	332	228	RC
HMRC545	Crow	200.0	205.0	5.0	1.2	648244	7692712	67	-56	332	228	RC
HMRC547	Crow	45.0	49.0	4.0	2.3	648284	7692642	67	-57	331	174	RC
HMRC547	Crow	125.0	136.0	11.0	4.4	648284	7692642	67	-57	331	174	RC
HMRC548	Crow	65.0	67.0	2.0	1.1	648305	7692609	67	-57	332	204	RC
HMRC548	Crow	82.0	89.0	7.0	0.6	648305	7692609	67	-57	332	204	RC
HMRC556D	Crow	175.1	178.0	3.0	0.9	648345	7692538	68	-56	329	392	DD
HMRC556D	Crow	369.0	370.0	1.0	2.8	648345	7692538	68	-56	329	392	DD
HMRC558	Crow	96.0	100.0	4.0	1.4	648231	7692815	67	-55	329	150	RC
HMRC558	Crow	113.0	115.0	2.0	1.4	648231	7692815	67	-55	329	150	RC
HMRC559	Crow	42.0	44.0	2.0	1.5	648351	7692607	68	-55	329	54	RC
HMRC561D	Crow	47.0	63.0	16.0	1.6	648270	7692589	67	-57	331	318	RC
HMRC561D	Crow	83.0	88.0	5.0	1.2	648270	7692589	67	-57	331	318	RC
HMRC561D	Crow	119.0	122.0	3.0	0.9	648270	7692589	67	-57	331	318	RC
HMRC561D	Crow	156.0	159.0	3.0	1.1	648270	7692589	67	-57	331	318	DD
HMRC561D	Crow	164.0	171.0	7.0	0.6	648270	7692589	67	-57	331	318	DD
HMRC562	Crow	42.0	45.0	3.0	2.2	648310	7692520	68	-55	329	54	RC
HMRC563	Crow	151.0	154.0	3.0	2.7	648215	7692604	67	-56	333	162	RC
HMRC564	Crow	45.0	46.0	1.0	5.3	648235	7692569	68	-55	329	60	RC
HMRC565	Crow	40.0	42.0	2.0	2.5	648256	7692535	68	-56	331	246	RC
HMRC565	Crow	49.0	55.0	6.0	1.1	648256	7692535	68	-56	331	246	RC
HMRC565	Crow	80.0	84.0	4.0	1.5	648256	7692535	68	-56	331	246	RC
HMRC565	Crow	93.0	94.0	1.0	3.0	648256	7692535	68	-56	331	246	RC
HMRC565	Crow	174.0	178.0	4.0	0.6	648256	7692535	68	-56	331	246	RC
HMRC565	Crow	211.0	218.0	7.0	1.3	648256	7692535	68	-56	331	246	RC
HMRC566	Crow	40.0	42.0	2.0	1.2	648276	7692501	68	-55	329	54	RC
HMRC600	Crow	36.0	37.0	1.0	11.0	648080	7692756	67	-55	329	66	RC
HMRC603D	Crow	136.0	143.1	7.1	0.9	648135	7692742	67	-56	331	204	DD
HMRC604	Crow	197.0	198.0	1.0	2.8	648156	7692708	67	-55	329	234	RC
HMRC605 HMRC605	Crow	60.0 198.0	61.0 209.0	1.0	2.9	648175 648175	7692672 7692672	67	-56	330	264 264	RC
HMRC605	Crow	198.0 234.0	209.0	11.0 2.0	0.6 2.2	648175 648175	7692672	67 67	-56 -56	330 330	264 264	RC RC
	Crow	254.0	230.0	2.0	2.2	0401/5	1092012	07	-30	530	204	

HoleID	Zone	Depth From (m)	Depth To (m)	Down hole Width (m)	Au (g/t)	Collar East (GDA94)	Collar North (GDA94)	Collar RL (GDA94)	Dip (deg rees)	Azimuth (GDA94)	Hole Depth (m)	Hole Type
HMRC606	Crow	156.0	159.0	3.0	0.8	648194	7692638	67	-56	331	291	RC
HMRC607	Crow	119.0	121.0	2.0	2.6	647955	7692731	67	-55	330	162	RC
HMRC607	Crow	131.0	138.0	7.0	0.9	647955	7692731	67	-55	330	162	RC
HMRC608	Crow	128.0	130.0	2.0	1.1	647975	7692697	67	-55	329	168	RC
HMRC608	Crow	156.0	157.0	1.0	2.3	647975	7692697	67	-55	329	168	RC
HMRC610	Crow	56.0	60.0	4.0	0.5	647916	7692800	67	-55	329	78	RC
HMRC610	Crow	65.0	69.0	4.0	2.2	647916	7692800	67	-55	329	78	RC

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 an industry standard manner. Core samples were collected with a diamond rig drilling mainly NQ2 diameter core. After logging and photographing, NQ2 drill core was cut in half, with one half sent to the laboratory for assay and the other half retained. HQ and PQ core was quartered, with one quarter sent for assay. Holes were sampled over mineralised intervals to geological boundaries on a nominal 1m basis. Sample weights ranged from 2-4kg. RC holes were sampled on a 1m basis with samples collected from a cone splitter mounted on the drill rig cyclone. The 1m samples typically ranged in weight from 2.5kg to 3.5kg.
		 Commercially prepared certified reference material ("CRM") and course blank was inserted at a minimum rate of 2%.
		• Field duplicates were selected on a routine basis to verify the representivity of the sampling methods.
		 Sample preparation is completed at an independent laboratory where samples are dried, split, crushed and pulverized prior to analysis as described below.
		• Sample sizes are considered appropriate for the material sampled.
		• The samples are considered representative and appropriate for this type of drilling.

Criteria	JORC Code explanation	Commentary
		Diamond core and RC samples are appropriate for use in the Mineral Resource estimate.
Drilling techniques	• Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	(51mm), HQ3 (61mm), PQ (85mm).
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Core recovery is measured for each drilling run by the driller and then checked by the Company geological team during the mark up and logging process. RC and aircore samples were visually assessed for recovery. Samples are considered representative with generally good recovery. Deeper RC and aircore holes encountered water, with some intervals having less than optimal recovery and possible contamination. No sample bias is observed.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 The entire hole has been geologically logged and core was photographed by Company geologists, with systematic sampling undertaken based on rock type and alteration observed. RC and diamond sample results are appropriate for use in a Mineral Resource estimation. The aircore results provide a good indication of mineralisation but are not used in Mineral Resource estimation.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain 	diamond drill rig drilling NQ2, HQ3 or PQ diameter core. After logging and photographing, NQ2 drill core was cut in half, with one half sent to the laboratory for assay and the other half retained. HQ and PQ core was quartered, with one quarter sent for assay. Holes were sampled over mineralised intervals to geological boundaries on a nominal 1m basis.

Criteria	JORC Code explanation	Commentary
	size of the material being sampled.	• Aircore samples were collected by spear from 1m sample piles and composited over 4m intervals. Samples for selected holes were collected on a 1m basis by spear from 1m sample piles.
		• Each sample was dried, split, crushed and pulverised to 85% passing 75µm.
		• Sample sizes are considered appropriate for the material sampled.
		• The samples are considered representative and appropriate for this type of drilling.
		• Core and RC samples are appropriate for use in a Mineral Resource estimate.
		• Aircore samples are generally of good quality and appropriate for delineation of geochemical trends but were not used in the Mineral Resource estimate.
Quality of assay data and laboratory	• The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	• The samples were submitted to a commercial independent laboratory in Perth, Australia.
tests	 For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	• For diamond core and RC samples Au was analysed by a 50g charge Fire assay fusion technique with an AAS finish.
		• Aircore samples were analysed for Au using 25g aqua regia extraction with ICPMS finish.
		• All aircore samples and at least every fifth RC and DD sample were analysed with ALS procedure MS61 which comprises a four acid digest and repots a 48 element analysis by ICPAES and ICPMS.
		• The techniques are considered quantitative in nature.
		 A comprehensive QAQC protocol including the use of CRM, field duplicates and umpire assay at a second commercial laboratory has confirmed the reliability of the assay method.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. 	• A number of significant intersections were visually field verified by the Competent Person.
	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	completed. The diamond twins verify grade tenor and mineralisation thickness of RC holes.
		• Sample results have been merged by the

Criteria	JORC Code explanation	Commentary
		 company's database consultants. Results have been uploaded into the company database, checked and verified. No adjustments have been made to the assay data. Results are reported on a length weighted basis.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 are located by DGPS to an accuracy of +/- 10cm. Aircore hole collar locations are located by DGPS to an accuracy of +/-10cm., or by handheld GPS to an accuracy of 3m. Locations are recorded in GDA94 zone 50 projection Diagrams and location tables have been provided in numerous releases to the ASX. Topographic control is by detailed georeferenced airphoto and Differential GPS data.
	• Data spacing for reporting of Exploration Results.	 Down hole surveys were conducted for all RC and DD holes using a north seeking gyro tool with measurements at 10m down hole intervals. Drill spacing varies from 40m x 40m to
Data spacing and distribution	 Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 320m x 80m. The extensive drilling programs have demonstrated that the mineralised domains have sufficient continuity in both geology and grade to be considered appropriate for the Mineral Resource and Ore Reserve estimation procedures and classification applied under the 2012 JORC Code.
		 Data spacing and distribution of RC and diamond drilling is sufficient to provide support for the results to be used in a Mineral Resource estimate. Sample compositing has not been applied except in reporting of drill intercepts, as described in this Table
Orientation of data in relation to	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation 	 The drilling is approximately perpendicular to the strike of mineralisation. The holes are generally angled at -55° which provides good intersection angles into the mineralisation which ranges from vertical to

Criteria	JORC Code explanation	Commentary
geological structure	and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 -45° dip. The sampling is considered representative of the mineralised zones.
		• Where drilling is not orthogonal to the dip of mineralised structures, true widths are less than downhole widths.
Sample security	• The measures taken to ensure sample security.	 Samples were collected by company personnel and delivered direct to the laboratory via a transport contractor.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	• QAQC data has been both internally and externally reviewed.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	 Mining Lease M47/1628. The tenement is held 100% by Last Crusade Pty Ltd, a wholly owned subsidiary of De Grey Mining Limited. The Hemi deposit is approximately 60km SSW of Port Hedland. The tenements are in good standing as at the time of this report.
		 There are no known impediments to operating in the area.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 No detailed exploration is known to have occurred on the tenement prior to De Grey Mining. Prior to the Hemi discovery, De Grey completed programs of airborne aeromagnetics/radiometrics, surface geochemical sampling and wide spaced aircore and RAB drilling. Limited previous RC drilling was carried out at the Scooby Prospect approximately 2km NE of the Brolga deposit at Hemi.
Geology	 Deposit type, geological setting and style of mineralisation. 	 The Hemi discovery comprises a series of gold deposits hosted within predominately diorite to quartz diorite intrusions and sills that have been emplaced within the Mallina Basin. Six main deposits have been delineated within the complex and have been

Criteria	JORC Code explanation	Commentary
		separately estimated and reported. These include Brolga, Aquila, Crow, Diucon, Eagle and Falcon.
Drill hole	• A summary of all information material to the	 Gold mineralisation is associated with localised to massive zones of fractured to brecciated albite, chlorite and carbonate (calcite) altered intrusion with disseminated sulphides and stringers containing pyrite and arsenopyrite with minor occurrences of pyrrhotite, overprinted in places by quartz-sulphide veins that occasionally host visible gold. Sulphide abundance in the mineralised intrusions typically ranges from 2.5% to 10% and there are strong correlations between gold, arsenic, and sulphur. Drill hole location and directional
Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	information are provided in this release and previous ASX releases.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 grade of 0.5g/t gold with an internal dilution of 4m maximum. Higher grade intervals are aggregated using a 1.0g/t Au lower cut with an internal dilution of 2m maximum. Results greater than 5gm are reported.

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 The drill holes are approximately perpendicular to the strike of mineralisation. Where drilling is not perpendicular to the dip of mineralisation the true widths are less than downhole widths.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Plans and sections are provided in this release.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	figures and all significant results are provided in this report.
Other substantive exploration data	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	• Extensive metallurgical, groundwater, and geotechnical studies have commenced as part of the economic assessment of the project.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	drilling aimed at extending Mineral Resources at depth and laterally are underway.