

16 February 2018

Amendment of ASX Announcement 14 February 2018 - Tajiri mineral sands Resource more than doubles to 147Mt, establishing a project of large scale

Strandline Resources Limited (**Strandline** or the **Company**) (**ASX: STA**) lodged an ASX announcement on 14 February 2018 in relation to the expanded Tajiri Mineral Resource Estimate. This announcement contained an error in the Competent Person Statement and a number of graphs for the Resource block model and cross sections did not include an appropriate legend.

For completeness, the Company has lodged an amended announcement which is attached.

For further enquiries, please contact: **Geoff James** Company Secretary Strandline Resources Limited T: +61 8 9226 3130 E: enquiries@strandline.com.au

About Strandline

Strandline Resources Limited (**ASX: STA**) is an emerging heavy mineral sands (**HMS**) developer with a growing portfolio of 100%-owned development assets located in Western Australia and within the world's major zircon and titanium producing corridor in South East Africa. Strandline's strategy is to develop and operate quality, high margin, expandable mining assets with market differentiation and global relevance.

Strandline's project portfolio comprises development optionality, geographic diversity and scalability. This includes two zircon-rich, 'development ready' projects, the Fungoni Project in Tanzania and the large Coburn Project in Western Australia, as well as a series of titanium dominated exploration targets spread along 350km of highly prospective Tanzanian coastline, including the advanced Tanga South Project and Bagamoyo Project.

The Company's focus is to continue its aggressive exploration and development strategy and execute its multi-tiered and staged growth plans to maximise shareholder value.

ASX ANNOUNCEMENT Mineral Resource - Tanga South Tajiri

16 February 2018

Tajiri mineral sands Resource more than doubles to 147Mt, establishing a project of large scale

Amendment to Announcement dated 14 February 2018

Scoping study underway as part of Strandline's strategy to make Tajiri its second mineral sands project behind Fungoni, where offtake agreement is in place and funding discussions progressing

HIGHLIGHTS

- Tajiri Mineral Resource Estimate more than doubles to 147Mt at 3.1% Total Heavy Minerals (THM), up from 59Mt at 3.7% THM
- Contained Heavy Mineral (HM) content rises to 4.6Mt from 2.2Mt, comprising mostly a highvalue titanium dominated mineral assemblage:
 - In-situ rutile (339,000t), zircon (201,000t), ilmenite (3,132,000t), almandine garnet (322,000t)
- High degree of confidence in the Mineral Resources with all deposits JORC 2012 Classified as Indicated and suitable for mine planning and Ore Reserve estimation
- Increased Resource confirms Tajiri is a major-scale project with critical mass
- All resources start from surface, further strengthening the project's economic potential
- Substantial opportunity to grow Tajiri Resources further, with a number of Resources remaining open, and new higher-grade mineralised areas identified, including targets located nearby in the broader Tanga mineralised province
- "Tajiri has emerged as a game-changer for Strandline with significant scale and growth potential. As the next project in our pipeline behind Fungoni, Tajiri has immense potential to create substantial value for shareholders." *Strandline MD Luke Graham*

Strandline Resources (**ASX: STA**) is pleased to announce that the Mineral Resource estimate at its 100%owned Tanga South Tajiri mineral sands project in Tanzania has more than doubled in contained Heavy Mineral (**HM**) content to 4.6 million tonnes.

The outstanding result means Tajiri is now a large scale project and well on track to become Strandline's second mineral sands project behind its advanced zircon-rich Fungoni Project.

In light of this result, Strandline has started a Scoping Study on the Tajiri Project, which is located near the port city of Tanga in northern Tanzania (refer Figures 2 & 3).

Air-core infill and extension drilling across the priority Tajiri T1-T4 targets has resulted in Tajiri's Indicated Mineral Resource inventory increasing to 147Mt at 3.1% THM, up from 59Mt at 3.7% THM (refer ASX announcement 12 December 2017).

The resource upgrade shows a rutile-enriched, ilmenite-dominant mineral assemblage with zones of elevated zircon-rich mineralisation within some of the mineralogical domains. The mineralisation also shows strong geological and grade continuity along and across strike which bodes well for future mine planning.

Importantly, multiple Mineral Resources remain open. Drilling has successfully discovered new, high grade target areas along the Tajiri HMS corridor that should continue to expand Mineral Resources over time. This includes a thick channel-style deposit located parallel to the adjacent T3 and T4 zones.

Strandline Managing Director Luke Graham said: "These results show Tajiri has emerged as a gamechanger for Strandline. As the next Tanzanian project in our pipeline behind Fungoni, Tajiri has immense potential to create substantial value for shareholders.

"Strandline's in-situ valuable Heavy Mineral inventory across all three JORC Classified mineral sands resources of Fungoni, Tajiri and the Coburn Project in Australia demonstrates the Company's global relevance, with estimated contained zircon of (3.1Mt), rutile (1.2Mt), ilmenite (9.3Mt) and leucoxene (0.6Mt).

"Strandline considers the Tajiri tenement offers the geological foundation to host a major HMS project and the Company looks forward to advancing its feasibility study and mine planning activities."

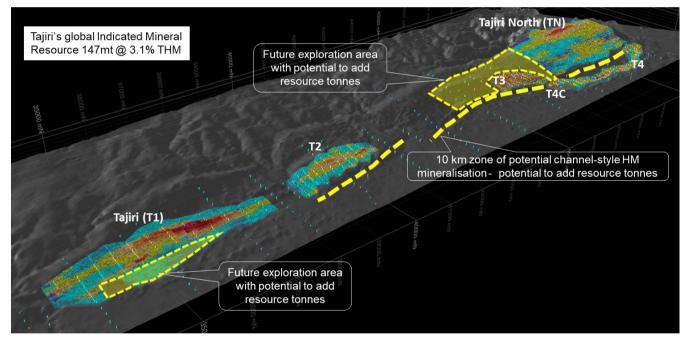


Figure 1 Tajiri Mineral Resources - 3D Image (showing target areas for future exploration and high potential expansion of mineral resources)

INTRODUCTION – TANGA SOUTH TAJIRI MINERAL RESOURCES

Strandline has a globally significant portfolio of mineral sands projects in Tanzania and Australia at different stages of exploration and development. The Company's strategy offers a combination of near-term development and cashflow potential, with varying production profiles and substantial exploration upside.

The large-scale Tajiri deposits are located in northern Tanzania in close proximity to the Port City of Tanga, some 60 km to the north (see Figures 2 & 3). The Company has rapidly performed multiple stages of exploration in order to define the higher grade mineralised zones along Tajiri's 20km mineralised corridor.

Recent infill and extension air-core drilling across the priority targets at Tajiri confirms continuity of high grade mineralisation at each area (**Tajiri T1-T4**) adding significant heavy mineral (**HM**) inventory to the Mineral Resources. Results provide the level of JORC classification, sufficient critical mass and valuable assemblage necessary to advance a scoping study on the Company's second mineral sands project in Tanzania, behind the zircon-rich Fungoni Project further to the south.

The resource upgrade has confirmed a rutile enriched, ilmenite dominant mineral assemblage with zones of elevated zircon-rich mineralisation within some of the mineralogical domains. The mineralisation also shows strong geological and grade continuity along and across strike which bodes well for future mine planning activities. Importantly the deposits are outcropping and will have low strip ratios with high grades occurring close to surface in the majority of the resource areas.

The Mineral Resources extend over 20km forming a semi continuous string of outcropping HMS mineralisation. At least three (3) of the defined Mineral Resources presented in this release remain open – Tajiri T1, T3 and T4C. The mineralisation at Tajiri T1 (titled Tajiri) is likely to extend east, T3 is likely to extend to the north towards Tajiri North and south east between 500 and 1000m, while T4C Channel target extends to the north and south 1600m and 4000m respectively. The overall strike potential of the T4C target is 10km showing potential to significantly add Mineral Resources over time.

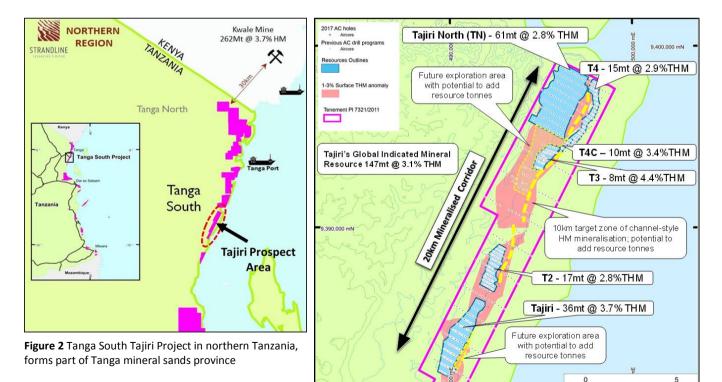


Figure 3 Tanga South Tajiri Tenement Resources

kilometres

JORC 2012 – TANGA SOUTH TAJIRI MINERAL RESOURCES

Results from the recent air-core infill and extension drilling campaign and subsequent Mineral Resources Estimation work has enabled the Company to update the Tajiri Mineral Resource Estimate.

The 100%-owned Tajiri tenement comprises a series of higher-grade mineral sands deposits stretching along 20km's of Tanzanian coastline. The resources titled Tajiri, T2, T3, T4, T4C Channel and Tajiri North are located in close proximity and combine to form part of a potential major mine development in the Tanga South mineralised province.

The Mineral Resource Estimation was conducted by IHC Robbins' Greg Jones, a specialist consultant in mineral sands resources, metallurgy and processing technology (refer to Competent Person statement).

Table 1 below displays the Mineral Resources estimated for the Tajiri tenement. Importantly, all of the Mineral Resources are classified as Indicated and start from surface.

	1	Summary	of Mineral Re	esources (1)	1	-		THM Assemblage (2)				
Deposit	THM % cut-off	Mineral Resource Category	Tonnage	Insitu HM	тнм	SLIMES	OS	Ilmenite	Rutile	Zircon	Leucoxene	Garnet
			(Mt)	(Mt)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
Tajiri	1.5%	Indicated	36	1.3	3.7	34	4	71	10	6	0	3
Tajiri North	1.7%	Indicated	61	1.7	2.8	48	4	75	6	4	1	1
Т2	1.7%	Indicated	17	0.5	2.8	32	11	57	7	4	0	19
Т3	1.7%	Indicated	8	0.4	4.4	33	7	68	6	5	1	5
T4	1.7%	Indicated	15	0.4	2.9	22	6	61	8	4	0	12
T4C	1.7%	Indicated	10	0.3	3.4	20	11	44	5	2	0	31
		Total	147	4.6	3.1	37	6	68	7	4	0	7
(1) Mineral Re	sources repo	rted at various	THM cut-offs	5								
(2) Mineral As	semblage is r	enorted as a n	ercentage of i	nsitu THM cont	ont							

 Table 1 JORC 2012 Mineral Resource Estimate for the Tanga South Tajiri Project, at February 2018

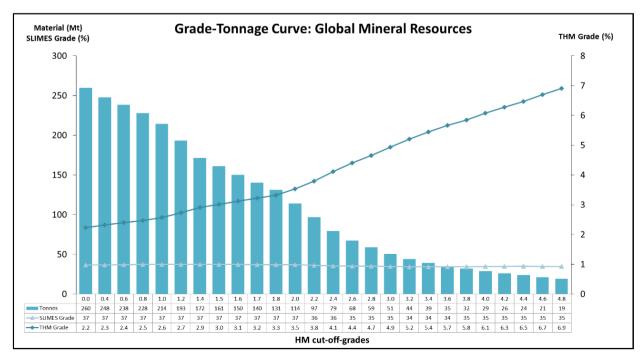


Figure 4 Tanga South Tajiri Global Mineral Resources Grade-Tonnage Curve

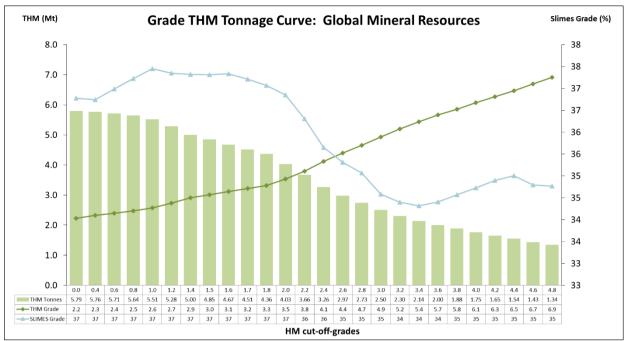


Figure 5 Tanga South Tajiri Global Mineral Resources Grade-THM Curve

Using an elevated cut-off grade of 2.0% THM there are 114Mt @ 3.5% THM containing 4.03Mt of contained HM, and using an elevated cut-off grade of 2.2% THM there are 97Mt @ 3.8% THM containing 3.7Mt of contained heavy mineral.

The resource update has more than doubled the contained Heavy Mineral (HM) to over 4,600,000t from previous 2,200,000t (up 2,400,000t), comprising a high-value titanium dominated mineral assemblage. This includes contained valuable minerals rutile (339,000t), zircon (201,000t), ilmenite (3,132,000t) and almandine garnet (322,000t).

Tajiri Mineral Resource

The Tajiri Resource (including T1 extension target) has an Indicated Mineral Resource of 36 million tonnes @ 3.7% Total Heavy Minerals (THM) with a valuable mineral assemblage comprising 71% ilmenite, 10% rutile and 6% zircon at a cut-off grade of 1.5% THM. Slime (defined as silt <45 μ m) content at this cut-off is 34%. A 30kg composite sample from the Tajiri deposit, has been subjected to sighter-scale mineral assemblage and characterisation test work performed by TZMI's Allied Mineral Laboratories. The test work has shown potentially a lower slime content of 12% (defined as clay/silt <53 μ m).

The mineralised zone for the resource remains open to the east, showing the potential for further resource expansion over time.

Looking at the elevated surface expression of the Tajiri deposit and cross section (Figure 7), the mineralised body shows excellent geological continuity along strike and down dip. Very low strip ratios are anticipated with a large portion of the high grade mineral resource favourably positioned at surface.

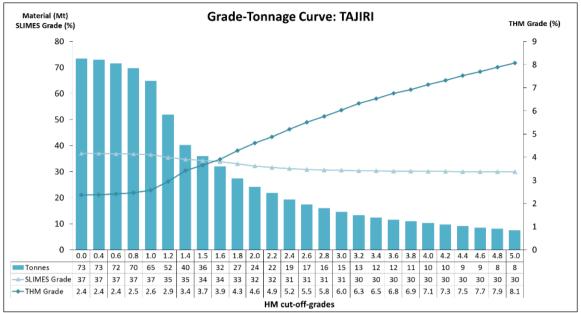
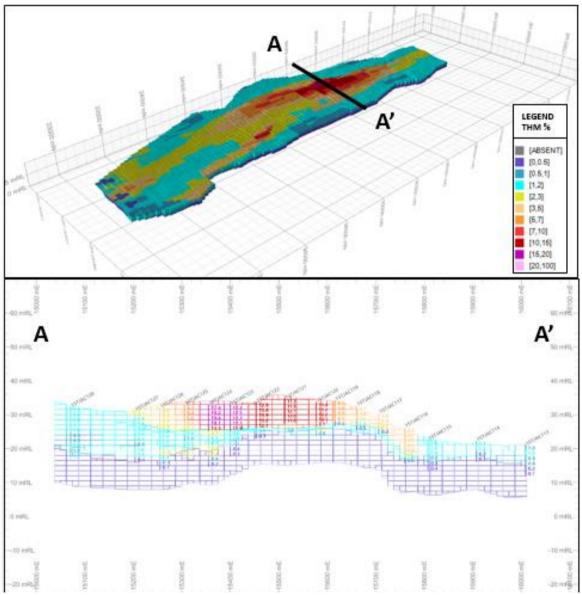
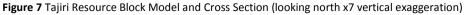




Figure 6 Tajiri Resource Grade-Tonnage Curve

Tajiri North Mineral Resource

The Tajiri North Resource has an Indicated Mineral Resource of 61 million tonnes @ 2.8% THM with a valuable mineral assemblage comprising 75% ilmenite, 6% rutile and 4% zircon at a cut-off grade of 1.7% THM. Slime (defined as silt <45 μ m) content at this cut-off is 48%. The mineralisation forms a blanket overlying a limestone basement high and shows a high grade strandline on its western flank. The mineralisation starts from surface.

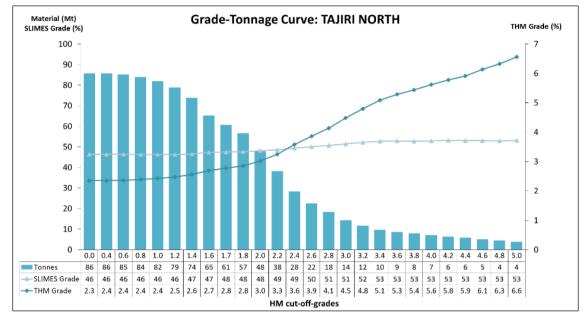
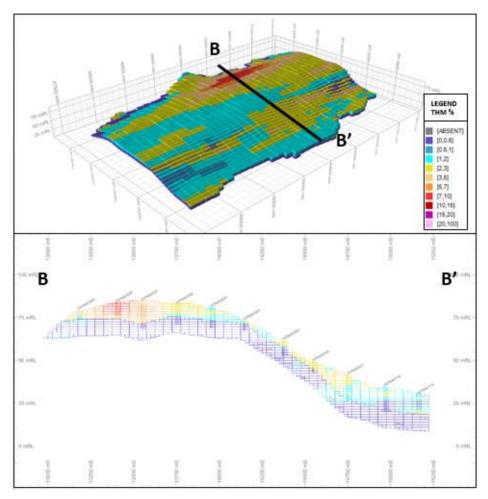



Figure 8 Tajiri North Grade-Tonnage Curve

T2 Mineral Resource

The T2 Resource has an Indicated Mineral Resource of 17 million tonnes @ 2.8% THM with a valuable mineral assemblage comprising 57% ilmenite, 7% rutile and 4% zircon with 19% almandine garnet at a cut-off grade of 1.7% THM. Slime (defined as clay and silt <45 μ m) content at this cut-off is 32%.

Additional mineralogy test work on the garnet from Tajiri has concluded that the species is almandine with more than half of the garnet sizing greater than 180µm for the samples tested. The information is positive indicating that the garnet from the project is saleable with premium prices expected to be achieved for garnet exceeding 180µm.

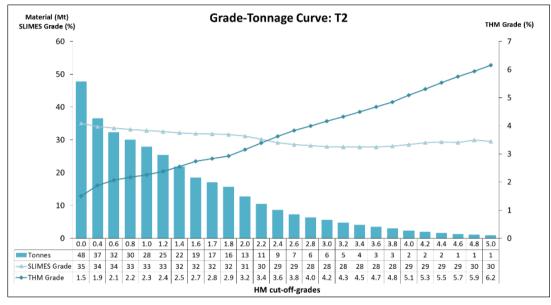


Figure 10 T2 Resource Grade-Tonnage Curve

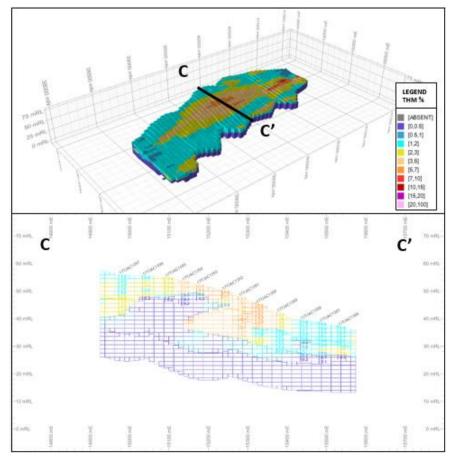


Figure 11 T2 Resource Block Model and Cross-Section (looking north x7 VE)

T3 Mineral Resource

The maiden T3 Resource has an Indicated Mineral Resource of 8 million tonnes @ 4.4% THM with a valuable mineral assemblage comprising 68% ilmenite, 6% rutile and 5% zircon at a cut-off grade of 1.7% THM. Slime (defined as silt <45 μ m) content at this cut-off is 33%. Importantly, the higher grade resource is open to the north and west with 500 to 1000m of strike to the south east remaining untested with strong potential to add resource tonnes with further drilling.

Figure 12 T3 Resource Grade-Tonnage Curve

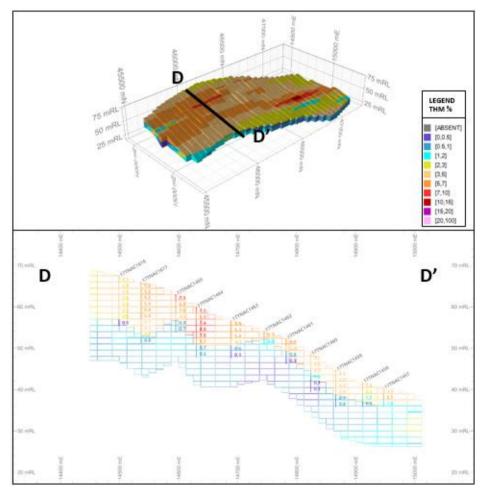


Figure 13 T3 Resource Block Model and Cross-Section (looking north x7 VE)

T4 Mineral Resource

The maiden T4 Resource has an Indicated Mineral Resource of 15 million tonnes @ 2.9% THM with a valuable mineral assemblage comprising 61% ilmenite, 8% rutile and 4% zircon at a cut-off grade of 1.7% THM. Slime (defined as silt <45 μ m) content at this cut-off is 22%. The mineralisation is outcropping and forms a 3km long sinuous strandline ridge with good grade continuity.

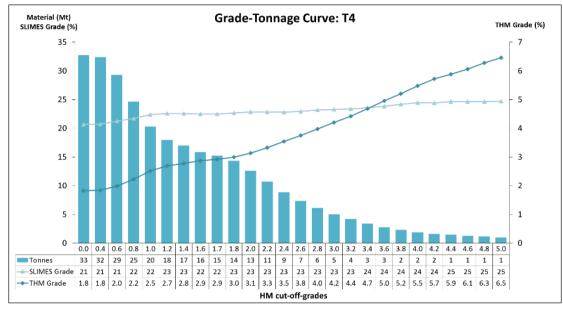


Figure 14 T4 Resource Grade-Tonnage Curve

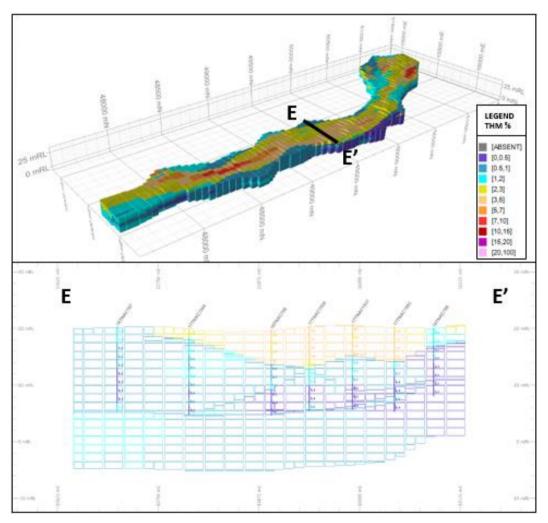


Figure 15 T4 Resource Block Model and Cross-Section (looking north x7 VE)

T4C "Channel" Mineral Resource

The maiden T4C Channel Resource has an Indicated Mineral Resource of 10 million tonnes @ 3.4% THM with a valuable mineral assemblage comprising 44% ilmenite, 5% rutile and 2% zircon with 31% almandine garnet at a cut-off grade of 1.7% THM. Slime (defined as silt <45 μ m) content at this cut-off is 20%. Only 1000m of strike has been drilled that forms the majority of the 10Mt of defined resource. A 10km long target channel for additional mineralisation remains open to the north and south of T4C with substantial upside for additional resource tonnage.

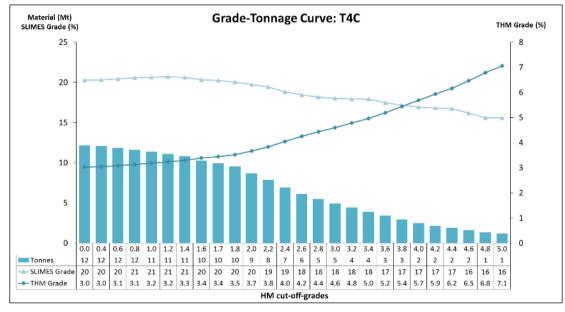
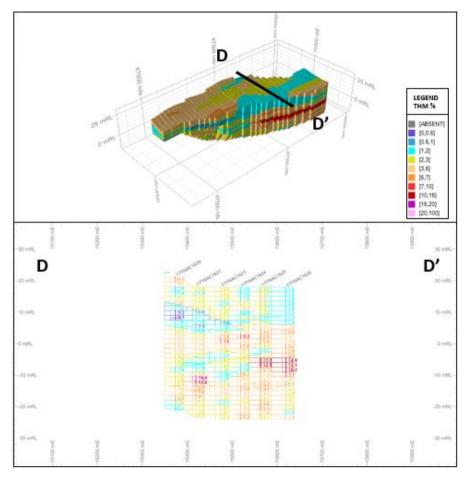



Figure 16 T4C Channel Resource Grade-Tonnage Curve

Figure 17 T4C Channel Resource Block Model and Cross-Section (looking north x7 VE)

SUMMARY OF RESOURCE ESTIMATE AND REPORTING CRITERIA

As per ASX Listing Rule 5.8 and the 2012 JORC reporting guidelines, a summary of the material information used to estimate the Mineral Resource is detailed below (for more detail please refer to Table 1, Sections 1 to 3 included below in Appendix 1).

Geology and geological interpretation

In Tanzania two types of heavy mineral placer style deposits have potential for resources delineation:

- 1. Thin but high grade strandlines which may be related to marine or fluvial influences; and
- 2. Large but lower grade deposits related to windblown sands.

The surface geology of the tenement is dominated by pale orange and red soils overlying limestone basement.

The Tajiri resources are situated in a number of topographical situations that include:

- 1. Tajiri at the base of a north nor east trending steep ridge forming an elevated bank that slopes gently to the east and towards the coast. The basement to the resource is Pleistocene reefal limestone which has an undulating contact with the overlying mineralised sands and silt.
- 2. Tajiri North on top of an elevated limestone platform which may have been uplifted during the East African Rift event.
- 3. T2 and T3 straddling the slopes of the north nor east trending elevated limestone platform.
- 4. T4 enrichment located on the more recent coastal plain.
- 5. T4C located beneath low grade cover at the base of the steep limestone cliff.

Drilling techniques and hole spacing

Aircore drilling technique was used to drill the Tanga South prospects. Aircore is considered a standard industry technique for evaluating HMS mineralisation and is a form of reverse circulation drilling where the sample is collected at the drill bit face and returned inside the inner tube. The drill bit is 76mm in diameter (NQ) and the rods are 3m long. All of the holes were drilled vertically.

The following drill spacing were used at each resource area:

- 1. Tajiri North 400 x 200m
- 2. Tajiri/T1 400 x 100 and 400 x 50m
- 3. T2, T3, T4 and T4C 200 x 50m

A high degree of confidence in the geological models and grade continuity between drill holes has been established for the resources areas that supports the mineral resource classification.

For the purpose of the geological interpretation and resource modelling a local grid was set up along the long axis of the deposits so that the majority of drill lines were east-west and model cells were aligned north-south along that long axis. This allows for a simplification of the geological interpretation and subsequent model preparation, interpolation and analysis.

Sampling and sub-sampling techniques

Aircore drilling was used to obtain samples at 1.5m intervals which generated about 8kg of drill spoil that was progressively split down to 500g using a levelled three tier riffle splitter on site. The smaller split samples were labelled and bagged for export to the primary laboratory for processing. Any wet or damp samples were allowed to dry prior to the splitting stage. The sampling method and sample size dispatched for processing is considered appropriate and reliable based on accepted industry practices and experience.

A sample ledger is kept at the drill rig for recording sample intervals and sample mass, and photographs are taken of samples at each hole location to cross-reference with logging.

Sample analysis method - THM

The 500g samples representing 1.5m drill intervals were analysed by Western Geolabs in Perth, Western Australia, which is considered the primary laboratory for this resource estimate. The 500g samples were initially sieved to remove the +3mm fraction and the weight recorded and then split to 250g which was soaked overnight and screened for removal and determination of Slimes (-45 μ m) and Oversize (+1mm). The residual 45 μ m to 1mm fraction was then micro-riffle split down to approximately 100g which was analysed for THM using tetrabromoethane (TBE) as the liquid heavy media. The density range of TBE is 2.92 and 2.96 g/ml. This is an industry standard process used to determine heavy mineral contents.

Sample analysis method - mineral assemblage

Mineral assemblage composites are used to prepare weighted average analysis for mineralogy and mineral species chemistry for designated zones or domains within an ore body. For the Tajiri project the following methodology was used to determine which samples from the drill hole program would be used to contribute to each composite analysis.

- Detailed sachet scanning/logging of heavy mineral sinks from the drill assay process was carried out to
 determine regions of gross mineralogy as well as an overall consideration of valuable heavy mineral
 (VHM) content. Other considerations undertaken during this sachet logging were presence of iron
 oxide coatings on THM, and gross composition of trash HM that included garnet, kyanite and
 sillimanite.
- Sachet logging then formed the input to the geological/mineralogical/THM grade interpretation which was then used to guide domain control for modelling, as well as providing the guidance for the allocation of mineral assemblage composites.
- Various domains were identified for the purpose of guiding the allocation of composites for each of the prospects. These domains were further subdivided into north-south sample regions, with each mineral assemblage composite collected from one or two drill lines approximately 200m apart.
- A total of 68 mineral assemblage composites were used to characterise the mineralogy and chemistry for the various Tajiri Resource areas.
- Individual drill hole samples were selected based on whether they fell within a particular domain.
 50% of each THM sink was collected and combined to form each mineral composite. Therefore higher grade samples contributed a greater weighting of THM to an overall composite. The average starting weight for each float/sink assay was approximately 100g and therefore there was no need to reproportion each contributing HM assay into the greater mineral assemblage composite.
- A spreadsheet with sample identification and mineral assemblage composite number was submitted to Diamantina Laboratories in Perth for the 50% sub-splitting and compositing. Once composited the samples where then dispatched to Geoff Lane at Process Mineralogical Consulting Ltd (PMC) in Canada for sample processing and analysis (SEM-EDX).
- Preparing the mineral assemblage composites in this manner allows for composite results to be applied to the resource block model and for those results to then be reported and weighted on THM in the final Mineral Resource estimate.
- Details of mineral assemblage composite IDs with associated results are presented in Appendix 3.

The selected mineral assemblage composites were received by PMC, mounted on a slide and then analysed by a proprietary method using an SEM (Scanning Electron Microscope) and then an EDX (Energy Dispersive X-Ray analyser). For the purpose of this description we will refer to the methodology as SEM-EDX. The methodology is similar in some ways to Mineral Liberation Analyser (MLA) and QEMSCAN (Quantitative Evaluation of Minerals by Scanning Electron Microscopy), however the key differential is interpretation by the mineralogist to assign mineral species based on a typical scan of between 2000 and 3000 individual grains. This semi quantitative analysis, with mineralogical identification and assignment allows for a significant improvement in identifying key valuable and trash heavy mineral species along with their respective key oxide chemical constituents and grainsize determination.

All of the VHM and trash mineral species were identified using the SEM-EDX method. Zircon was calculated from whole rock XRF, which represents a more comprehensive analysis for that mineral species.

Previously for the Tajiri and Tajiri North Maiden Mineral Resource (announced on the 4 April 2016) the mineral assemblage was determined from 13 composite samples using a 300 point modal grain counting method of the magnetic fractions and SEM analysis of the limited number of ilmenite grains. For this mineral resource update the magnetic separates were recombined, re-weighed to compare with the original weights and then analysed using the SEM-EDX method.

Estimation Methodology

Geological interpretation, wireframing, 3D block modelling and grade interpolation was carried out using CAE Mining / Datamine Studio mining software. Construction of the geological grade model was based on a combination of coding model cells and drill holes below open wireframe surfaces, including topography and basement and inside closed wireframes defined by mineralised domains. Modelling convention has the largest parent cell size possible used which is generally based on half the distance between holes of the dominant drill hole spacing in the X and Y dimensions. Cell dimensions are generally used so as to avoid overly small cells that imply a level of refinement in the model that is not justified by the drill hole spacing.

The dominant drill grid spacing for the Tajiri deposit was 400m along strike \times 50 m across strike \times 1.5m down hole (with some drill holes spaced 100m across strike). This led to the selection of parent cell dimensions in XYZ of 25 x 200 x 1.5m in order to have a floating cell between drill holes and drill lines. The dominant drill grid spacing for the Tajiri North deposit was 400m along strike \times 200m across strike \times 1.5m down hole. This led to the selection of parent cell dimensions in XYZ of the selection of parent cell dimensions in XYZ of 100 x 200 x 1.5m in order to have a floating cell between drill holes and drill lines.

For T2 the average drill grid spacing was 200m along strike x 50m across strike x 1 .5m down hole. This led to a parent cell dimensions in XYZ of $25 \times 100 \times 1.5$ m. For T3 the average drill grid spacing was between 150m and 300m along strike, 50m across strike and 1.5m down hole. This led to a parent cell dimensions in XYZ of $25 \times 100 \times 1.5$ m. The average drill spacing for T4 and T4C was 200m along strike x 50m across strike x 1 .5m down hole. This led to a parent cell dimensions in XYZ of $25 \times 100 \times 1.5$ m. The average drill spacing for T4 and T4C was 200m along strike x 50m across strike x 1 .5m down hole. This led to a parent cell dimensions in XYZ of $25 \times 100 \times 1.5$ m.

A model was generated for each deposit and interpolated using inverse distance weighting (with a power of 3) and the preliminary estimates were compared with drill hole grades. It was found that this cell size and parameters chosen were resulting in an acceptable interpolation process. The search ellipse used for the grade interpolation was guided by the dynamic ellipsoid routine employed by Datamine. This allows for variations in mineralisation strike, dip and plunge to be accounted for during the grade interpolation. The mineral assemblage composite identifiers were interpolated into the block model utilising a nearest neighbour method. Variography was carried out prior to interpolation as part of developing search ellipse directions and sizes. Resulting variograms were used to test the drill spacing (and continuity of HM grade) and these supported the final selected JORC Mineral Resource category.

A bulk density (BD) was applied to the model using a standard linear formula originally described by Baxter (1977). This approach was refined in a practical application by this author using first principles calculations. The resultant graph and regression formula was then used to calculate the conversion of tonnes from each cell volume and from there the calculation of material, HM and SLIMES tonnes. The formula used was:

Bulk Density = (0.009 * THM) + 1.698

Cut-off grades

A cut-off-grade of either 1.5% and 1.7% THM was selected for each deposit based on grade tonnage curves and the percentage of valuable heavy mineral (VHM). Tajiri was reported at a cut-off grade of 1.5% THM and the other prospects were reported at a 1.7% THM cut-off grade.

Classification criteria

The Tajiri deposits, encompassed by Tajiri, Tajiri North, T2, T3, T4 and T4C Mineral Resource estimates have been assigned a JORC classification of Indicated Mineral Resource which is supported by the following criteria:

- drill hole spacing;
- continuity of geology, HM mineralisation and mineralogical identification; and
- distribution and weighting of mineral assemblage composites.

The density/number of samples and distribution of mineral assemblage composites is to an adequate level of density for the JORC Classification. The drill hole spacing for the Tajiri North deposit is wider across strike than for the other Tajiri prospects, however the interpreted mineralisation style at Tajiri North is dunal, and therefore more homogenous, as opposed to interpreted strandlines at the other Tajiri prospects.

The distribution of the mineral assemblage composites throughout each of the deposits has enabled a clear picture – even at this early stage of exploration and development – to be gained of the VHM grade and distribution for each deposit.

Mining and metallurgical methods and parameters

The Company has undertaken heavy mineral composite analysis from all of the Tajiri Resource areas that has provided detailed data for the VHM assemblage and chemistry from the total heavy mineral. This information compares favorably with the closest operational mineral sands mine – Kwale, located in Kenya – owned by ASX listed company Base Resources. The Company has also completed benchtop scale metallurgical processing and mineral species characterization on representative samples (30kg sand composite) from Tajiri, Tajiri North and T4C. The test work did not identify any fatal flaws in relation to potential recoveries, product quality and marketability. No mining studies have been undertaken on the Tajiri Resources but the Company intends to investigate the potential economic viability of the project with an initial Scoping Study. After this study then additional bulk tonnage metallurgical testwork will be undertaken to understand the metallurgical performance of the heavy mineral sand and to generate additional material for marketing and pricing purposes.

ABOUT STRANDLINE

Strandline Resources Limited (ASX: STA) is an emerging heavy mineral sands (HMS) developer with a growing portfolio of 100%-owned development assets located in Western Australia and within the world's major zircon and titanium producing corridor in South East Africa. Strandline's strategy is to develop and operate quality, high margin, expandable mining assets with market differentiation and global relevance.

Strandline's project portfolio comprises development optionality, geographic diversity and scalability. This includes two zircon-rich, 'development ready' projects, the Fungoni Project in Tanzania and the large Coburn Project in Western Australia, as well as a series of titanium dominated exploration targets spread along 350km of highly prospective Tanzanian coastline, including the advanced Tanga South Project and Bagamoyo Project.

The Company's focus is to continue its aggressive exploration and development strategy and execute its multi-tiered and staged growth plans to maximise shareholder value.

TANZANIA MINERAL SANDS COMPETENT PERSON'S STATEMENTS

The information in this report that relates to Exploration Results is based on, and fairly represents, information and supporting documentation prepared by Mr Brendan Cummins, Chief Geologist and employee of Strandline. Mr Cummins is a member of the Australian Institute of Geoscientists and he has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which has been undertaken to qualify as Competent Persons as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Cummins consents to the inclusion in this release of the matters based on the information in the form and context in which they appear. Mr Cummins is a shareholder of Strandline Resources.

The information in this report that relates to Mineral Resources is based on, and fairly represents, information and supporting documentation prepared by Mr Greg Jones, (Consultant to Strandline and Geological Services Manager for IHC Robbins) and Mr Brendan Cummins (Chief Geologist and employee of Strandline). Mr Jones is a member of the Australian Institute of Mining and Metallurgy and Mr Cummins is a member of the Australian Institute of Geoscientists and both have sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration, and to the activities undertaken to qualify as Competent Persons as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Specifically, Mr Cummins is the Competent Person for the drill database, geological model interpretation and completed the site inspection. Mr Jones is the Competent Person for the resource estimation. Mr Jones and Mr Cummins consent to the inclusion in this report of the matters based on their information in the form and context in which they appear..

FORWARD LOOKING STATEMENTS

This report contains certain forward looking statements. Forward looking statements are only predictions and are subject to risks, uncertainties and assumptions which are outside of the control of Strandline. These risks, uncertainties and assumptions include commodity prices, currency fluctuations, economic and financial market conditions, environmental risks and legislative, fiscal or regulatory developments, political risks, project delay, approvals and cost estimates. Actual values, results or events may be materially different to those contained in this announcement. Given these uncertainties, readers are cautioned not to place reliance on forward looking statements. Any forward looking statements in this announcement reflect the views of Strandline only at the date of this announcement. Subject to any continuing obligations under applicable laws and ASX Listing Rules, Strandline does not undertake any obligation to update or revise any information or any of the forward looking statements in this announcement to reflect changes in events, conditions or circumstances on which any forward looking statements is based.

For further enquiries, please contact: **Luke Graham** CEO and Managing Director Strandline Resources Limited T: +61 8 9226 3130 E: enquiries@strandline.com.au For media and broker enquiries: **Paul Armstrong and Nicholas Read** Read Corporate T: +61 8 9388 1474 E: nicholas@readcorporate.com.au

Appendix 1

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Aircore drilling was used to obtain samples at 1.5m intervals Each 1.5m sample was homogenized within the bag by rotating the sample bag after removing from the cyclone A sample of sand, approx. 20gm, is scooped from the sample bag for visual THM% estimation and logging. The same sample mass is used for every pan sample for visual THM% estimation The standard sized sample (20g) is to ensure calibration is maintained for consistency in visual estimation A sample ledger is kept at the drill rig for recording sample intervals and sample mass, and photographs are taken of samples for each hole to cross-reference with logging The large 1.5m Aircore drill samples have an average of about 8kg and were split down to approximately 500gm by a levelled 3 tier riffle splitter for export to the processing laboratory The laboratory sample was dried, de-slimed (removal of -45µm fraction) and then had oversize (+1mm fraction) removed. Approximately 100gm of sample was then split to use for heavy liquid separation using TBE to determine total heavy mineral content
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Aircore drilling with inner tubes for sample return was used Aircore is considered a standard industry technique for HMS mineralization. Aircore drilling is a form of reverse circulation drilling where the sample is collected at the face and returned inside the inner tube Aircore drill rods used were 3m long NQ diameter (76mm) drill bits and rods were used All drill holes were vertical
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure 	 Drill sample recovery is monitored by measuring and recording the total mass of each 1.5m sample at the drill rig with a standard spring balance

Criteria	JORC Code explanation	Commentary
	 representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 While initially collaring the hole, limited sample recovery can occur in the initial 0.0m to 1.5m sample interval owing to sample and air loss into the surrounding loose soil The initial 0.0m to 1.5m sample interval is drilled very slowly in order to achieve optimum sample recovery The entire 1.5m sample is collected at the drill rig in large numbered plastic bags for dispatch to the initial split preparation facility At the end of each drill rod, the drill string is cleaned by blowing down with air to remove any clay and silt potentially built up in the sample pipes The twin-tube aircore drilling technique is known to provide high quality samples from the face of the drill hole Wet and moist samples are placed into large plastic basins to sun dry prior to splitting
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 The 1.5m aircore samples were each qualitatively logged onto paper field sheets prior to digital entry into an Microsoft Excel spreadsheet The aircore samples were logged for lithology, colour, grainsize, rounding, sorting, estimated THM%, estimated Slimes% and any relevant comments - such as slope, vegetation, or cultural activity Every drillhole was logged in full Logging is undertaken with reference to a Drilling Guideline with codes prescribed and guidance on description to ensure consistent and systematic data collection
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the insitu material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	geologist to ensure sampling quality is maintainedAlmost all of the samples are sand, silty sand, sandy silt, clayey sand

Criteria	JORC Code explanation	Commentary
Quality of	The nature, quality and appropriateness of the assaying and	 the geologists involved and consultation with laboratory staff Field duplicates of the samples were completed at a frequency of 1 per 25 primary samples Standard Reference Material samples are inserted into the sample stream in the field at a frequency of 1 per 50 samples The wet panning at the drill site provides an estimate of the THM%
assay data and laboratory	laboratory procedures used and whether the technique is considered partial or total.	 The wet parting at the dni site provides an estimate of the THM% which is sufficient for the purpose of determining approximate concentrations of THM in the first instance
tests	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument 	Aircore sample:
	 make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels 	 The individual 1.5m aircore sub-samples (approx. 500gm) were assayed by Western Geolabs in Perth, Western Australia, which is considered the Primary laboratory The aircore samples were first screened for removal and
	of accuracy (ie lack of bias) and precision have been established.	determination of Slimes (- 45μ m) and Oversize (+1mm), then the sample was analysed for total heavy mineral (-1mm to + 45μ m) content by heavy liquid separation
		 The laboratory used TBE as the heavy liquid medium – with density range between 2.92 and 2.96 g/ml This is an industry standard technique
		 Field duplicates of the samples were collected at a frequency of 1 per 25 primary samples
		 Western Geolabs completed its own internal QA/QC checks that included laboratory duplicates every 10th sample prior to the results being released
		 Analysis of QA/QC samples show the laboratory data to be of acceptable accuracy and precision
		 The density of the heavy liquid was checked every morning and then after every 20 samples by volumetric flask
		 The adopted QA/QC protocols are acceptable for this stage test work 1/40 samples from the Primary Laboratory have been sent to a Secondary Laboratory (Diamantina Laboratories for check analysis and have been found to have very good repeatability for THM and Slimes.
Verification of sampling and assaying	alternative company personnel.The use of twinned holes.	 All results are checked by the Chief Geologist The Chief Geologist and independent geologist make periodic visits to Western Geolabs to observe sample processing
	 Documentation of primary data, data entry procedures, data 	A process of laboratory data validation using mass balance is

Criteria	JORC Code explanation	Commentary
	 verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 undertaken to identify entry errors or questionable data Field and laboratory duplicate data pairs (THM/oversize/slime) of each batch are plotted to identify potential quality control issues Standard Reference Material sample results are checked from each sample batch to ensure they are within tolerance (<2SD) and that there is no bias The field and laboratory data has been updated into a master spreadsheet which is appropriate for this stage in the programme. Data validation criteria are included to check for overlapping sample intervals, end of hole match between 'Lithology', 'Sample', 'Survey' files and other common errors No twin holes were drilled in the programme No adjustments are made to the primary assay data
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Down hole surveys for shallow vertical aircore holes are not required A handheld GPS was used to identify the positions of the drill holes in the field. The handheld GPS has an accuracy of +/- 10m in the horizontal The datum used is WGS84 and coordinates are projected as UTM zone 37S The drillhole collar elevation was collected from a detailed Digital Terrain Model collected in 2012. One metre contours were generated and the x-y coordinates were cut to the RL using the contour information. The accuracy of the locations is sufficient for this stage of exploration
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Various grid spacing was used in the drill program, including 400m x 200m (at Tajiri North deposit), 400m x 100m, 400m x 50m and 200 x 50m at the other resource areas The 200m spaced aircore holes are sufficient to provide a good degree of confidence in geological models and grade continuity within the holes Closer spaced drilling (100m and 50m spaced holes) provide a high degree of confidence in geological models and grade continuity between the holes Each aircore drill sample is a single 1.5m sample of sand intersected down the hole No compositing has been applied to models for values of THM, slime and oversize

Criteria	JORC Code explanation	Commentary
		 Compositing of samples was been undertaken on HM concentrates for mineral assemblage determination. Composite samples were broadly classified into high grade (>2%THM) and low grade (<2%THM) and trash mineralogy and content
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The aircore drilling was oriented perpendicular to the strike of mineralization defined by reconnaissance data interpretation The strike of the mineralization is sub-parallel to the contemporary coastline and is known to be relatively well controlled by the 20m topographic contour Drill holes were vertical and the nature of the mineralisation is relatively horizontal The orientation of the drilling is considered appropriate for testing the lateral and vertical extent of mineralization without any bias
Sample security	The measures taken to ensure sample security.	 Aircore samples remained in the custody of Company representatives while they were transported from the field to Dar es Salaam for final packaging and securing The samples were inspected by Tanzanian Government officials from MEM and TRA who took sub samples composites for analysis. Once they were inspected the drums holding the samples were sealed. MEM and TRA require sample analysis for royalty payment calculation prior to issuing an exportation license and allowing the samples to be dispatched. The samples were then transported by air using Deugro to Perth and delivered directly to the laboratory after quarantine inspection and heat treatment of the samples < 3m depth. The laboratory inspected the packages and did not report tampering of the samples
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	Internal reviews were undertaken

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	 The exploration work was completed on tenements that are 100% owned by Strandline in Tanzania The drill samples were taken from tenement PL7321/2011 The tenement is 4 years old and was recently reduced by 50% and is valid until 15 Nov. 2018 when it can be renewed again for a further 3 years Traditional landowners and village Chiefs of the affected villages were supportive of the drilling program
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Historic exploration work was completed by Tanganyika Gold in 1998 and 1999. OmegaCorp undertook reconnaissance exploration in 2005 and 2007 The Company has obtained the hardcopy reports and maps in relation to this information The historic data comprises surface sampling, limited aircore drilling and mapping The historic results are not reportable under JORC 2012
Geology	• Deposit type, geological setting and style of mineralisation.	 Two types of heavy mineral placer style deposits are possible in Tanzania

Criteria	JORC Code explanation	Commentary
		 Thin but high grade strandlines which may be related to marine or fluvial influences Large but lower grade deposits related to windblown sands The coastline of Tanzania is not well known for massive dunal systems such as those developed in Mozambique, however some dunes are known to occur and cannot be discounted as an exploration model. Palaeo strandlines are more likely and will be related to fossil shorelines or terraces in a marine or fluvial setting. In Tanzania three terraces have been documented and include the Mtoni terrace (1-5m ASL), Tanga (20-40m ASL) and Sakura Terrace (40 to 60m ASL). Strandline mineral sand accumulations related to massive storm events are thought to be preserved at these terraces above the current sea level.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	The drill hole data is reported
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	Details of data aggregation are reported
Relationship between mineralisation	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole 	 The nature of the mineralisation is broadly horizontal, thus vertical aircore holes are thought to represent close to true thicknesses of the mineralisation

Criteria	JORC Code explanation	Commentary
widths and intercept lengths	 angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Downhole widths are reported
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Figures and plans are displayed in the main text of the Release
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All results >1.5% THM for Tajiri and >1.7% THM for the other Tajiri prospects have been reported – refer to Appendix 2
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Detailed mineral assemblage work was undertaken on composite samples from across the resource areas using SEM-EDX analysis undertaken by Process Mineralogical Consulting in Canada. (refer to Appendix 3) Detailed aerial geophysics was flown over the lease in 2012
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Additional Aircore drilling is planned to further extend mineralization at T3 and T4C Additional work required for the determination of bulk density Larger scale bulk metallurgical samples for metallurgical performance product marketability and

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Original laboratory files used to populate exploration database assay tables via an automatic software assay importer where available. Checks of data by visually inspecting on screen (to identify translation of samples), duplicate and twin drilling was visually examined to check the reproducibility of assays. Database assay values have been subjected to random reconciliation with laboratory certified value is to ensure agreement. Visual and statistical comparison was undertaken to check the validity of results

Criteria	JORC Code explanation	Commentary
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Regular site trips before and during the resource drilling phase were undertaken by Brendan Cummins. Mr Cummins was onsite between the 1st and 3rd August 2018 to observe the drilling and data collection activities
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 The geological interpretation was undertaken by Brendan Cummins and data was used by IHC Robbins and then validated using all logging and sampling data and observations. Current data spacing and quality is sufficient to indicate grade continuity. The possibility of narrow washouts between drill lines exists but they are not considered likely. Interpretation of modelling domains was restricted to the main mineralised envelopes utilising THM sinks and geology logging. No other interpretations were considered as the Competent Person was satisfied that the sachet logging which was used to define the mineral assemblage composites was effective in outlining the major mineralogical domains. This is the primary objective for any mineral sands resource estimation. The Mineral Resource estimate was controlled to an extent by the geological envelope and basement surfaces. The mineralisation for the deposits at Tajiri been truncated at surface by erosion of the original deposit apart from T4C that seems to be covered with low grade material
Dimensions	• The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	• The Mineral Resource for Tajiri is approximately 3 km long and 800 m wide on average. The deposit ranges in thickness from approximately 2 to 13 m. A Tajiri North the resource is 2.5km long and 2km wide with thickness ranging from 2 to 10m
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of 	 The mineral resource estimate was conducted using CAE mining software (also known as Datamine Studio). Inverse distance weighting techniques were used to interpolate assay grades from drill hole samples into the block model and nearest neighbour techniques were used to interpolate index values and nonnumeric sample identification into the block model. The mostly regular dimensions of the drill grid and the anisotropy of the drilling and sampling grid allowed for the use of inverse distance methodologies as no de- clustering of samples was required. Appropriate and industry standard search ellipses were used to search for data for the interpolation and suitable limitations on the number of samples and

Criteria JORC Code explanation

economic significance (eg sulphur for acid mine drainage characterisation).

- In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.
- Any assumptions behind modelling of selective mining units.
- Any assumptions about correlation between variables.
- Description of how the geological interpretation was used to control the resource estimates.
- Discussion of basis for using or not using grade cutting or capping.
- The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.

Commentary

the impact of those samples was maintained. An inverse distance weighting of three was used so as not to over smooth the grade interpolations. Hard domain boundaries were used and these were defined by the geological wireframes that were interpreted.

- This is the maiden Mineral Resource estimate for the Tajiri and Tajiri North deposits and there were no previous resource estimates.
- No assumptions were made during the resource estimation as to the recovery of byproducts.
- Slimes and oversize contents are estimated at the same time as estimating the THM grade. Further detailed geochemistry is required to ascertain deleterious elements that may affect the marketability of the heavy mineral products
- The average parent cell size used for the interpolation was approximately half the standard drill hole width and a half the standard drill hole section line spacing. Given that the average drill hole spacing for Tajiri was 50 m east-west and 400 m north south and with 1.5 m samples the parent cell size was 25 x 200 x 1.5 m (where the Z or vertical direction of the cell was nominated as the same distance as the sample length).
- The average drill hole spacing for Tajiri North was 200 m east-west and 400 m north south and with 1.5 m samples and so the parent cell size was 100 x 200 x 1.5 m (where the Z or vertical direction of the cell was nominated as the same distance as the sample length).
- No assumptions were made regarding the modelling of selective mining units however it is assumed that a form of dry mining will be undertaken and the cell size and the sub cell splitting will allow for an appropriate dry mining preliminary reserve to be prepared. Any other mining methodology will be more than adequately catered for with the parent cell size that was selected for the modelling exercise.
- No assumptions were made about correlation between variables.
- The Mineral Resource estimates were controlled to an extent by the geological / mineralisation and basement surfaces.
- Grade cutting or capping was not used during the interpolation because of the regular nature of sample spacing and the fact that samples were not clustered nor wide spaced to an extent where elevated samples could have a deleterious impact on the resource estimation.
- Sample distributions were reviewed and no extreme outliers were identified either high or low that necessitated any grade cutting or

Criteria	JORC Code explanation	Commentary
		 capping. The sample length of 1.5 m does result in a degree of grade smoothing also negating the requirement for grade cutting or capping. Validation of grade interpolations were done visually In CAE Studio (Datamine) software by loading model and drill hole files and annotating and colouring and using filtering to check for the appropriateness of interpolations. Statistical distributions were prepared for model zones from drill hole and model files to compare the effectiveness of the interpolation. Along strike distributions of section line averages (swath plots) for drill holes and models were also prepared for comparison purposes
Moisture	• Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	• Tonnages were estimated an assumed dry basis. A bulk density algorithm was prepared using first principles techniques coupled with industry experience that is exclusive to IHC Robbins. We believe the bulk density formula to be appropriate and fit for purpose at this level of confidence for the Mineral Resource estimates.
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	 Cut-off grades for HM and SLIMES as well as hardness were used to prepare the reported resource estimates. These cut-off grades were defined by IHC Robbins as being based soundly on experience, the percentage of VHM and the grade tonnage curves taken in consideration with the grade distribution along the length of the deposits.
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	 No specific mining method is assumed other than potentially the use of dry mining scrapers and excavators into trucks. This allows for quite a selective mining process while still maintaining bulk economies of scale as the dark HM at the base of the orebody allows for excellent visual acuity and therefore grade control. To this end no minimum thickness was assumed for the reporting of the mineral resource.
Metallurgical factors or assumptions	 The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. 	 Metallurgical assumptions were used based on mineral assemblage composites which at this stage only allow for preliminary commentary with no detailed chemistry or sizing of mineral species.

Criteria	JORC Code explanation	Commentary
	Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	
Environmen- tal factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	 No assumptions have been made regarding possible waste and process residue however disposal of byproducts such as SLIMES, sand and oversize are normally part of capture and disposal back into the mining void for eventual rehabilitation. This also applies to mineral products recovered and waste products recovered from metallurgical processing of heavy mineral.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 The bulk density used for the Tajiri and Tajiri North deposits is one that has been developed by IHC Robbins from experience of working with these styles of ore bodies. A bulk density algorithm was prepared using first principles techniques coupled with industry experience that is exclusive to IHC Robbins. We believe the bulk density formula to be appropriate and fit for purpose at this level of confidence for the Mineral Resource estimates The bulk density is calculated as an in situ dry bulk density and once material has been dug up invariably this bulk density cannot be used. The bulk density is however used on wet poured HMC (heavy mineral concentrate) from mining and concentrating and is successful at estimating density and therefore tonnages for stockpiles.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 The resource classification for the Tajiri and Tajiri North deposits was based on the following criteria: drill hole spacing and the distribution of bulk samples. The classification of the Indicated Resources was supported by all of the supporting criteria as noted above. As a Competent Person, IHC Robbins Principal Greg Jones considers that the result appropriately reflects a reasonable view of the deposit categorisation.
Audits or reviews	• The results of any audits or reviews of Mineral Resource estimates.	 No audits or reviews of the mineral resource estimate has been undertaken at this point in time.
Discussion of relative accuracy/	• Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For	 There was no geostatistical process undertaken (such as variography or conditional simulation) during the resource estimation of the Tajiri and Tajiri North deposits. Qualitative assessment of the mineral

Criteria .	JORC Code explanation	Commentary
	 example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 resource estimate along with comparison with previous resource estimates by other workers (within a tolerance of +/- 5 per cent) points to the robustness of this particular resource estimation exercise. Validation of the model vs drill hole grades by observation, swathe plot and population distribution analysis was favourable The statement refers to global estimates for the entire known extent of the Tajiri and Tajiri North deposits. No production data is available for comparison with the Tajiri and Tajiri North deposit.

Deposit	Hole_id	East_WGS84	North_WGS84	RL	From	То	Length	ТНМ	Slimes	Oversize	Zone
Tajiri North	15TNAC001	497302	9398183	36	0	4.5	4.5	3.4	49.6	1.3	3
Tajiri North	15TNAC001	497302	9398183	33	4.5	6	1.5	1.9	56.5	4.6	200
Tajiri North	15TNAC002	497154	9398266	52	0	3	3	2.3	38.1	24.0	3
Tajiri North	15TNAC003	496981	9398371	76	0	1.5	1.5	2.8	57.5	1.2	3
Tajiri North	15TNAC004	496861	9398477	78	0	4.5	4.5	3.4	55.5	0.7	3
Tajiri North	15TNAC005	496709	9398064	76	0	3	3	3.0	55.1	0.6	3
Tajiri North	15TNAC006	496557	9398155	80	0	9	9	2.1	56.1	0.8	3
Tajiri North	15TNAC007	496391	9398244	85	0	6	6	2.6	48.1	0.9	3
Tajiri North	15TNAC008	496628	9398558	79	0	7.5	7.5	2.4	51.2	0.8	3
Tajiri North	15TNAC009	496446	9398652	80	0	9	9	2.7	46.2	1.1	2
Tajiri North	15TNAC010	496302	9398737	79	0	10.5	10.5	3.0	50.3	1.1	2
Tajiri North	15TNAC011	496127	9398845	70	0	3	3	1.9	45.4	1.3	2
Tajiri North	15TNAC012	496202	9398334	85	0	6	6	4.2	54.6	0.7	2
Tajiri North	15TNAC013	496038	9398433	77	0	6	6	2.7	55.0	3.4	2
Tajiri North	15TNAC014	495861	9398545	70	0	1.5	1.5	2.7	52.9	5.2	2
Tajiri North	15TNAC015	495769	9398139	71	0	3	3	3.9	53.5	8.4	2
Tajiri North	15TNAC016	495934	9398062	81	0	6	6	6.2	56.4	3.3	2
Tajiri North	15TNAC017	496118	9397936	82	0	7.5	7.5	3.3	53.6	0.9	2
Tajiri North	15TNAC018	496287	9397844	80	0	6	6	2.1	51.7	0.7	3
Tajiri North	15TNAC019	496458	9397759	77	0	6	6	2.5	59.7	0.9	3
Tajiri North	15TNAC020	496635	9397643	67	0	3	3	2.6	56.4	0.8	3
Tajiri North	15TNAC021	496907	9397048	37	0	9	9	2.2	41.4	2.4	3
Tajiri North	15TNAC021	496907	9397048	30	10.5	12	1.5	2.2	39.3	0.4	3
Tajiri North	15TNAC022	496729	9397147	47	0	4.5	4.5	2.4	44.5	14.3	3
Tajiri North	15TNAC023	496541	9397181	60	0	3	3	2.3	58.8	0.8	3
Tajiri North	15TNAC024	496372	9397338	73	0	1.5	1.5	2.0	52.2	12.7	3
Tajiri North	15TNAC025	496200	9397427	77	0	7.5	7.5	1.9	55.9	1.4	3
Tajiri North	15TNAC026	496026	9397525	80	0	6	6	2.5	50.2	1.4	3
Tajiri North	15TNAC027	495850	9397628	78	0	13.5	13.5	4.9	51.9	0.9	2
Tajiri North	15TNAC028	495721	9397702	79	0	9	9	7.8	54.5	2.0	2
Tajiri North	15TNAC029	495523	9397791	78	0	3	3	4.1	57.4	1.0	2
Tajiri North	15TNAC031	495236	9397504	72	0	7.5	7.5	2.8	50.5	2.8	2
Tajiri North	15TNAC032	495416	9397382	79	0	3	3	4.9	50.7	0.6	2
Tajiri North	15TNAC033	495579	9397299	79	0	9	9	6.9	55.2	2.4	2
Tajiri North	15TNAC034	495750	9397222	83	0	4.5	4.5	4.9	49.9	1.0	2
Tajiri North	15TNAC035	495917	9397109	78	0	7.5	7.5	2.2	54.1	0.7	3
Tajiri North	15TNAC036	496109	9397006	75	0	3	3	1.8	52.6	0.6	3

		1			1			1	1	1	
Tajiri North	15TNAC037	496301	9396930	71	0	1.5	1.5	2.0	58.9	0.9	3
Tajiri North	15TNAC038	495645	9396766	79	0	9	9	2.1	52.6	0.6	2
Tajiri North	15TNAC040	495996	9396577	73	1.5	4.5	3	1.8	58.1	0.5	3
Tajiri North	15TNAC041	496155	9396457	68	0	3	3	2.1	60.1	0.8	3
Tajiri North	15TNAC042	496332	9396359	58	0	1.5	1.5	2.9	52.4	2.0	3
Tajiri North	15TNAC044	495895	9396144	71	0	3	3	1.8	55.8	0.4	3
Tajiri North	15TNAC046	495539	9396344	77	1.5	3	1.5	1.8	47.2	0.6	3
Tajiri North	15TNAC047	495408	9396505	77	0	7.5	7.5	2.8	54.4	0.9	2
Tajiri North	15TNAC048	495210	9396573	77	0	6	6	2.2	51.2	0.5	2
Tajiri North	15TNAC050	495118	9397046	74	0	7.5	7.5	2.0	52.5	1.0	2
Tajiri North	15TNAC051	495304	9396967	75	0	6	6	1.9	53.4	1.0	2
Tajiri North	15TNAC052	495489	9396864	77	0	10.5	10.5	2.9	54.5	1.3	2
Tajiri North	16TNAC668	496196	9395048	35	0	1.5	1.5	2.6	30.1	23.5	3
Tajiri North	16TNAC669	496050	9395159	41	0	1.5	1.5	2.4	21.9	6.6	3
Tajiri North	16TNAC671	495661	9395283	64	0	1.5	1.5	2.5	36.6	3.3	3
Tajiri North	16TNAC672	495513	9395433	68	0	6	6	2.1	41.9	1.5	3
Tajiri North	16TNAC673	495353	9395577	70	0	3	3	1.9	37.8	1.2	3
Tajiri North	16TNAC675	494934	9395697	75	0	6	6	1.9	34.6	1.7	2
Tajiri North	16TNAC676	494778	9395742	70	0	3	3	2.0	40.2	1.9	2
Tajiri North	16TNAC677	494598	9395966	53	0	1.5	1.5	2.7	35.7	6.3	2
Tajiri North	16TNAC680	495245	9396060	76	0	7.5	7.5	2.7	39.7	1.2	2
Tajiri North	16TNAC681	495077	9396073	76	0	6	6	2.3	34.8	5.0	2
Tajiri North	16TNAC683	495595	9395861	73	0	6	6	2.2	36.5	1.5	3
Tajiri North	16TNAC684	495769	9395756	69	0	4.5	4.5	2.0	35.1	2.7	3
Tajiri North	16TNAC685	495935	9395664	59	0	1.5	1.5	2.2	27.2	9.9	3
Tajiri North	16TNAC687	496279	9395467	36	0	1.5	1.5	2.4	25.4	13.4	3
Tajiri North	16TNAC697	496724	9396168	30	3	6	3	1.8	36.9	0.4	3
Tajiri North	16TNAC700	496557	9396226	37	0	7.5	7.5	2.6	45.0	2.1	3
Tajiri North	16TNAC701	496660	9396704	44	0	6	6	3.2	32.9	2.1	3
Tajiri North	16TNAC701	496660	9396704	40	6	7.5	1.5	1.8	45.8	10.1	200
Tajiri North	16TNAC702	496472	9396791	57	0	4.5	4.5	2.1	40.5	2.4	3
Tajiri North	16TNAC703	496815	9396563	35	0	1.5	1.5	1.8	26.8	2.7	3
Tajiri North	16TNAC715	497244	9396828	20	9	12	3	2.5	18.4	24.6	3
Tajiri North	16TNAC716	497075	9396920	31	3	6	3	2.9	30.6	8.3	3
Tajiri North	16TNAC717	497147	9397348	31	3	9	6	2.7	32.3	8.4	3
Tajiri North	16TNAC718	496971	9397405	45	0	1.5	1.5	3.7	28.3	5.1	3
Tajiri North	16TNAC719	496801	9397545	53	0	7.5	7.5	3.2	40.3	3.4	3
Tajiri North	16TNAC722	497271	9397761	32	0	3	3	2.1	39.4	2.3	3
Tajiri North	16TNAC722	497271	9397761	22	7.5	15	7.5	3.3	25.1	10.2	3
Tajiri North	16TNAC723	497433	9397652	31	0	3	3	2.4	41.0	7.7	3
					4.5	7.5	3	2.5	32.8	19.0	3
Tajiri North	16TNAC723	497433	9397652	26	4.5	7.5	5	2.5	52.0	10.0	5

Tajiri North T4	16TNAC734	497503	9398069	31	0	1.5	1.5	2.3	40.2	21.4	•
T4				51	v	1.5	1.5	2.5	40.2	21.4	3
	16TNAC664	496902	9394667	13	4.5	6	1.5	2.2	24.7	8.1	2
Τ4	16TNAC665	496723	9394756	15	0	4.5	4.5	2.4	21.7	8.2	2
Τ4	16TNAC665	496723	9394756	4	10.5	15	4.5	3.8	38.9	3.2	1
T4	16TNAC688	496980	9395073	16	0	4.5	4.5	2.4	28.3	2.1	2
T4	16TNAC688	496980	9395073	8	9	12	3	1.8	26.0	0.9	1
T4	16TNAC688	496980	9395073	4	13.5	15	1.5	1.8	41.0	0.8	1
T4	16TNAC689	497141	9394983	17	0	1.5	1.5	1.9	16.8	3.0	2
T4	16TNAC689	497141	9394983	13	4.5	6	1.5	2.0	26.0	8.4	1
T4	16TNAC690	497145	9395446	6	13.5	15	1.5	2.7	34.8	1.5	4
T4	16TNAC691	497305	9395347	17	0	9	9	6.7	25.4	3.6	2
T4	16TNAC691	497305	9395347	10	10.5	12	1.5	2.1	29.3	6.3	200
T4	16TNAC692	497478	9395250	16	3	6	3	2.2	27.8	4.1	1
T4	16TNAC694	497577	9395686	22	0	1.5	1.5	1.9	12.8	2.3	1
T4	16TNAC694	497577	9395686	18	3	6	3	1.8	19.6	3.7	1
T4	16TNAC695	497405	9395780	20	0	6	6	3.5	23.8	5.6	2
T4	16TNAC696	497250	9395877	15	4.5	6	1.5	2.5	30.4	8.6	1
T4	16TNAC696	497250	9395877	6	13.5	15	1.5	1.9	28.3	0.9	4
T4	16TNAC708	497686	9396106	17	0	6	6	3.4	18.9	3.1	2
T4	16TNAC709	497862	9396008	19	0	1.5	1.5	1.9	8.1	4.9	2
T4	16TNAC711	497940	9396433	19	0	6	6	4.0	21.4	5.2	2
T4	16TNAC713	498193	9396761	15	4.5	7.5	3	5.0	8.2	14.7	4
T4	16TNAC714	498020	9396862	20	0	4.5	4.5	4.4	22.8	3.4	2
T4	16TNAC714	498020	9396862	16	4.5	7.5	3	3.5	19.0	22.3	1
T4	16TNAC724	497959	9397356	21	0	4.5	4.5	1.8	20.4	3.6	1
T4	16TNAC724	497959	9397356	14	7.5	10.5	3	2.8	34.0	2.6	1
T4	16TNAC724	497959	9397356	12	10.5	12	1.5	1.9	36.0	0.3	4
T4	16TNAC730	498151	9397721	6	12	15	3	2.2	16.8	34.3	1
T4	16TNAC731	498016	9397781	18	0	10.5	10.5	2.9	25.8	6.1	2
T4	16TNAC731	498016	9397781	10	12	13.5	1.5	1.7	26.7	1.4	4
T4	16TNAC732	497851	9397878	26	0	3	3	5.2	34.5	1.3	2
T4	17TNAC1497	496807	9394483	2	13.5	15	1.5	2.0	35.9	15.2	200
T4	17TNAC1499	496730	9394531	9	4.5	10.5	6	2.5	42.4	5.4	2
T4	17TNAC1499	496730	9394531	2	13.5	15	1.5	2.3	35.3	12.9	4
T4	17TNAC1500	496677	9394554	13	0	7.5	7.5	2.3	31.5	6.3	2
T4	17TNAC1500	496677	9394554	9	7.5	9	1.5	1.8	46.8	0.8	4
T4	17TNAC1501	496634	9394580	12	0	10.5	10.5	2.1	33.9	6.1	2
T4	17TNAC1501	496634	9394580	5	12	13.5	1.5	2.1	38.8	7.7	2
T4	17TNAC1501	496634	9394580	3	13.5	15	1.5	1.9	37.6	0.5	4
T4	17TNAC1502	496759	9394723	13	0	7.5	7.5	2.6	28.5	7.0	2
T4	17TNAC1502	496759	9394723	6	7.5	15	7.5	2.4	39.1	4.9	1
T4	17TNAC1503	496813	9394699	16	0	6	6	2.2	24.7	3.9	2

T4	17TNAC1504	496846	9394684	16	0	6	6	2.5	24.0	7.2	2
T4	17TNAC1505	496805	9394931	11	0	12	12	4.4	30.3	3.7	2
T4	17TNAC1505	496805	9394931	4	12	15	3	2.2	37.9	9.8	1
T4	17TNAC1506	496845	9394901	15	0	9	9	4.6	32.5	2.4	2
T4	17TNAC1506	496845	9394901	5	13.5	15	1.5	1.9	37.7	3.1	200
T4	17TNAC1507	496886	9394877	17	0	9	9	2.7	21.7	12.1	2
T4	17TNAC1508	496925	9394852	17	0	7.5	7.5	2.5	24.9	5.1	2
T4	17TNAC1509	496977	9394838	16	0	6	6	2.6	19.7	6.7	2
T4	17TNAC1510	497059	9395029	14	0	7.5	7.5	5.6	31.0	3.3	2
T4	17TNAC1510	497059	9395029	8	9	10.5	1.5	2.0	33.7	1.0	1
T4	17TNAC1511	497020	9395050	15	0	6	6	7.5	40.1	3.1	2
T4	17TNAC1512	496932	9395090	8	9	10.5	1.5	1.8	36.6	0.2	1
T4	17TNAC1513	496893	9395128	4	13.5	15	1.5	3.1	32.7	3.4	4
T4	17TNAC1515	497097	9395221	4	13.5	15	1.5	2.4	37.6	11.3	4
T4	17TNAC1516	497134	9395195	15	0	7.5	7.5	2.7	27.7	2.7	2
T4	17TNAC1516	497134	9395195	10	7.5	9	1.5	1.7	33.2	0.7	1
T4	17TNAC1516	497134	9395195	7	10.5	12	1.5	2.0	28.3	0.3	1
T4	17TNAC1517	497184	9395179	15	0	9	9	8.0	27.2	4.0	2
T4	17TNAC1518	497231	9395148	17	0	6	6	3.4	21.9	6.9	2
T4	17TNAC1518	497231	9395148	13	6	7.5	1.5	1.8	32.2	2.0	1
T4	17TNAC1519	497378	9395295	19	0	4.5	4.5	2.3	21.9	3.9	2
T4	17TNAC1520	497347	9395313	18	0	7.5	7.5	3.9	21.3	7.5	2
T4	17TNAC1521	497258	9395371	17	0	7.5	7.5	3.1	25.9	5.2	2
T4	17TNAC1522	497215	9395399	18	0	6	6	2.1	21.0	5.2	2
T4	17TNAC1523	497273	9395602	19	0	6	6	2.2	18.3	6.9	2
T4	17TNAC1524	497319	9395584	19	0	6	6	2.2	16.7	8.1	2
T4	17TNAC1525	497361	9395560	18	0	6	6	6.8	20.9	7.4	2
T4	17TNAC1525	497361	9395560	13	6	10.5	4.5	2.0	18.1	10.8	1
T4	17TNAC1526	497396	9395531	18	0	4.5	4.5	3.9	19.1	4.0	2
T4	17TNAC1526	497396	9395531	12	6	10.5	4.5	1.9	10.4	9.5	1
T4	17TNAC1526	497396	9395531	6	13.5	15	1.5	1.8	35.4	0.9	1
T4	17TNAC1527	497444	9395506	17	0	7.5	7.5	3.6	16.3	6.4	2
T4	17TNAC1528	497490	9395731	19	0	7.5	7.5	2.7	18.1	9.4	2
T4	17TNAC1528	497490	9395731	15	7.5	9	1.5	1.9	7.8	7.7	1
T4	17TNAC1529	497447	9395758	19	0	7.5	7.5	2.5	18.0	6.9	2
T4	17TNAC1530	497367	9395797	19	0	7.5	7.5	2.3	19.2	3.5	2
T4	17TNAC1531	497315	9395833	19	0	6	6	3.3	23.1	4.5	2
T4	17TNAC1532	497451	9395986	20	0	4.5	4.5	2.4	18.5	4.0	2
T4	17TNAC1533	497496	9395965	20	0	3	3	1.8	16.6	3.7	2
T4	17TNAC1533	497496	9395965	9	12	13.5	1.5	2.8	12.4	20.1	4
T4	17TNAC1534	497539	9395937	19	0	6	6	2.4	18.2	4.7	2
T4	17TNAC1535	497581	9395918	21	0	1.5	1.5	1.8	6.8	3.1	2

T4	17TNAC1536	497628	9395884	17	0	7.5	7.5	2.8	15.7	5.1	2
T4	17TNAC1537	497773	9396055	18	0	6	6	3.7	19.4	2.0	2
T4	17TNAC1538	497726	9396081	17	0	7.5	7.5	3.9	20.3	5.4	2
T4	17TNAC1539	497895	9396219	19	0	6	6	3.9	20.4	6.9	2
T4	17TNAC1540	497858	9396243	20	0	4.5	4.5	2.1	15.8	3.6	2
T4	17TNAC1541	497816	9396267	17	0	6	6	3.3	20.0	8.1	2
T4	17TNAC1542	497767	9396294	16	0	6	6	3.8	19.1	6.5	2
T4	17TNAC1543	497726	9396317	17	0	4.5	4.5	2.3	20.8	1.9	2
T4	17TNAC1544	497597	9396156	19	0	1.5	1.5	3.0	11.0	1.7	2
T4	17TNAC1546	497895	9396445	21	0	6	6	2.1	20.0	5.9	2
T4	17TNAC1547	497976	9396410	17	0	9	9	6.5	23.5	5.3	2
T4	17TNAC1548	498015	9396385	18	0	4.5	4.5	2.0	17.9	3.4	2
T4	17TNAC1549	498063	9396601	19	0	3	3	2.0	22.4	3.8	2
T4	17TNAC1549	498063	9396601	14	6	7.5	1.5	1.8	18.4	6.2	1
T4	17TNAC1550	498026	9396628	18	0	6	6	2.5	20.0	5.5	2
T4	17TNAC1552	497934	9396670	21	0	1.5	1.5	2.2	14.1	2.5	2
T4	17TNAC1552	497934	9396670	18	3	6	3	1.9	22.4	2.5	2
T4	17TNAC1554	497932	9396909	22	0	4.5	4.5	1.8	21.6	2.9	2
T4	17TNAC1555	497972	9396881	19	0	6	6	2.3	21.1	3.2	2
T4	17TNAC1556	498058	9396837	22	0	1.5	1.5	2.0	9.5	4.5	2
T4	17TNAC1556	498058	9396837	19	3	4.5	1.5	1.8	26.7	3.0	2
T4	17TNAC1557	498098	9396817	20	0	4.5	4.5	2.8	20.7	4.0	2
T4	17TNAC1557	498098	9396817	16	4.5	7.5	3	2.5	18.9	8.5	1
T4	17TNAC1559	498034	9397093	23	0	1.5	1.5	2.0	11.4	3.6	2
T4	17TNAC1560	497993	9397112	21	0	3	3	3.1	18.6	3.8	2
T4	17TNAC1560	497993	9397112	19	3	4.5	1.5	2.6	20.8	4.3	1
T4	17TNAC1560	497993	9397112	15	7.5	9	1.5	1.7	29.0	3.0	1
T4	17TNAC1561	497943	9397140	23	0	1.5	1.5	2.3	10.3	3.1	2
T4	17TNAC1561	497943	9397140	18	4.5	6	1.5	1.8	23.3	5.9	1
T4	17TNAC1561	497943	9397140	15	7.5	10.5	3	2.3	31.9	4.3	1
T4	17TNAC1562	497904	9397162	22	0	1.5	1.5	1.8	7.5	3.4	1
T4	17TNAC1564	497909	9397376	23	0	1.5	1.5	1.8	9.3	3.3	1
T4	17TNAC1565	498005	9397331	21	0	6	6	2.6	20.2	5.1	2
T4	17TNAC1565	498005	9397331	17	6	7.5	1.5	1.9	12.8	22.6	1
T4	17TNAC1565	498005	9397331	15	7.5	9	1.5	1.7	24.8	16.4	4
T4	17TNAC1566	498034	9397301	20	0	6	6	4.5	22.1	6.2	2
T4	17TNAC1566	498034	9397301	17	6	7.5	1.5	2.7	14.9	24.0	4
T4	17TNAC1567	498032	9397550	17	0	9	9	2.7	17.5	13.0	2
T4	17TNAC1567	498032	9397550	11	9	12	3	3.9	29.6	2.0	4
T4	17TNAC1568	497991	9397577	21	0	4.5	4.5	2.5	20.4	3.8	2
T4	17TNAC1568	497991	9397577	18	4.5	6	1.5	2.2	20.3	10.2	1
T4	17TNAC1569	497948	9397603	22	0	6	6	2.1	20.4	4.6	2

T4	17TNAC1569	497948	9397603	17	7.5	9	1.5	2.5	27.9	9.8	2
T4	17TNAC1570	497897	9397616	14	9	12	3	2.4	26.3	0.4	1
T4	17TNAC1570	497897	9397616	11	12	15	3	2.2	15.1	9.5	4
T4	17TNAC1571	497847	9397656	19	0	9	9	2.4	26.2	2.0	2
T4	17TNAC1571	497847	9397656	13	9	12	3	4.2	31.0	0.4	4
T4	17TNAC1571	497847	9397656	10	12	13.5	1.5	2.9	14.4	0.3	1
T4	17TNAC1571	497847	9397656	9	13.5	15	1.5	2.1	14.5	43.4	200
T4	17TNAC1572	497983	9397811	24	0	1.5	1.5	3.0	14.3	3.3	2
T4	17TNAC1572	497983	9397811	20	3	6	3	1.9	16.9	6.2	2
T4	17TNAC1572	497983	9397811	15	7.5	12	4.5	4.6	32.8	4.3	2
T4	17TNAC1572	497983	9397811	11	13.5	15	1.5	2.1	32.7	2.2	4
T4	17TNAC1573	497937	9397835	20	0	10.5	10.5	2.9	23.5	4.6	2
T4	17TNAC1573	497937	9397835	12	10.5	15	4.5	3.1	14.0	9.0	4
T4	17TNAC1574	497886	9397854	24	0	3	3	2.9	22.8	7.6	2
T4	17TNAC1575	498060	9397982	21	0	6	6	2.6	20.5	5.2	2
T4	17TNAC1575	498060	9397982	14	9	10.5	1.5	1.9	23.1	0.3	4
T4	17TNAC1575	498060	9397982	10	13.5	15	1.5	3.0	17.3	33.4	1
T4	17TNAC1576	498014	9398007	22	0	6	6	2.6	20.8	4.0	2
T4	17TNAC1576	498014	9398007	16	6	12	6	6.1	21.0	4.7	4
T4	17TNAC1576	498014	9398007	13	12	13.5	1.5	2.1	30.4	29.4	200
T4	17TNAC1577	497977	9398030	26	0	4.5	4.5	2.4	17.0	5.5	2
T4	17TNAC1578	497931	9398052	29	0	1.5	1.5	1.9	16.9	1.0	2
T4	17TNAC1579	497891	9398082	29	0	1.5	1.5	2.6	23.6	0.5	2
T4	17TNAC1580	497766	9397929	27	0	1.5	1.5	2.2	31.4	0.6	2
T4	17TNAC1581	497807	9397900	27	0	1.5	1.5	2.1	37.5	0.8	2
T4	17TNAC1582	498063	9397754	22	0	1.5	1.5	8.7	20.7	4.4	1
T4	17TNAC1582	498063	9397754	17	1.5	9	7.5	8.0	23.3	12.2	4
T4	17TNAC1582	498063	9397754	10	12	13.5	1.5	2.4	19.9	0.6	4
T4	17TNAC1583	498102	9397735	20	0	3	3	2.1	23.8	5.9	1
T4	17TNAC1583	498102	9397735	12	9	10.5	1.5	2.2	30.9	0.8	1
T4	17TNAC1583	498102	9397735	8	13.5	15	1.5	2.1	28.5	0.6	4
T4	17TNAC1584	497772	9397696	25	0	3	3	5.2	34.0	5.9	2
T4	17TNAC1584	497772	9397696	22	3	4.5	1.5	9.4	26.1	16.3	4
Т4	17TNAC1584	497772	9397696	19	6	7.5	1.5	5.2	28.4	28.1	200
T4	17TNAC1585	497816	9397672	19	0	9	9	5.7	32.5	3.1	2
T4	17TNAC1585	497816	9397672	13	9	13.5	4.5	3.6	27.0	0.6	4
T4	17TNAC1586	498064	9397526	18	0	7.5	7.5	2.9	20.2	10.4	2
T4	17TNAC1589	497687	9397744	29	0	4.5	4.5	3.7	32.7	17.5	4
T4	17TNAC1590	497732	9397719	29	0	1.5	1.5	2.5	41.7	16.4	4
T4	17TNAC1590	497732	9397719	27	1.5	3	1.5	2.2	37.9	28.0	200
T4	17TNAC1591	498143	9396790	17	0	7.5	7.5	2.1	22.5	6.4	2
T4	17TNAC1592	497933	9396191	18	0	4.5	4.5	2.0	29.9	3.7	2

T4 T4 T4 T4 T4 T4 T4 T4 T4	17TNAC1593 17TNAC1594 17TNAC1594	497821 497275	9396034 9395125	17 21	0	6	6	3.6	20.0	6.3	2
T4 T4 T4 T4 T4	17TNAC1594	-	9395125	21	0						
T4 T4 T4		407075		_	0	1.5	1.5	1.8	17.1	2.8	1
T4 T4		497275	9395125	15	4.5	7.5	3	2.0	30.4	6.6	1
T4	17TNAC1595	497099	9395008	15	0	6	6	2.0	22.0	5.4	2
	17TNAC1595	497099	9395008	8	9	12	3	2.3	32.7	1.6	1
T4	17TNAC1596	496770	9394958	13	1.5	6	4.5	1.9	25.4	3.2	2
	17TNAC1596	496770	9394958	4	10.5	16.5	6	2.4	36.9	0.5	2
T4	17TNAC1596	496770	9394958	-2	16.5	21	4.5	5.1	19.7	13.2	1
T4	17TNAC1597	496726	9394991	15	0	4.5	4.5	3.6	26.3	4.1	2
T4	17TNAC1597	496726	9394991	9	7.5	9	1.5	2.1	45.5	0.3	2
T4	17TNAC1640	497781	9397459	18	0	9	9	3.5	27.9	5.2	4
T4	17TNAC1640	497781	9397459	12	10.5	12	1.5	2.0	25.9	0.2	4
T4	17TNAC1640	497781	9397459	9	13.5	15	1.5	2.7	19.3	1.5	4
T4	17TNAC1641	497737	9397487	22	0	6	6	3.3	28.4	12.8	4
T4	17TNAC1642	497691	9397510	27	0	3	3	2.9	28.5	11.5	4
T4	17TNAC1642	497691	9397510	23	4.5	6	1.5	2.3	22.0	17.9	200
T4	17TNAC1643	497647	9397536	27	1.5	6	4.5	2.3	37.4	10.2	4
T4C	16TNAC666	496552	9394847	18	0	1.5	1.5	2.0	30.9	3.2	6
T4C	16TNAC666	496552	9394847	11	7.5	9	1.5	2.1	43.9	1.2	6
T4C	16TNAC666	496552	9394847	5	13.5	15	1.5	1.8	35.3	13.4	6
T4C	17TNAC1620	496596	9394825	14	3	4.5	1.5	2.2	28.4	7.2	2
T4C	17TNAC1620	496596	9394825	9	6	12	6	2.3	39.7	1.6	2
T4C	17TNAC1620	496596	9394825	5	12	13.5	1.5	1.8	28.7	28.0	6
T4C	17TNAC1620	496596	9394825	2	15	18	3	1.8	25.8	9.0	6
T4C	17TNAC1621	496638	9394801	15	0	6	6	2.6	39.1	3.0	2
T4C	17TNAC1621	496638	9394801	11	6	7.5	1.5	2.0	38.4	12.4	6
T4C	17TNAC1621	496638	9394801	3	12	16.5	4.5	1.9	34.0	7.9	6
T4C	17TNAC1621	496638	9394801	-4	16.5	27	10.5	7.0	19.4	12.1	1
T4C	17TNAC1621	496638	9394801	- 12	28.5	30	1.5	2.7	18.0	33.8	3
T4C	17TNAC1621	496638	9394801	- 14	30	33	3	3.3	12.4	7.9	1
T4C	17TNAC1621	496638	9394801	- 18	33	37.5	4.5	3.1	11.6	10.8	8
T4C	17TNAC1621	496638	9394801	- 22	37.5	42	4.5	2.3	6.7	9.9	1
T4C	17TNAC1622	496681	9394777	13	0	9	9	3.3	37.2	1.4	2
T4C	17TNAC1622	496681	9394777	7	9	10.5	1.5	2.0	35.5	0.8	6
T4C	17TNAC1622	496681	9394777	3	12	16.5	4.5	2.1	37.6	6.9	6
T4C	17TNAC1622	496681	9394777	-5	18	25.5	7.5	8.4	19.2	7.2	1
T4C	17TNAC1622	496681	9394777	- 10	25.5	28.5	3	4.5	17.7	38.0	3
T4C	17TNAC1622	496681	9394777	- 14	28.5	33	4.5	4.2	18.8	20.8	1
140								4.0	11.2	6.6	

T4C	17TNAC1622	496681	9394777	- 20	36	39	3	5.8	5.5	13.3	1
T4C	17TNAC1623	496416	9394695	16	0	4.5	4.5	2.7	26.6	5.5	2
T4C	17TNAC1623	496416	9394695	10	6	10.5	4.5	2.3	39.1	0.9	2
T4C	17TNAC1623	496416	9394695	2	13.5	19.5	6	5.3	24.1	6.9	1
T4C	17TNAC1623	496416	9394695	-2	19.5	21	1.5	2.6	19.2	27.1	3
T4C	17TNAC1623	496416	9394695	-8	22.5	30	7.5	2.1	14.6	4.1	1
T4C	17TNAC1623	496416	9394695	- 18	30	42	12	2.9	11.0	7.0	8
T4C	17TNAC1624	496457	9394677	11	0	13.5	13.5	2.3	30.4	3.1	2
T4C	17TNAC1624	496457	9394677	1	13.5	21	7.5	5.0	24.9	2.8	1
T4C	17TNAC1624	496457	9394677	-4	21	22.5	1.5	2.8	17.8	35.7	3
T4C	17TNAC1624	496457	9394677	-7	22.5	27	4.5	2.1	9.9	4.6	1
T4C	17TNAC1624	496457	9394677	- 17	27	42	15	4.4	11.2	11.6	8
T4C	17TNAC1625	496490	9394646	13	0	10.5	10.5	2.3	35.1	4.3	2
T4C	17TNAC1625	496490	9394646	4	10.5	18	7.5	4.8	28.8	3.3	1
T4C	17TNAC1625	496490	9394646	-1	18	19.5	1.5	2.4	14.8	46.1	3
T4C	17TNAC1625	496490	9394646	-9	21	33	12	6.8	11.0	14.3	1
T4C	17TNAC1625	496490	9394646	- 20	33	42	9	4.1	9.7	16.6	8
T4C	17TNAC1626	496544	9394627	12	4.5	7.5	3	1.8	43.5	4.7	6
T4C	17TNAC1626	496544	9394627	5	12	13.5	1.5	3.8	35.3	1.1	6
T4C	17TNAC1626	496544	9394627	-5	13.5	31.5	18	7.1	19.1	8.2	1
T4C	17TNAC1626	496544	9394627	- 17	31.5	39	7.5	3.0	11.7	10.2	8
T4C	17TNAC1626	496544	9394627	- 23	40.5	42	1.5	4.8	9.9	9.8	8
T4C	17TNAC1627	496372	9394730	15	0	7.5	7.5	2.6	25.4	5.7	2
T4C	17TNAC1627	496372	9394730	-1	15	24	9	3.3	18.2	11.2	1
T4C	17TNAC1627	496372	9394730	-6	24	25.5	1.5	1.7	13.4	33.5	3
T4C	17TNAC1627	496372	9394730	- 12	27	33	6	9.6	10.4	18.0	1
T4C	17TNAC1627	496372	9394730	- 19	33	42	9	3.8	9.2	9.0	8
T4C	17TNAC1628	496374	9394507	17	0	1.5	1.5	1.9	16.3	5.9	6
T4C	17TNAC1628	496374	9394507	0	16.5	19.5	3	1.9	24.9	0.6	1
T4C	17TNAC1628	496374	9394507	-5	22.5	24	1.5	1.8	17.7	6.8	1
T4C	17TNAC1628	496374	9394507	-8	25.5	27	1.5	1.8	13.6	2.9	1
T4C	17TNAC1628	496374	9394507	- 17	28.5	42	13.5	2.6	13.0	8.1	1
T4C	17TNAC1629	496329	9394524	18	0	1.5	1.5	1.9	12.0	2.7	6
T4C	17TNAC1629	496329	9394524	15	3	4.5	1.5	1.8	25.1	6.0	6
T4C	17TNAC1629	496329	9394524	2	15	19.5	4.5	2.8	24.5	7.6	1
T4C	17TNAC1629	496329	9394524	-1	19.5	21	1.5	2.0	17.3	33.9	3
T4C	17TNAC1629	496329	9394524	- 14	24	42	18	2.9	13.0	7.6	1

T4C	17TNAC1630	496288	9394550	16	3	4.5	1.5	2.0	24.3	3.4	6
T4C	17TNAC1630	496288	9394550	1	15	22.5	7.5	2.7	22.3	4.8	1
T4C	17TNAC1630	496288	9394550	-7	25.5	28.5	3	2.1	12.3	9.3	1
T4C	17TNAC1630	496288	9394550	- 12	31.5	33	1.5	2.3	10.4	7.6	1
T4C	17TNAC1630	496288	9394550	- 18	34.5	42	7.5	3.6	11.4	9.7	1
T4C	17TNAC1631	496242	9394573	22	0	1.5	1.5	2.3	19.2	16.2	2
T4C	17TNAC1631	496242	9394573	16	6	7.5	1.5	1.8	25.7	30.4	6
T4C	17TNAC1631	496242	9394573	1	18	25.5	7.5	2.2	19.8	6.1	1
T4C	17TNAC1631	496242	9394573	-5	27	28.5	1.5	2.7	15.3	13.9	1
T4C	17TNAC1631	496242	9394573	- 10	31.5	34.5	3	2.8	16.0	6.1	1
T4C	17TNAC1631	496242	9394573	- 16	36	42	6	3.2	7.5	10.7	1
T4C	17TNAC1632	496218	9394608	26	0	1.5	1.5	3.6	21.3	16.3	2
T4C	17TNAC1632	496218	9394608	20	4.5	9	4.5	3.7	32.8	4.8	2
T4C	17TNAC1632	496218	9394608	2	15	33	18	4.6	21.2	5.0	1
T4C	17TNAC1632	496218	9394608	-8	33	36	3	5.4	12.8	4.2	5
T4C	17TNAC1632	496218	9394608	- 13	37.5	40.5	3	3.1	6.6	17.0	1
T4C	17TNAC1633	496125	9394408	18	0	13.5	13.5	3.9	20.3	19.4	2
T4C	17TNAC1633	496125	9394408	-2	18	36	18	3.1	20.0	14.7	1
T4C	17TNAC1633	496125	9394408	- 13	36	40.5	4.5	2.3	25.8	29.4	5
T4C	17TNAC1634	496167	9394393	17	0	9	9	2.4	21.6	15.3	2
T4C	17TNAC1634	496167	9394393	9	12	13.5	1.5	2.8	26.1	16.7	3
T4C	17TNAC1634	496167	9394393	1	16.5	25.5	9	2.7	24.6	4.6	1
T4C	17TNAC1634	496167	9394393	-5	25.5	27	1.5	1.8	11.6	54.1	3
T4C	17TNAC1634	496167	9394393	-7	27	30	3	3.0	18.3	12.6	1
T4C	17TNAC1634	496167	9394393	- 15	31.5	42	10.5	4.3	14.0	9.9	1
T4C	17TNAC1635	496205	9394370	16	0	7.5	7.5	4.0	22.8	11.9	2
T4C	17TNAC1635	496205	9394370	1	15	22.5	7.5	3.6	24.2	6.3	1
T4C	17TNAC1635	496205	9394370	-4	22.5	25.5	3	2.5	16.3	42.7	3
T4C	17TNAC1635	496205	9394370	- 14	25.5	42	16.5	3.2	13.5	7.4	1
T4C	17TNAC1636	496249	9394345	15	0	7.5	7.5	3.6	25.0	19.8	2
T4C	17TNAC1637	496047	9394231	22	0	7.5	7.5	4.5	27.0	6.1	2
T4C	17TNAC1637	496047	9394231	17	7.5	9	1.5	2.0	12.5	44.6	3
T4C	17TNAC1637	496047	9394231	14	10.5	12	1.5	1.9	15.6	44.8	3
T4C	17TNAC1637	496047	9394231	8	16.5	18	1.5	3.7	33.8	8.3	1
T4C	17TNAC1638	496086	9394211	17	0	7.5	7.5	2.9	23.4	11.9	2
T4C	17TNAC1638	496086	9394211	11	7.5	12	4.5	2.2	21.0	39.1	3
T4C	17TNAC1639	496325	9394736	17	0	9	9	3.3	27.9	22.7	2
-									r		

				-					-		
T4C	17TNAC1639	496325	9394736	- 16	34.5	40.5	6	3.8	9.2	8.7	8
Т3	15TNAC055	495584	9394458	40	0	3	3	3.0	41.9	1.0	2
Т3	15TNAC056	495775	9394403	40	0	1.5	1.5	5.4	30.3	18.5	2
Т3	15TNAC057	495944	9394363	31	0	3	3	1.8	34.9	1.5	2
Т3	16TNAC650	494947	9393861	58	0	6	6	6.0	10.0	2.5	2
Т3	16TNAC651	495110	9393754	45	0	7.5	7.5	6.8	11.1	4.1	2
Т3	16TNAC652	495300	9393663	37	0	3	3	2.5	7.6	4.9	2
Т3	17TNAC1449	494763	9393347	51	1.5	3	1.5	4.5	35.5	8.0	200
Т3	17TNAC1450	494816	9393331	46	0	7.5	7.5	6.1	41.3	9.6	2
Т3	17TNAC1451	494857	9393320	43	0	9	9	6.4	41.0	6.4	2
Т3	17TNAC1452	494893	9393310	41	0	7.5	7.5	6.0	39.2	2.1	2
Т3	17TNAC1453	494938	9393295	39	0	4.5	4.5	5.1	33.1	1.5	2
Т3	17TNAC1453	494938	9393295	36	4.5	6	1.5	2.4	26.5	34.2	200
Т3	17TNAC1454	494980	9393281	38	0	4.5	4.5	4.3	33.7	6.5	2
Т3	17TNAC1455	495029	9393266	36	0	3	3	4.6	28.7	7.5	2
Т3	17TNAC1455	495029	9393266	30	4.5	9	4.5	3.6	11.8	41.6	200
Т3	17TNAC1456	495068	9393256	33	0	1.5	1.5	4.2	19.8	19.7	2
Т3	17TNAC1457	495173	9393539	38	0	3	3	5.0	33.3	1.4	2
Т3	17TNAC1457	495173	9393539	36	3	4.5	1.5	1.9	26.2	31.7	200
Т3	17TNAC1458	495135	9393551	40	0	3	3	3.5	30.0	1.4	2
Т3	17TNAC1459	495086	9393564	42	0	6	6	4.0	37.8	2.3	2
Т3	17TNAC1460	495042	9393577	46	0	4.5	4.5	4.6	40.4	2.7	2
Т3	17TNAC1461	495000	9393589	51	0	3	3	5.1	37.6	2.9	2
Т3	17TNAC1462	494956	9393589	53	0	1.5	1.5	5.7	32.8	2.9	2
Т3	17TNAC1462	494956	9393589	52	1.5	3	1.5	2.0	37.1	23.1	200
Т3	17TNAC1463	494918	9393633	54	0	6	6	5.3	42.3	5.7	2
Т3	17TNAC1464	494868	9393666	55	0	9	9	7.1	42.7	5.6	2
Т3	17TNAC1465	494836	9393679	60	0	6	6	6.3	35.4	4.8	2
Т3	17TNAC1466	494900	9393880	62	0	6	6	6.1	35.0	2.5	2
Т3	17TNAC1466	494900	9393880	58	6	7.5	1.5	2.5	29.7	42.6	200
Т3	17TNAC1467	494980	9393840	56	0	7.5	7.5	7.7	41.2	2.4	2
Т3	17TNAC1467	494980	9393840	52	7.5	9	1.5	2.4	27.7	45.1	200
Т3	17TNAC1468	495032	9393824	53	0	6	6	5.3	47.0	3.4	2
Т3	17TNAC1469	495080	9393774	50	0	1.5	1.5	4.7	28.9	2.4	2
Т3	17TNAC1470	495160	9393699	42	0	6	6	5.0	33.5	2.7	2
Т3	17TNAC1471	495203	9393696	40	0	4.5	4.5	4.0	27.7	7.8	2
Т3	17TNAC1472	495251	9393668	40	0	1.5	1.5	2.8	24.5	1.9	2
Т3	17TNAC1473	495446	9393775	38	0	1.5	1.5	2.4	29.8	1.2	2
Т3	17TNAC1473	495446	9393775	36	1.5	3	1.5	1.9	34.6	6.1	1
Т3	17TNAC1474	495416	9393813	38	0	1.5	1.5	2.1	33.9	1.3	2
Т3	17TNAC1474	495416	9393813	37	1.5	3	1.5	1.8	38.0	1.6	1
Т3	17TNAC1475	495353	9393805	39	0	3	3	2.7	33.3	2.2	2

Т3	17TNAC1476	495305	9393819	40	0	3	3	4.3	33.9	1.9	2
Т3	17TNAC1477	495257	9393832	41	0	3	3	4.7	35.0	2.4	2
Т3	17TNAC1478	495206	9393848	43	0	4.5	4.5	6.3	38.2	1.9	2
Т3	17TNAC1478	495206	9393848	40	4.5	6	1.5	2.3	31.9	32.5	200
Т3	17TNAC1479	495152	9393861	45	0	6	6	6.7	42.1	3.5	2
Т3	17TNAC1480	495148	9393961	52	0	4.5	4.5	2.7	37.2	8.3	2
Т3	17TNAC1481	495103	9393987	55	0	3	3	3.6	40.9	2.2	2
Т3	17TNAC1481	495103	9393987	53	3	4.5	1.5	1.7	32.9	31.2	1
Т3	17TNAC1482	495065	9394005	57	0	3	3	4.2	40.3	1.9	2
Т3	17TNAC1482	495065	9394005	54	3	4.5	1.5	1.9	31.8	31.6	1
Т3	17TNAC1483	495029	9394041	60	0	3	3	3.7	35.0	13.9	2
Т3	17TNAC1483	495029	9394041	58	3	4.5	1.5	2.6	28.2	43.0	200
Т3	17TNAC1484	494973	9394068	64	0	3	3	3.1	37.6	2.5	2
Т3	17TNAC1485	495124	9394201	59	0	4.5	4.5	4.4	35.9	12.9	2
Т3	17TNAC1485	495124	9394201	52	7.5	12	4.5	5.1	9.3	28.9	1
Т3	17TNAC1486	495164	9394184	56	0	6	6	4.6	26.6	14.0	2
Т3	17TNAC1486	495164	9394184	49	6	13.5	7.5	4.5	7.6	29.0	1
Т3	17TNAC1486	495164	9394184	44	13.5	15	1.5	2.8	19.4	40.5	200
Т3	17TNAC1487	495209	9394155	53	0	3	3	3.9	33.4	4.5	2
Т3	17TNAC1488	495254	9394144	45	0	12	12	7.9	31.7	8.3	2
Т3	17TNAC1488	495254	9394144	37	13.5	15	1.5	3.0	29.1	25.8	2
Т3	17TNAC1489	495298	9394134	45	0	7.5	7.5	4.5	33.1	3.2	2
Т3	17TNAC1490	495353	9394118	43	0	4.5	4.5	3.5	27.1	2.6	2
Т3	17TNAC1491	495402	9394104	42	0	3	3	5.0	29.4	2.4	2
Т3	17TNAC1492	495450	9394089	41	0	3	3	4.9	33.6	6.8	2
Т3	17TNAC1493	495500	9394074	40	0	3	3	6.0	24.8	29.1	2
Т3	17TNAC1494	495549	9394062	40	0	1.5	1.5	5.5	34.8	1.7	2
Т3	17TNAC1496	495649	9394034	32	0	6	6	2.5	35.0	2.2	2
Т3	17TNAC1598	495873	9394375	34	0	3	3	2.9	24.9	18.3	2
Т3	17TNAC1599	495685	9394429	39	0	3	3	3.5	30.4	18.1	2
Т3	17TNAC1600	495487	9394490	45	0	4.5	4.5	2.4	33.0	2.2	2
Т3	17TNAC1601	495882	9394120	29	0	1.5	1.5	3.1	21.5	19.6	2
Т3	17TNAC1602	495834	9394133	29	0	3	3	3.2	23.4	5.8	2
Т3	17TNAC1603	495783	9394149	30	0	4.5	4.5	2.3	24.5	2.0	2
Т3	17TNAC1604	495730	9394162	32	0	6	6	2.3	28.6	2.5	2
Т3	17TNAC1606	495634	9394191	38	0	3	3	5.1	27.0	12.8	2
Т3	17TNAC1607	495583	9394207	39	0	3	3	12.9	25.6	5.1	2
Т3	17TNAC1608	495534	9394221	38	0	4.5	4.5	5.2	30.5	11.8	2
Т3	17TNAC1609	495497	9394240	40	0	3	3	5.9	35.0	1.6	2
Т3	17TNAC1610	495428	9394253	42	0	3	3	3.9	29.9	1.3	2
Т3	17TNAC1610	495428	9394253	39	3	4.5	1.5	1.8	22.9	35.3	200
Т3	17TNAC1611	495377	9394269	44	0	4.5	4.5	2.6	31.7	1.6	2

Т3	17TNAC1612	495327	9394283	45	0	9	9	4.0	38.2	2.5	2
Т3	17TNAC1613	495281	9394295	51	0	4.5	4.5	2.5	34.0	6.8	2
Т3	17TNAC1613	495281	9394295	48	4.5	6	1.5	1.8	22.7	25.0	1
Т3	17TNAC1614	494719	9393362	56	0	1.5	1.5	5.4	32.5	5.0	2
Т3	17TNAC1615	494669	9393382	59	0	3	3	5.4	36.2	6.7	2
Т3	17TNAC1616	494754	9393732	62	0	10.5	10.5	3.2	41.3	4.3	2
Т3	17TNAC1617	494790	9393723	59	0	13.5	13.5	4.9	42.0	5.8	2
Т3	17TNAC1618	494826	9393927	63	0	10.5	10.5	2.3	36.8	2.6	2
Т3	17TNAC1619	494854	9393870	65	0	4.5	4.5	4.4	33.3	2.4	2
T2	15TJAC069	492808	9388038	33	0	1.5	1.5	3.3	44.6	5.8	2
T2	15TJAC070	492635	9388153	38	1.5	4.5	3	1.8	32.7	1.2	2
T2	15TJAC070	492635	9388153	35	6	7.5	1.5	2.0	50.7	0.8	2
T2	15TJAC070	492635	9388153	33	7.5	9	1.5	2.7	41.8	5.4	1
T2	15TJAC071	492474	9388232	45	0	7.5	7.5	4.1	44.9	3.0	2
T2	15TJAC071	492474	9388232	38	10.5	12	1.5	2.7	31.6	7.6	1
T2	15TJAC072	492251	9388307	53	0	3	3	2.1	57.9	1.8	2
T2	15TJAC072	492251	9388307	51	3	4.5	1.5	2.4	43.8	29.5	1
T2	15TJAC072	492251	9388307	44	9	12	3	3.2	34.2	26.2	11
T2	15TJAC072	492251	9388307	41	12	15	3	4.8	9.3	10.8	1
T2	15TJAC073	492121	9388441	51	0	1.5	1.5	2.4	47.2	0.9	2
T2	16TJAC564	491962	9387063	32	0	4.5	4.5	4.1	26.4	6.7	2
T2	16TJAC564	491962	9387063	29	4.5	6	1.5	3.3	42.4	5.2	1
T2	16TJAC565	492129	9386954	29	0	1.5	1.5	1.8	30.3	2.6	2
T2	16TJAC565	492129	9386954	17	12	13.5	1.5	2.3	31.1	5.8	1
T2	16TJAC566	492309	9386861	22	3	9	6	5.7	30.1	6.7	5
T2	16TJAC567	492031	9387471	42	0	4.5	4.5	2.6	34.5	3.1	2
T2	16TJAC568	492201	9387374	33	0	6	6	2.4	25.1	3.7	2
T2	16TJAC569	492375	9387259	29	0	1.5	1.5	1.8	26.3	4.0	2
T2	16TJAC577	492641	9387576	29	0	1.5	1.5	2.4	24.1	3.8	2
T2	16TJAC578	492480	9387660	32	0	4.5	4.5	1.8	33.1	7.3	2
T2	16TJAC578	492480	9387660	22	10.5	15	4.5	2.4	19.7	5.5	1
T2	16TJAC579	492315	9387762	45	0	3	3	4.4	32.6	12.8	2
Т2	16TJAC580	492142	9387861	51	0	7.5	7.5	2.5	36.7	3.8	2
Т2	16TJAC581	491977	9387970	51	6	9	3	2.7	43.2	7.1	2
Т2	16TJAC585	492359	9388725	46	0	6	6	2.1	25.4	16.8	1
Т2	16TJAC585	492359	9388725	42	6	7.5	1.5	2.2	10.4	36.5	11
Т2	16TJAC586	492522	9388628	42	0	6	6	2.1	30.5	6.8	2
Т2	16TJAC587	492728	9388544	38	0	9	9	6.8	25.4	7.3	2
Т2	16TJAC589	493037	9388355	30	0	1.5	1.5	2.0	31.6	11.9	2
T2	17TJAC1321	492372	9386596	24	1.5	3	1.5	1.8	39.5	9.5	1
Т2	17TJAC1321	492372	9386596	21	4.5	6	1.5	3.3	23.6	4.4	1
T2	17TJAC1322	492326	9386623	22	1.5	7.5	6	2.8	31.6	22.7	1

-											
Т2	17TJAC1323	492281	9386648	24	3	4.5	1.5	1.8	46.9	8.3	2
Т2	17TJAC1323	492281	9386648	21	4.5	7.5	3	2.7	28.1	12.1	1
T2	17TJAC1325	492201	9386699	22	4.5	7.5	3	2.2	29.3	8.0	1
T2	17TJAC1326	492152	9386721	20	7.5	9	1.5	1.8	7.6	49.7	1
T2	17TJAC1327	492114	9386749	22	6	9	3	2.7	35.1	15.5	1
T2	17TJAC1330	491989	9386829	24	7.5	9	1.5	1.8	34.9	9.4	2
T2	17TJAC1331	491934	9386848	27	4.5	6	1.5	3.8	7.0	1.4	2
T2	17TJAC1331	491934	9386848	20	10.5	13.5	3	2.1	29.8	7.4	2
T2	17TJAC1331	491934	9386848	18	13.5	15	1.5	1.7	30.4	14.0	11
T2	17TJAC1332	491897	9386872	24	7.5	9	1.5	2.1	43.8	3.6	2
T2	17TJAC1334	491816	9386927	28	3	4.5	1.5	1.8	35.1	3.3	2
T2	17TJAC1334	491816	9386927	24	7.5	9	1.5	4.1	27.7	25.2	11
T2	17TJAC1334	491816	9386927	20	9	15	6	3.9	22.1	13.8	1
T2	17TJAC1339	492011	9387033	27	0	9	9	2.5	30.4	3.3	2
T2	17TJAC1340	492050	9387012	28	3	6	3	2.0	36.8	6.7	2
T2	17TJAC1340	492050	9387012	25	6	7.5	1.5	1.8	39.5	8.1	1
Т2	17TJAC1341	492091	9386988	21	9	10.5	1.5	2.1	44.9	2.9	1
Т2	17TJAC1342	492187	9386929	24	4.5	6	1.5	1.9	36.5	6.2	1
T2	17TJAC1344	492272	9386885	24	4.5	6	1.5	1.7	36.6	10.0	1
T2	17TJAC1345	492349	9386837	27	0	1.5	1.5	2.1	38.4	5.0	1
T2	17TJAC1345	492349	9386837	21	3	9	6	4.4	35.3	3.4	5
T2	17TJAC1345	492349	9386837	18	9	10.5	1.5	3.2	29.2	24.1	11
T2	17TJAC1346	492398	9386816	25	0	3	3	2.6	48.8	6.4	1
T2	17TJAC1346	492398	9386816	20	3	9	6	11.0	31.4	19.0	5
Т2	17TJAC1347	492437	9386790	25	0	3	3	2.4	42.5	8.2	1
Т2	17TJAC1347	492437	9386790	20	3	9	6	4.6	35.4	9.1	5
Т2	17TJAC1350	492280	9387110	30	0	1.5	1.5	1.9	28.4	3.1	2
Т2	17TJAC1350	492280	9387110	27	3	4.5	1.5	1.9	29.3	4.8	2
Т2	17TJAC1352	492202	9387149	31	0	4.5	4.5	1.9	23.8	3.4	2
Т2	17TJAC1352	492202	9387149	24	9	10.5	1.5	1.9	41.9	4.5	2
Т2	17TJAC1353	492151	9387171	31	0	6	6	2.0	25.5	4.8	2
T2	17TJAC1354	492109	9387199	31	0	6	6	2.2	30.1	7.2	2
T2	17TJAC1355	492025	9387252	35	0	7.5	7.5	3.7	30.2	4.6	2
Т2	17TJAC1356	491982	9387276	35	4.5	6	1.5	1.8	37.3	7.8	2
Т2	17TJAC1360	492064	9387242	35	0	4.5	4.5	2.2	31.5	3.4	2
Т2	17TJAC1361	491958	9387464	45	0	4.5	4.5	2.0	50.2	6.0	2
Т2	17TJAC1362	491996	9387448	42	0	4.5	4.5	2.1	47.8	4.5	2
Т2	17TJAC1363	492090	9387438	37	0	10.5	10.5	4.1	34.9	4.1	2
	1713/101505					10	4.5	2.2	13.7	20.4	1
T2	17TJAC1363	492090	9387438	30	10.5	15	4.5	2.2	15.7	20.4	1
		492090 492124	9387438 9387420	30 36	10.5 0	10.5	4.5 10.5	2.2	28.3	20.4 8.5	2
T2	17TJAC1363										

T2	17TJAC1365	492172	9387394	26	9	15	6	2.7	4.5	38.3	1
T2	17TJAC1366	492266	9387341	30	0	4.5	4.5	2.0	24.1	3.8	2
T2	17TJAC1367	492305	9387317	30	0	1.5	1.5	1.9	26.3	2.8	2
T2	17TJAC1367	492305	9387317	26	4.5	6	1.5	1.7	35.3	5.9	2
Т2	17TJAC1368	492372	9387509	28	0	1.5	1.5	1.9	21.8	4.5	2
Т2	17TJAC1368	492372	9387509	17	9	15	6	2.8	29.9	18.6	1
Т2	17TJAC1369	492334	9387535	32	0	6	6	2.1	26.0	7.3	2
Т2	17TJAC1369	492334	9387535	24	7.5	13.5	6	3.3	12.8	36.3	1
Т2	17TJAC1370	492285	9387544	37	0	6	6	2.9	32.1	6.8	2
Т2	17TJAC1371	492243	9387582	40	0	7.5	7.5	3.6	36.4	13.0	2
Т2	17TJAC1372	492196	9387622	45	0	3	3	4.3	36.6	10.3	2
Т2	17TJAC1372	492196	9387622	40	6	7.5	1.5	1.8	29.0	34.0	11
T2	17TJAC1372	492196	9387622	35	7.5	15	7.5	3.8	11.0	17.2	1
Т2	17TJAC1373	492160	9387642	47	0	3	3	4.8	32.3	11.2	2
T2	17TJAC1374	492120	9387662	49	0	3	3	4.9	39.3	3.3	2
Т2	17TJAC1375	492071	9387689	50	0	4.5	4.5	2.5	48.7	3.6	2
T2	17TJAC1376	492041	9387712	50	0	7.5	7.5	2.2	42.3	4.0	2
Т2	17TJAC1377	491997	9387736	55	0	1.5	1.5	1.8	35.0	1.5	2
T2	17TJAC1377	491997	9387736	52	3	4.5	1.5	1.7	42.4	2.9	2
Т2	17TJAC1377	491997	9387736	48	6	9	3	2.4	41.4	11.9	2
T2	17TJAC1378	492045	9387915	54	0	9	9	2.1	42.0	5.0	2
T2	17TJAC1379	492085	9387891	49	0	15	15	2.0	38.4	4.2	2
T2	17TJAC1380	492171	9387849	51	0	6	6	3.2	47.2	3.5	2
T2	17TJAC1381	492208	9387831	51	0	3	3	5.5	44.5	3.7	2
T2	17TJAC1382	492248	9387803	47	0	4.5	4.5	5.8	32.2	15.8	2
T2	17TJAC1382	492248	9387803	43	6	7.5	1.5	2.6	25.5	40.5	11
T2	17TJAC1382	492248	9387803	40	9	10.5	1.5	1.9	17.4	53.8	11
T2	17TJAC1382	492248	9387803	37	10.5	15	4.5	4.5	7.6	35.5	1
T2	17TJAC1383	492350	9387755	43	0	4.5	4.5	3.4	30.2	17.9	2
T2	17TJAC1383	492350	9387755	35	4.5	15	10.5	3.5	14.0	23.0	1
T2	17TJAC1384	492382	9387721	39	0	6	6	3.1	39.2	9.3	2
Т2	17TJAC1384	492382	9387721	30	9	15	6	3.7	16.0	8.4	1
Т2	17TJAC1385	492426	9387698	36	0	4.5	4.5	2.2	28.4	7.5	2
T2	17TJAC1385	492426	9387698	24	13.5	15	1.5	2.0	29.4	1.2	1
Т2	17TJAC1386	492631	9387855	28	7.5	10.5	3	2.6	35.0	6.5	1
T2	17TJAC1387	492593	9387882	30	6	10.5	4.5	2.1	34.3	1.6	1
T2	17TJAC1388	492546	9387898	35	3	6	3	1.8	27.0	5.2	2
Т2	17TJAC1389	492498	9387933	39	0	6	6	3.4	23.3	5.0	2
Т2	17TJAC1389	492498	9387933	36	6	7.5	1.5	2.0	19.1	28.5	1
Т2	17TJAC1390	492455	9387963	41	0	9	9	5.7	36.8	4.8	2
Т2	17TJAC1390	492455	9387963	32	12	15	3	2.6	31.1	3.1	1
T2	17TJAC1391	492418	9387987	46	0	4.5	4.5	4.9	39.4	3.4	2

T2	17TJAC1391	492418	9387987	38	4.5	15	10.5	4.7	13.2	19.0	1
T2	17TJAC1392	492365	9387978	48	0	4.5	4.5	4.7	32.1	13.4	2
T2	17TJAC1393	492322	9388032	51	0	3	3	5.1	40.8	2.6	2
T2	17TJAC1394	492290	9388052	51	0	4.5	4.5	3.8	44.8	4.3	2
T2	17TJAC1395	492251	9388067	51	0	7.5	7.5	2.3	50.8	5.5	2
T2	17TJAC1396	492203	9388100	52	0	7.5	7.5	2.0	45.5	7.0	2
T2	17TJAC1397	492151	9388130	51	0	9	9	2.0	35.3	2.7	2
Т2	17TJAC1397	492151	9388130	44	9	15	6	2.3	39.5	16.4	1
T2	17TJAC1398	492247	9388355	53	0	1.5	1.5	2.9	47.8	4.7	2
T2	17TJAC1398	492247	9388355	52	1.5	3	1.5	1.7	45.8	14.2	1
Т2	17TJAC1399	492339	9388306	49	0	3	3	2.6	45.2	7.1	1
T2	17TJAC1399	492339	9388306	39	7.5	15	7.5	4.7	9.8	32.0	1
T2	17TJAC1400	492378	9388276	48	0	3	3	2.3	48.6	3.7	2
Т2	17TJAC1401	492419	9388254	48	0	3	3	2.5	43.7	3.2	2
T2	17TJAC1401	492419	9388254	41	3	13.5	10.5	4.0	18.5	25.4	1
Т2	17TJAC1402	492514	9388204	41	0	9	9	3.3	30.7	7.3	2
T2	17TJAC1402	492514	9388204	34	10.5	12	1.5	1.8	26.5	0.7	1
Т2	17TJAC1403	492550	9388189	37	0	12	12	2.7	24.6	9.6	2
T2	17TJAC1403	492550	9388189	29	12	15	3	3.5	32.0	14.7	1
Т2	17TJAC1404	492604	9388161	40	0	3	3	1.8	28.3	3.9	2
T2	17TJAC1404	492604	9388161	34	7.5	9	1.5	2.0	46.9	2.4	1
T2	17TJAC1404	492604	9388161	32	9	10.5	1.5	2.1	42.4	8.2	11
T2	17TJAC1405	492669	9388113	39	0	1.5	1.5	1.9	26.5	2.3	2
T2	17TJAC1405	492669	9388113	32	6	9	3	2.3	36.9	10.1	1
T2	17TJAC1406	492720	9388086	35	0	4.5	4.5	1.9	31.4	3.2	2
T2	17TJAC1406	492720	9388086	32	4.5	6	1.5	1.7	37.9	4.1	1
T2	17TJAC1407	492763	9388058	33	0	6	6	3.3	34.8	8.6	2
T2	17TJAC1407	492763	9388058	29	6	7.5	1.5	1.9	25.2	2.8	1
T2	17TJAC1408	492780	9388280	34	0	1.5	1.5	3.0	41.3	1.6	2
T2	17TJAC1408	492780	9388280	32	1.5	4.5	3	2.3	47.0	4.8	1
T2	17TJAC1409	492748	9388308	33	0	3	3	2.2	41.7	5.0	2
Т2	17TJAC1410	492705	9388359	34	0	6	6	2.6	39.3	3.3	2
Т2	17TJAC1410	492705	9388359	27	9	10.5	1.5	1.9	34.4	0.3	1
T2	17TJAC1411	492654	9388346	36	0	4.5	4.5	4.9	33.8	3.1	2
Т2	17TJAC1411	492654	9388346	33	4.5	6	1.5	4.6	39.4	8.8	1
T2	17TJAC1412	492618	9388368	37	0	3	3	2.2	26.4	7.6	2
T2	17TJAC1413	492573	9388394	39	0	3	3	2.2	25.5	5.8	2
Т2	17TJAC1414	492526	9388428	39	0	6	6	3.6	31.3	5.0	2
Т2	17TJAC1414	492526	9388428	35	6	7.5	1.5	2.9	45.6	10.0	1
T2	17TJAC1415	492481	9388446	40	0	6	6	2.9	34.1	8.8	2
		1	1		1				25.5		
T2	17TJAC1416	492430	9388479	42	0	1.5	1.5	1.8	35.5	5.3	2

T2	17TJAC1422	492411	9388699	49	0	1.5	1.5	3.3	37.3	7.0	1
T2	17TJAC1422	492411	9388699	45	3	6	3	2.2	14.9	36.0	1
T2	17TJAC1426	492637	9388573	41	0	4.5	4.5	2.1	25.4	4.4	2
T2	17TJAC1426	492637	9388573	37	6	7.5	1.5	1.9	34.4	19.6	2
T2	17TJAC1427	492668	9388540	39	3	6	3	2.6	29.4	4.4	2
T2	17TJAC1428	492756	9388500	38	0	6	6	3.5	36.1	3.5	2
T2	17TJAC1429	492809	9388469	37	0	6	6	2.4	36.0	3.6	2
Т2	17TJAC1430	492837	9388450	37	0	4.5	4.5	2.3	29.5	3.8	2
T2	17TJAC1430	492837	9388450	31	7.5	9	1.5	2.9	37.9	7.2	2
T2	17TJAC1435	492715	9388760	42	0	4.5	4.5	2.4	34.6	9.2	2
T2	17TJAC1436	492756	9388731	38	0	6	6	9.3	32.3	7.1	2
Т2	17TJAC1436	492756	9388731	35	6	7.5	1.5	2.4	52.2	18.7	1
T2	17TJAC1437	492798	9388705	35	0	6	6	5.6	30.2	2.6	2
Т2	17TJAC1437	492798	9388705	31	6	9	3	3.8	30.2	5.2	1
T2	17TJAC1437	492798	9388705	27	10.5	12	1.5	1.9	57.3	2.7	1
Т2	17TJAC1438	492843	9388681	36	0	4.5	4.5	2.0	30.1	5.3	2
Т2	17TJAC1438	492843	9388681	33	4.5	6	1.5	1.9	44.0	5.2	1
Т2	17TJAC1439	492888	9388660	36	0	3	3	1.8	43.0	4.5	2
T2	17TJAC1441	493005	9388830	35	0	3	3	2.0	44.3	6.8	2
Т2	17TJAC1442	492958	9388855	36	0	3	3	3.0	40.2	3.0	2
T2	17TJAC1443	492919	9388864	34	0	4.5	4.5	3.1	39.6	7.1	2
Tajiri	15TJAC077	489892	9383661	37	0	1.5	1.5	1.6	41.3	0.9	1
Tajiri	15TJAC077	489892	9383661	21	15	18	3	2.2	36.6	8.3	5
Tajiri	15TJAC078	489971	9383609	32	0	9	9	4.9	36.1	0.6	2
Tajiri	15TJAC078	489971	9383609	19	16.5	18	1.5	1.8	46.8	3.4	5
Tajiri	15TJAC079	490052	9383559	31	0	7.5	7.5	5.2	32.4	2.9	2
Tajiri	15TJAC080	490137	9383515	28	0	3	3	2.8	21.5	0.5	2
Tajiri	15TJAC080	490137	9383515	24	3	7.5	4.5	2.1	43.0	2.3	1
Tajiri	15TJAC081	490225	9383464	24	0	7.5	7.5	3.1	37.7	1.7	2
Tajiri	15TJAC081	490225	9383464	19	7.5	10.5	3	2.6	52.7	0.8	1
Tajiri	15TJAC081	490225	9383464	17	10.5	12	1.5	1.5	80.2	0.9	5
Tajiri	15TJAC082	490398	9383368	24	0	4.5	4.5	12.8	33.2	1.0	2
Tajiri	15TJAC082	490398	9383368	20	4.5	7.5	3	3.2	40.6	3.9	1
Tajiri	15TJAC082	490398	9383368	17	9	10.5	1.5	1.7	55.8	1.5	1
Tajiri	15TJAC083	490350	9383392	23	0	10.5	10.5	5.0	33.4	2.1	2
Tajiri	15TJAC083	490350	9383392	17	10.5	12	1.5	4.1	46.6	0.9	1
Tajiri	15TJAC084	490510	9383761	26	0	4.5	4.5	2.2	36.6	1.5	1
Tajiri	15TJAC084	490510	9383761	23	4.5	6	1.5	1.9	54.0	3.3	5
Tajiri	15TJAC085	490432	9383802	26	0	1.5	1.5	2.2	23.3	0.7	1
Tajiri	15TJAC085	490432	9383802	23	1.5	6	4.5	2.7	36.3	3.6	5
						· · · · · · · · · · · · · · · · · · ·					
Tajiri	15TJAC086	490340	9383846	27	0	6	6	2.3	40.0	1.7	2

									-		
Tajiri	15TJAC086	490340	9383846	21	7.5	10.5	3	2.1	40.6	8.9	5
Tajiri	15TJAC087	490251	9383894	29	0	9	9	5.0	27.4	2.5	2
Tajiri	15TJAC087	490251	9383894	23	9	13.5	4.5	1.7	46.6	2.4	1
Tajiri	15TJAC088	490294	9383875	28	0	7.5	7.5	4.0	27.4	2.1	2
Tajiri	15TJAC088	490294	9383875	24	7.5	9	1.5	3.0	46.0	1.6	1
Tajiri	15TJAC088	490294	9383875	21	9	12	3	2.5	41.3	6.2	5
Tajiri	15TJAC089	490207	9383925	31	0	10.5	10.5	8.3	25.9	4.3	2
Tajiri	15TJAC089	490207	9383925	25	10.5	12	1.5	2.0	44.2	1.3	1
Tajiri	15TJAC089	490207	9383925	17	18	19.5	1.5	1.7	37.7	2.6	5
Tajiri	15TJAC090	490167	9383953	33	0	9	9	6.5	27.7	1.5	2
Tajiri	15TJAC090	490167	9383953	28	9	10.5	1.5	1.7	47.9	1.2	1
Tajiri	15TJAC091	490127	9383970	34	0	9	9	6.2	31.4	1.1	2
Tajiri	15TJAC091	490127	9383970	29	9	10.5	1.5	1.6	43.9	0.9	1
Tajiri	15TJAC091	490127	9383970	21	16.5	19.5	3	2.0	38.7	3.3	5
Tajiri	15TJAC092	490081	9383989	33	0	6	6	7.2	35.6	0.9	2
Tajiri	15TJAC092	490081	9383989	29	6	9	3	2.1	46.0	0.7	1
Tajiri	15TJAC092	490081	9383989	19	15	19.5	4.5	2.1	35.3	3.6	5
Tajiri	15TJAC093	490037	9384019	32	0	6	6	1.9	35.4	1.9	1
Tajiri	15TJAC093	490037	9384019	18	16.5	18	1.5	2.4	33.2	5.0	5
Tajiri	15TJAC095	490196	9384383	31	0	6	6	1.6	34.4	2.6	1
Tajiri	15TJAC095	490196	9384383	20	13.5	15	1.5	1.7	44.4	3.9	5
Tajiri	15TJAC096	490229	9384363	30	0	7.5	7.5	2.1	42.0	1.1	1
Tajiri	15TJAC096	490229	9384363	20	13.5	15	1.5	1.8	41.8	1.8	5
Tajiri	15TJAC097	490272	9384340	31	0	6	6	3.8	37.3	1.4	2
Tajiri	15TJAC097	490272	9384340	27	6	7.5	1.5	2.1	45.3	0.4	1
Tajiri	15TJAC097	490272	9384340	20	13.5	15	1.5	2.2	47.8	3.7	5
Tajiri	15TJAC098	490314	9384315	32	0	6	6	6.2	29.7	2.4	2
Tajiri	15TJAC098	490314	9384315	28	6	7.5	1.5	2.3	42.1	1.7	1
Tajiri	15TJAC098	490314	9384315	21	13.5	15	1.5	2.2	61.9	4.5	5
Tajiri	15TJAC099	490356	9384289	31	0	7.5	7.5	8.8	29.7	5.1	2
Tajiri	15TJAC099	490356	9384289	25	7.5	13.5	6	1.8	43.5	1.2	1
Tajiri	15TJAC099	490356	9384289	20	13.5	16.5	3	1.8	55.4	5.7	5
Tajiri	15TJAC100	490401	9384268	30	0	7.5	7.5	4.2	35.5	1.8	2
Tajiri	15TJAC100	490401	9384268	24	7.5	12	4.5	1.9	42.7	0.5	1
Tajiri	15TJAC101	490447	9384246	29	0	7.5	7.5	6.6	34.3	3.2	2
Tajiri	15TJAC101	490447	9384246	24	7.5	10.5	3	2.4	46.8	0.6	1
Tajiri	15TJAC101	490447	9384246	18	13.5	16.5	3	1.5	42.0	4.2	5
Tajiri	15TJAC102	490487	9384218	27	0	7.5	7.5	3.9	30.3	6.6	2
Tajiri	15TJAC103	490543	9384194	25	0	6	6	3.1	30.7	1.2	2
Tajiri	15TJAC103	490543	9384194	22	6	7.5	1.5	2.5	33.7	5.8	1
				-				-			
Tajiri	15TJAC104	490578	9384161	26	0	4.5	4.5	2.6	36.9	1.6	2

Tajiri	15TJAC105	490623	9384138	27	0	3	3	2.3	34.9	1.2	2
Tajiri	15TJAC105	490623	9384138	24	3	6	3	1.9	44.7	2.3	1
Tajiri	15TJAC106	490670	9384112	28	0	3	3	2.6	38.1	0.9	2
Tajiri	15TJAC107	490711	9384088	28	0	3	3	2.4	41.2	1.3	2
Tajiri	15TJAC107	490711	9384088	26	3	4.5	1.5	1.7	47.9	9.6	1
Tajiri	15TJAC108	490746	9384067	28	0	1.5	1.5	3.1	35.6	7.1	2
Tajiri	15TJAC108	490746	9384067	26	1.5	3	1.5	1.8	31.1	25.0	1
Tajiri	15TJAC109	490841	9384019	20	3	4.5	1.5	1.5	31.9	1.3	1
Tajiri	15TJAC115	490999	9384384	21	0	3	3	1.6	24.3	2.4	1
Tajiri	15TJAC116	490961	9384412	23	0	7.5	7.5	4.2	24.8	1.9	2
Tajiri	15TJAC116	490961	9384412	18	7.5	9	1.5	2.1	31.9	18.7	1
Tajiri	15TJAC117	490912	9384434	29	0	3	3	3.9	27.4	0.4	2
Tajiri	15TJAC117	490912	9384434	27	3	4.5	1.5	2.0	35.9	21.6	1
Tajiri	15TJAC118	490872	9384456	30	0	4.5	4.5	4.5	25.9	0.7	2
Tajiri	15TJAC119	490842	9384490	31	0	6	6	6.6	24.8	1.7	2
Tajiri	15TJAC120	490861	9384595	31	0	7.5	7.5	11.2	25.2	2.7	2
Tajiri	15TJAC120	490861	9384595	26	7.5	9	1.5	2.2	36.9	30.7	1
Tajiri	15TJAC121	490799	9384627	31	0	9	9	10.4	28.7	6.0	2
Tajiri	15TJAC122	490694	9384557	30	0	7.5	7.5	13.2	32.8	1.6	2
Tajiri	15TJAC123	490648	9384584	29	0	7.5	7.5	16.1	30.6	0.9	2
Tajiri	15TJAC123	490648	9384584	24	7.5	10.5	3	1.9	40.0	2.1	1
Tajiri	15TJAC123	490648	9384584	21	10.5	12	1.5	1.7	66.9	1.4	5
Tajiri	15TJAC124	490609	9384604	29	0	7.5	7.5	17.7	28.3	2.1	2
Tajiri	15TJAC124	490609	9384604	25	7.5	9	1.5	2.3	41.0	1.5	1
Tajiri	15TJAC124	490609	9384604	19	12	15	3	2.4	42.1	2.6	5
Tajiri	15TJAC125	490564	9384623	29	0	7.5	7.5	4.7	31.1	0.7	2
Tajiri	15TJAC125	490564	9384623	18	13.5	15	1.5	2.2	53.3	1.9	5
Tajiri	15TJAC126	490521	9384649	28	0	7.5	7.5	2.8	36.7	1.4	2
Tajiri	15TJAC126	490521	9384649	18	12	15	3	1.9	46.6	2.7	5
Tajiri	15TJAC127	490478	9384678	30	0	1.5	1.5	2.1	42.8	0.6	2
Tajiri	15TJAC127	490478	9384678	27	3	4.5	1.5	1.6	41.6	5.4	2
Tajiri	15TJAC127	490478	9384678	20	10.5	12	1.5	1.6	63.0	2.0	5
Tajiri	15TJAC128	490365	9384749	28	3	4.5	1.5	1.8	47.8	3.5	1
Tajiri	15TJAC129	490789	9384973	31	0	1.5	1.5	1.6	42.9	1.3	1
Tajiri	15TJAC131	490829	9384948	32	0	1.5	1.5	2.1	41.9	0.9	1
Tajiri	15TJAC132	490885	9384922	31	0	6	6	3.6	37.7	1.4	2
Tajiri	15TJAC133	490930	9384903	31	0	7.5	7.5	12.4	29.0	4.0	2
Tajiri	15TJAC134	490960	9384883	29	0	10.5	10.5	11.4	30.8	1.8	2
Tajiri	15TJAC134	490960	9384883	17	16.5	18	1.5	3.2	47.1	10.4	5
Tajiri	15TJAC135	491007	9384847	25	0	15	15	7.4	24.1	1.6	2
1										1	
Tajiri	15TJAC136	491054	9384823	24	0	10.5	10.5	5.2	27.0	3.1	2

Tajiri	15TJAC138	491141	9384766	21	0	4.5	4.5	2.2	25.2	3.8	2
Tajiri	15TJAC140	491230	9384722	19	0	4.5	4.5	1.7	22.9	3.4	1
Tajiri	15TJAC141	491267	9384701	19	0	4.5	4.5	1.8	25.0	2.3	1
Tajiri	15TJAC145	491242	9385171	22	0	7.5	7.5	3.9	25.7	4.0	2
Tajiri	15TJAC145	491242	9385171	16	9	10.5	1.5	1.6	41.1	3.1	1
Tajiri	15TJAC146	491154	9385210	20	0	16.5	16.5	6.8	33.4	2.8	2
Tajiri	15TJAC146	491154	9385210	10	18	19.5	1.5	1.6	43.9	3.2	1
Tajiri	15TJAC147	491192	9385191	22	0	12	12	5.2	32.8	4.2	2
Tajiri	15TJAC147	491192	9385191	13	13.5	15	1.5	1.7	43.5	3.4	2
Tajiri	15TJAC148	491114	9385243	22	0	15	15	3.7	37.3	1.8	2
Tajiri	15TJAC148	491114	9385243	8	21	22.5	1.5	2.1	46.7	0.8	1
Tajiri	15TJAC149	491006	9385293	30	0	1.5	1.5	1.8	46.3	0.5	1
Tajiri	15TJAC150	490881	9385364	22	10.5	12	1.5	2.2	54.2	2.2	1
Tajiri	15TJAC151	491225	9385639	20	9	12	3	2.3	53.8	3.6	5
Tajiri	15TJAC152	491281	9385599	16	12	15	3	1.7	42.1	2.6	1
Tajiri	15TJAC152	491281	9385599	9	19.5	21	1.5	1.6	40.2	3.7	1
Tajiri	15TJAC153	491378	9385549	20	0	10.5	10.5	1.9	38.7	2.0	2
Tajiri	15TJAC154	491458	9385514	18	0	10.5	10.5	2.4	30.5	2.4	2
Tajiri	15TJAC158	491767	9385790	19	0	4.5	4.5	1.6	19.3	8.4	1
Tajiri	15TJAC160	491625	9385916	24	0	4.5	4.5	2.4	47.0	0.9	2
Tajiri	15TJAC160	491625	9385916	17	7.5	12	4.5	1.6	44.7	1.4	5
Tajiri	16TJAC493	489935	9381860	22	6	7.5	1.5	1.9	36.4	11.7	1
Tajiri	16TJAC495	489596	9382053	35	0	6	6	4.8	28.9	8.7	2
Tajiri	16TJAC496	489423	9382153	43	0	1.5	1.5	3.2	37.4	11.0	1
Tajiri	16TJAC496	489423	9382153	40	3	4.5	1.5	2.9	22.1	29.4	200
Tajiri	16TJAC499	489487	9382559	47	0	1.5	1.5	2.2	44.9	14.8	1
Tajiri	16TJAC500	489683	9382460	29	0	13.5	13.5	4.0	37.7	3.9	2
Tajiri	16TJAC501	489848	9382375	26	1.5	4.5	3	1.7	31.8	3.4	2
Tajiri	16TJAC501	489848	9382375	18	10.5	12	1.5	2.7	38.0	1.9	2
Tajiri	16TJAC503	490201	9382163	20	0	4.5	4.5	3.7	25.5	3.6	2
Tajiri	16TJAC503	490201	9382163	13	9	10.5	1.5	1.6	41.8	17.4	1
Tajiri	16TJAC504	490379	9382070	20	0	6	6	1.7	31.8	20.6	1
Tajiri	16TJAC509	490084	9382669	17	6	9	3	2.1	32.2	26.3	1
Tajiri	16TJAC510	489904	9382776	26	0	6	6	1.7	29.5	2.7	2
Tajiri	16TJAC510	489904	9382776	19	9	12	3	1.6	38.3	2.7	1
Tajiri	16TJAC511	489734	9382870	35	0	1.5	1.5	1.6	29.4	3.5	1
Tajiri	16TJAC511	489734	9382870	29	3	10.5	7.5	2.2	39.1	3.7	1
Tajiri	16TJAC512	489566	9382970	47	0	1.5	1.5	1.5	17.3	14.8	1
Tajiri	16TJAC514	489830	9383258	33	0	6	6	2.6	24.5	5.6	2
	16TJAC514	489830	9383258	27	6	12	6	3.6	41.3	2.9	1
Tajiri	101JAC514	105050									
Tajiri Tajiri	16TJAC515	490004	9383150	26	0	7.5	7.5	2.8	27.2	5.4	2

Tajiri 16TJAC516 490175 9383051 17 9 10.5 1.5 1.8 47.9 42.6 1 Tajiri 16TJAC516 490175 9383051 13 13.5 15 1.5 1.7 42.6 1 Tajiri 16TJAC519 490349 9382956 23 0 3 3 1.8 13.2 3 Tajiri 16TJAC520 490913 9383049 18 0 3 3 1.6 17.9 3 Tajiri 16TJAC520 490913 9383049 18 0 3 3 1.6 17.9 3 Tajiri 16TJAC520 490913 9383049 11 4.5 12 7.5 3.7 14.5 2 Tajiri 16TJAC521 490722 9383149 19 0 3 3 1.8 17.5 42.1 3 Tajiri 16TJAC525 489921 9384091 30 7.5 12 4.5 1.8 42.1 3 Tajiri 16TJAC548 491436 <	7.3 2 4.0 2 13.6 2 3.7 2 8.7 2 6.3 2 3.5 2 1.2 2 5.0 2 11.6 2
Tajiri 16TJAC516 490175 9383051 13 13.5 15 1.5 1.7 42.6 1 Tajiri 16TJAC519 490349 9382956 23 0 3 3 1.8 13.2 3 Tajiri 16TJAC520 490913 9383049 18 0 3 3 1.6 17.9 4 Tajiri 16TJAC520 490913 9383049 18 0 3 3 1.6 17.9 4 Tajiri 16TJAC520 490913 9383049 11 4.5 12 7.5 3.7 14.5 2 Tajiri 16TJAC521 490722 9383049 19 0 3 3 1.8 17.5 4 Tajiri 16TJAC525 489921 9384091 30 7.5 12 4.5 1.8 42.1 3 Tajiri 16TJAC548 491436 9385972 28 1.5 3 1.5 1.6 20.1 3 Tajiri 16TJAC548 491436 9385972 22 <	13.6 13.7 3.7 13.8 8.7 13.8 28.9 13.6 6.3 13.5 3.5 13.5 1.2 13.5 5.0 13.5
Tajiri 16TJAC519 490349 9382956 23 0 3 3 1.8 13.2 3 Tajiri 16TJAC520 490913 9383049 18 0 3 3 1.6 17.9 3 Tajiri 16TJAC520 490913 9383049 11 4.5 12 7.5 3.7 14.5 2 Tajiri 16TJAC521 490722 9383149 19 0 3 3 1.8 17.5 3 Tajiri 16TJAC525 489921 9384091 30 7.5 12 4.5 1.8 42.1 3 Tajiri 16TJAC548 491436 9385972 28 1.5 3 1.5 1.6 20.1 3 Tajiri 16TJAC548 491436 9385972 22 7.5 9 1.5 1.6 20.1 3 Tajiri 16TJAC548 491436 9385972 22 7.5 9 1.5 1.6 20.1 3 Tajiri 16TJAC549 491523 9385926 24	3.7 3.7 8.7 3.2 28.9 3.5 1.2 3.5 2.2 3.5 5.0 3.5
Tajiri 16TJAC520 490913 9383049 18 0 3 3 1.6 17.9 3 Tajiri 16TJAC520 490913 9383049 11 4.5 12 7.5 3.7 14.5 2 Tajiri 16TJAC521 490722 9383149 19 0 3 3 1.8 17.5 3 Tajiri 16TJAC525 489921 9384091 30 7.5 12 4.5 1.8 42.1 3 Tajiri 16TJAC548 491436 9385972 28 1.5 3 1.5 1.6 20.1 3 Tajiri 16TJAC548 491436 9385972 22 7.5 9 1.5 1.5 27.4 3 Tajiri 16TJAC548 491436 9385972 22 7.5 9 1.5 1.5 27.4 3 Tajiri 16TJAC549 491523 9385926 24 0 7.5 2.1 31.8 3 Tajiri 16TJAC549 491523 9385926 19 7.5	8.7 1 28.9 1 6.3 1 3.5 1 2.2 1 5.0 1
Tajiri 16TJAC520 490913 9383049 11 4.5 12 7.5 3.7 14.5 2 Tajiri 16TJAC521 490722 9383149 19 0 3 3 1.8 17.5 4 Tajiri 16TJAC525 489921 9384091 30 7.5 12 4.5 1.8 42.1 4 Tajiri 16TJAC548 491436 9385972 28 1.5 3 1.5 1.6 20.1 4 Tajiri 16TJAC548 491436 9385972 22 7.5 9 1.5 1.5 27.4 4 Tajiri 16TJAC548 491436 9385972 22 7.5 9 1.5 1.5 27.4 4 Tajiri 16TJAC549 491523 9385926 24 0 7.5 2.1 31.8 4 Tajiri 16TJAC549 491523 9385926 19 7.5 10.5 3 2.0 36.2 1	28.9 1 6.3 1 3.5 1 2.2 1 5.0 1
Tajiri 16TJAC521 490722 9383149 19 0 3 3 1.8 17.5 0 Tajiri 16TJAC525 489921 9384091 30 7.5 12 4.5 1.8 42.1 3 Tajiri 16TJAC548 491436 9385972 28 1.5 3 1.5 1.6 20.1 3 Tajiri 16TJAC548 491436 9385972 22 7.5 9 1.5 1.5 27.4 3 Tajiri 16TJAC549 491523 9385926 24 0 7.5 2.1 31.8 3 Tajiri 16TJAC549 491523 9385926 19 7.5 10.5 3 2.0 36.2 1	6.3 3.5 1.2 3.5 5.0 3.5
Tajiri 16TJAC525 489921 9384091 30 7.5 12 4.5 1.8 42.1 42.1 Tajiri 16TJAC548 491436 9385972 28 1.5 3 1.5 1.6 20.1 4.5 Tajiri 16TJAC548 491436 9385972 22 7.5 9 1.5 1.5 27.4 4.5 Tajiri 16TJAC549 491523 9385926 24 0 7.5 7.5 2.1 31.8 4.5 Tajiri 16TJAC549 491523 9385926 19 7.5 10.5 3 2.0 36.2 1	3.5 1.2 2.2 1.2 5.0 1.2
Tajiri 16TJAC548 491436 9385972 28 1.5 3 1.5 1.6 20.1 3 Tajiri 16TJAC548 491436 9385972 22 7.5 9 1.5 1.6 20.1 3 Tajiri 16TJAC548 491436 9385972 22 7.5 9 1.5 1.5 27.4 3 Tajiri 16TJAC549 491523 9385926 24 0 7.5 2.1 31.8 3 Tajiri 16TJAC549 491523 9385926 19 7.5 10.5 3 2.0 36.2 1	1.2 1.2 2.2 1.2 5.0 1.2
Tajiri 16TJAC548 491436 9385972 22 7.5 9 1.5 1.5 27.4 2 Tajiri 16TJAC549 491523 9385926 24 0 7.5 7.5 2.1 31.8 3 Tajiri 16TJAC549 491523 9385926 19 7.5 10.5 3 2.0 36.2 1	2.2 : 5.0 :
Tajiri 16TJAC549 491523 9385926 24 0 7.5 7.5 2.1 31.8 9385926 Tajiri 16TJAC549 491523 9385926 19 7.5 10.5 3 2.0 36.2 1	5.0
Tajiri 16TJAC549 491523 9385926 19 7.5 10.5 3 2.0 36.2 1	
	11.6
Tajiri 17TJAC1270 489735 9381977 31 0 3 3 2.1 46.7	· · · · · ·
	1.8
Tajiri 17TJAC1271 489692 9382004 33 0 1.5 1.5 1.8 25.2 4	40.9
Tajiri 17TJAC1272 489647 9382023 33 0 4.5 4.5 6.2 34.6 1	10.8
Tajiri 17TJAC1273 489560 9382076 36 0 6 6 1.7 29.8	5.2
Tajiri 17TJAC1273 489560 9382076 31 7.5 9 1.5 2.0 30.5	6.6
Tajiri 17TJAC1274 489511 9382106 39 0 3 3 2.4 35.1	8.8
Tajiri 17TJAC1274 489511 9382106 36 4.5 6 1.5 2.8 35.9	6.7 2
Tajiri 17TJAC1275 489467 9382129 41 0 1.5 1.5 2.9 44.3	4.6
Tajiri 17TJAC1276 489542 9382536 44 0 1.5 1.5 2.0 44.6 1	10.8
Tajiri 17TJAC1277 489585 9382506 41 0 1.5 1.5 1.7 45.7	8.4
Tajiri 17TJAC1278 489630 9382487 39 0 1.5 1.5 1.7 50.5	6.3
Tajiri 17TJAC1279 489716 9382434 26 0 15 15 3.5 37.3	2.6
Tajiri 17TJAC1280 489760 9382414 26 0 10.5 10.5 2.1 31.8	3.4
Tajiri 17TJAC1281 489807 9382384 27 0 6 6 1.7 29.1	3.7
Tajiri 17TJAC1281 489807 9382384 17 12 13.5 1.5 1.8 41.7	2.3
Tajiri 17TJAC1282 489893 9382352 15 12 13.5 1.5 1.6 20.9	3.7
Tajiri 17TJAC1283 489932 9382320 12 13.5 15 1.5 3.1 20.2 1	11.1
Tajiri 17TJAC1284 489973 9382291 16 9 10.5 1.5 1.7 15.7 2	24.6
Tajiri 17TJAC1286 490112 9382214 22 0 4.5 4.5 2.1 30.5	4.1
Tajiri 17TJAC1286 490112 9382214 19 4.5 6 1.5 1.8 37.5 1	5.6
Tajiri 17TJAC1287 490155 9382188 21 0 4.5 4.5 3.8 27.7	6.1
Tajiri 17TJAC1288 490247 9382135 21 0 3 3 1.7 36.1	4.4
Tajiri 17TJAC1288 490247 9382135 15 7.5 9 1.5 5.0 29.7 1	13.2
Tajiri 17TJAC1289 490292 9382105 22 0 3 3 1.8 40.7	5.2
Tajiri 17TJAC1290 490338 9382079 20 0 6 6 1.9 42.9	7.1
Tajiri 17TJAC1291 490168 9382622 24 0 4.5 4.5 5.3 34.4	2.7
Tajiri 17TJAC1291 490168 9382622 21 4.5 6 1.5 1.7 31.9 1	16.1
Tajiri 17TJAC1292 490127 9382641 23 0 4.5 4.5 1.8 25.2	3.3
Tajiri 17TJAC1292 490127 9382641 19 4.5 7.5 3 1.8 34.3 3	8.5
Tajiri 17TJAC1292 490127 9382641 15 9 10.5 1.5 1.6 31.4 2	28.6

		-	-								
Tajiri	17TJAC1293	490032	9382701	25	0	1.5	1.5	1.6	19.1	1.4	2
Tajiri	17TJAC1293	490032	9382701	21	3	6	3	1.6	28.5	4.0	2
Tajiri	17TJAC1293	490032	9382701	19	6	7.5	1.5	1.9	39.0	3.3	1
Tajiri	17TJAC1293	490032	9382701	16	9	10.5	1.5	1.8	40.3	0.5	1
Tajiri	17TJAC1293	490032	9382701	13	12	13.5	1.5	2.1	54.0	4.4	1
Tajiri	17TJAC1293	490032	9382701	12	13.5	15	1.5	1.5	28.5	8.1	200
Tajiri	17TJAC1294	489994	9382726	22	1.5	7.5	6	1.7	33.4	5.6	2
Tajiri	17TJAC1294	489994	9382726	13	13.5	15	1.5	2.9	35.4	8.2	1
Tajiri	17TJAC1295	489945	9382751	28	0	1.5	1.5	1.6	26.1	2.1	2
Tajiri	17TJAC1295	489945	9382751	23	3	7.5	4.5	1.9	33.1	3.1	2
Tajiri	17TJAC1295	489945	9382751	19	7.5	10.5	3	1.6	37.5	2.5	1
Tajiri	17TJAC1295	489945	9382751	14	13.5	15	1.5	3.0	28.4	19.1	200
Tajiri	17TJAC1296	489861	9382793	27	0	7.5	7.5	2.1	32.1	3.6	2
Tajiri	17TJAC1296	489861	9382793	18	12	13.5	1.5	1.7	38.6	1.9	1
Tajiri	17TJAC1297	489820	9382822	29	0	7.5	7.5	2.5	29.3	3.7	2
Tajiri	17TJAC1297	489820	9382822	18	13.5	15	1.5	2.3	35.8	1.2	1
Tajiri	17TJAC1298	489774	9382849	31	0	6	6	2.4	35.1	4.7	2
Tajiri	17TJAC1298	489774	9382849	26	6	10.5	4.5	6.7	33.4	4.9	1
Tajiri	17TJAC1298	489774	9382849	21	12	15	3	1.7	41.2	1.3	1
Tajiri	17TJAC1299	489693	9382894	38	0	1.5	1.5	1.7	46.8	6.7	1
Tajiri	17TJAC1304	489785	9383287	26	9	15	6	1.8	42.0	1.5	1
Tajiri	17TJAC1305	489881	9383225	31	0	6	6	2.5	22.5	3.9	2
Tajiri	17TJAC1305	489881	9383225	23	10.5	12	1.5	1.5	43.3	1.8	1
Tajiri	17TJAC1306	489920	9383197	28	0	9	9	3.3	28.2	3.4	2
Tajiri	17TJAC1306	489920	9383197	23	9	10.5	1.5	2.0	41.4	1.5	1
Tajiri	17TJAC1307	489961	9383173	27	0	9	9	2.0	27.7	3.0	2
Tajiri	17TJAC1308	490048	9383127	24	0	7.5	7.5	2.4	28.7	3.7	2
Tajiri	17TJAC1308	490048	9383127	19	7.5	10.5	3	1.7	41.2	9.0	1
Tajiri	17TJAC1309	490089	9383108	23	0	7.5	7.5	1.9	33.6	4.2	2
Tajiri	17TJAC1309	490089	9383108	19	7.5	9	1.5	1.9	40.9	2.6	1
Tajiri	17TJAC1310	490128	9383077	26	0	1.5	1.5	1.7	21.4	1.7	2
Tajiri	17TJAC1310	490128	9383077	21	3	7.5	4.5	1.6	32.9	8.0	2
Tajiri	17TJAC1311	490220	9383033	23	0	4.5	4.5	1.6	32.4	2.7	2
Tajiri	17TJAC1311	490220	9383033	18	6	7.5	1.5	1.5	37.2	3.1	2
Tajiri	17TJAC1312	490301	9382984	20	0	7.5	7.5	3.3	33.9	2.5	2
Tajiri	17TJAC1312	490301	9382984	16	7.5	9	1.5	2.1	39.3	4.2	1
Tajiri	17TJAC1313	490487	9383316	20	0	7.5	7.5	1.8	26.1	7.0	1
Tajiri	17TJAC1314	490443	9383349	23	0	3	3	3.8	21.6	3.1	2
Tajiri	17TJAC1314	490443	9383349	20	3	7.5	4.5	3.1	32.7	5.9	1
Tajiri	17TJAC1315	490311	9383414	23	0	10.5	10.5	3.5	30.0	2.9	2
Tajiri	17TJAC1315	490311	9383414	17	10.5	12	1.5	2.7	42.4	1.6	1
Tajiri	17TJAC1316	490268	9383446	24	0	9	9	3.5	32.1	4.5	2

Tajiri	17TJAC1316	490268	9383446	18	9	10.5	1.5	2.1	41.8	3.7	1
Tajiri	17TJAC1316	490268	9383446	15	12	15	3	2.5	50.6	7.7	1
Tajiri	17TJAC1317	490183	9383487	25	0	6	6	3.2	25.5	4.5	2
Tajiri	17TJAC1317	490183	9383487	21	6	9	3	3.8	37.5	5.0	1
Tajiri	17TJAC1317	490183	9383487	18	9	10.5	1.5	2.5	48.8	2.1	5
Tajiri	17TJAC1318	490098	9383540	29	0	7.5	7.5	3.5	18.8	3.7	2
Tajiri	17TJAC1319	490018	9383584	32	0	9	9	3.3	21.8	3.8	2
Tajiri	17TJAC1319	490018	9383584	25	10.5	12	1.5	1.5	36.2	2.4	1
Tajiri	17TJAC1320	489940	9383632	33	0	6	6	2.8	36.4	8.7	2
Tajiri	17TJAC1320	489940	9383632	29	6	7.5	1.5	1.6	41.6	2.7	1

Appendix 3 - Modal composite analysis data

Resource Location	Composite Number	Ilmenite	Rutile	Zircon	Leucoxene	Garnet	Mag Others	NonMag Others	MHV	TRASH
		%	%	%	%	%	%	%	%	%
Tajiri	TA001A	73.8	10.4	6.2	0.2	0.7	0.9	2.7	91	9
Tajiri	TA002A	70.7	8.1	5.3	0.7	6.2	0.7	3.4	85	15
Tajiri	TA003A	72.8	12.6	6.1	0.5	0.2	1.5	2.5	92	8
Tajiri	TA004A	72.2	9.7	5.0	0.3	4.0	0.9	2.6	88	12
Tajiri	TA005A	76.5	9.6	5.5	0.3	0.5	1.2	2.6	92	8
Tajiri	TA006A	66.0	7.1	4.7	1.1	5.2	2.4	10.0	79	21
Tajiri	TA007A	75.2	9.2	5.0	0.4	1.5	1.3	2.7	90	10
Tajiri	TA008A	70.4	8.7	4.1	1.0	1.6	1.5	7.3	84	16
Tajiri	TA009A	49.9	6.1	2.5	0.1	30.9	0.9	7.3	59	41
Tajiri	TA011	70.9	11.0	5.4	0.3	0.7	0.6	3.2	88	12
Tajiri	TA012	62.9	7.8	4.4	0.5	8.9	1.1	10.1	76	24
Tajiri	TA013	66.7	8.0	6.4	1.3	1.2	0.3	9.1	83	17
Tajiri	TA014	58.1	6.6	4.1	0.6	13.0	1.2	11.9	70	30
Tajiri	TA015	69.1	9.4	4.9	0.1	2.3	2.2	5.5	84	16
Tajiri	TA016	32.1	3.9	2.2	0.1	40.3	3.5	14.8	39	61
Tajiri North	TN001A	78.3	6.9	4.0	0.2	0.3	6.5	1.2	90	10
Tajiri North	TN002A	75.5	6.4	4.3	0.9	0.6	5.6	3.4	87	13
Tajiri North	TN003A	75.9	6.0	3.9	0.9	0.5	7.5	2.6	87	13
Tajiri North	TN004A	71.6	5.4	3.8	0.4	2.3	7.4	6.1	81	19
T2	TA017-20	49.6	5.6	4.6	0.1	25.9	3.0	7.0	60	40
T2	TA018	30.2	3.3	1.8	0.1	45.4	4.3	11.3	35	65
T2	TA019-22	73.2	10.9	4.7	0.3	4.4	1.7	2.5	89	11
T2	TA021	46.0	7.8	3.4	0.1	34.8	2.1	4.2	57	43
T2	TA023-25	67.9	9.1	4.4	0.3	4.4	4.4	5.7	82	18
T2	TA024	22.4	2.7	1.2	0.1	51.9	5.1	14.4	26	74
T2	TA026-28	28.5	2.9	1.3	0.0	46.7	6.8	11.7	33	67
T2	TA027-29	71.9	8.5	4.0	0.1	3.0	4.9	3.5	85	15
T2	TA030	17.6	1.8	1.1	0.0	62.8	5.6	8.8	21	79
T2	TA031-33	74.4	8.1	4.8	0.1	1.6	3.1	4.4	88	12
T2	TA032	45.9	5.6	3.2	0.4	28.9	4.6	8.2	56	44
T2	TA034	74.6	9.9	5.8	0.1	1.9	1.6	2.5	91	9
T2	TA035	76.4	8.2	7.2	0.2	0.8	1.0	3.2	93	7
Т3	TN005	72.3	0.3	4.6	0.0	2.7	8.3	2.1	78	22
Т3	TN006	66.4	0.6	5.4	0.8	1.4	12.1	5.1	74	26
Т3	TN007	69.6	0.4	5.3	0.9	2.6	9.3	4.1	76	24
Т3	TN008	12.1	0.1	0.7	0.0	67.2	6.2	11.1	13	87
T4	TN019	53.4	8.2	4.0	0.2	16.9	2.2	6.8	66	34
T4	TN020	38.8	5.7	2.3	0.2	36.3	2.9	9.2	47	53
T4	TN021	70.0	8.5	5.9	0.2	5.4	0.8	4.7	85	15
T4	TN022	59.8	9.9	3.8	0.6	10.9	1.5	6.5	74	26
T4	TN023	67.2	8.0	5.9	0.1	10.6	1.6	2.8	81	19
T4	TN024	60.4	7.6	3.5	0.4	10.4	2.0	8.3	72	28
T4	TN025	71.0	9.5	4.2	0.2	3.4	2.3	3.0	85	15
T4	TN026	50.3	7.1	3.0	0.2	18.9	6.3	8.4	61	39

Appendix	3.	- Modal	composite	analy	sis data

T4	TN027	66.2	8.8	4.7	0.8	5.9	1.5	5.6	81	19
T4	TN028	54.0	9.1	3.3	0.8	8.3	5.1	13.0	67	33
Т4	TN029	66.7	9.4	4.4	0.4	8.2	1.3	5.8	81	19
T4	TN030	62.7	8.6	3.4	0.2	5.2	6.6	7.5	75	25
T4	TN031	65.5	7.9	3.9	0.4	5.9	2.6	7.8	78	22
T4	TN032	53.7	8.7	3.1	0.2	14.5	6.4	7.6	66	34
T4	TN033	60.5	9.3	3.7	0.4	8.0	1.5	6.7	74	26
T4	TN034	62.5	10.3	3.6	0.4	5.1	4.2	5.7	77	23
T4	TN035	65.4	6.7	3.7	0.2	8.1	3.0	3.5	76	24
T4	TN036	59.1	7.1	3.3	0.2	13.0	4.4	6.2	70	30
T4	TN037	66.6	8.9	4.1	0.2	7.0	1.9	4.1	80	20
T4	TN038	41.2	5.6	2.4	0.5	24.9	7.3	13.8	50	50
T4	TN039	41.3	5.0	2.3	0.1	27.3	11.9	7.9	49	51
T4	TN040	45.1	5.9	3.0	0.0	27.1	7.5	8.6	54	46
T4C	TN009	50.9	6.2	4.4	0.3	25.5	2.0	8.1	62	38
T4C	TN010	49.4	5.3	3.0	0.3	21.8	2.8	13.6	58	42
T4C	TN011	48.8	4.3	2.6	0.3	22.3	5.3	13.4	56	44
T4C	TN012	22.8	2.1	1.0	0.3	47.1	6.1	17.3	26	74
T4C	TN013	58.7	6.9	4.6	0.5	14.2	1.9	7.2	71	29
T4C	TN014	51.7	5.7	3.8	0.8	20.6	1.7	10.6	62	38
T4C	TN015	55.3	6.0	3.0	0.1	22.3	1.3	7.5	64	36
T4C	TN016	40.2	3.8	2.2	0.0	41.5	2.8	6.5	46	54
T4C	TN017	35.6	4.6	1.5	0.1	42.1	4.4	8.5	42	58
T4C	TN018	43.9	3.3	2.0	0.3	27.2	5.3	15.7	50	50